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Abstract

The high testability of AND/XOR networks and

new technologies that make their use more possible
call for new minimization and synthesis tools. This
paper introduces the fast Exact and Quasi-minimal al-
gorithms for minim al$xed polarity AND/XOR canon-

ical representation of Boolean functions. The method
uses features of array of disjoint cubes representa-
tion of functions to identify the minimal networks.
These features can drastically reduce the search space

and provide high quality heuristics for quasi-minimal
representations. Experimental results show that these

[
special AND XOR networks, on the average, have
similar num er of terms to Boolean AND/OR net-

works while there are functions for which AND/XOR
circuits are much smaller. The circuits generated here

are much more testable.

1 Introduction

AND/XOR realizations of switching functions have
certain advantages over traditional AND/OR realiza-
tions but, due to the lack of circuit technologies and
necessary synthesis tools, they have not been used ex-
tensively.

In many applications the AND/XOR realizations
of the circuits require less layout area than their
AND/OR counterparts [1]. The AND/XOR PLAs of-
ten require fewer products than AND/OR PLAs [2].
These networks are also highly testable and many of
their applications can be found in arithmetic, encod-
ing, telecommunication, and linear systems.

Although XOR gates already exist in EPLDs (Sig-
netics LHS501, arithmetic PALs, etc.), and standard
cell libraries, the full potential of this logic has not
been realized in the mainstream logic design and syn-
thesis. One disadvantage, in terms of realization,
has been the slow speed and area constraints of the
XOR gate. Recent advances in FPGA technology
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have made significant progress in this regard. FP-
GAs such as the Xilinx 3000 family, which incorporate
a high-speed lookup table approach to implementing

any function of up to five input variables, make an
XOR gate with 5 inputs as fast as any other gate of

the same number of inputs. Another example is that
of the 1010/1020 family of devices from Actel. The

cascaded multiplexer structure of Actel makes it pos-
sible to implement two- and most three-input func-
tions, that include XOR operators. Of special interest
here are new programmable technologies that include

XOR as one of few logic gates available in them. For
instance, the CLi6006 Field Programmable Gate Ar-

ray from Concurrent Logic, Inc. includes a two-input
XOR gate in a small granularity block [3].

Currently, few, if any, minimization and synthe-
sis methods exist which use AND/XOR-based meth-

ods for these devices. Two-level minimizers such as
ESPRESSO and multi-level minimizers such as MISII,

BOLD, or FPGA specific ones such as mis-pga do not
include XOR synthesis schemes.

In this paper methods for fast minimization of
functions with large numbers of variables and fixed-
polarity AND/XOR networks will be presented.

These special AND/XOR networks are not only the

most easily testable of all general purpose networks,
but also have other merits of their own. These canon-

ical forms which are known as Consistent Generalized

Reed-Muller CGRM [4] forms, are used for general
Boolean function representations in such applications
as the classification of functions, Ashenhurst and other

decomposition methods, and multi-level design. In ad-
dition, these forms have been studied for applications
in image processing and used as the basis for mini-
mization of other AND/XOR networks [5].

In the following sections after a brief introduction
of CGRM forms, the testability of AN D/XOR net-
works is discussed. Next, fast realization of CGRM
expansion for a given polarity is introduced along with

several new cube operations. In section 5, an Exact
method to find the minimal polarity CGRM is pre-
sented together with characteristics of arrays of dis-
joint cubes which can reduce the required search space.

In the following section a Quasi-Minimal approach is
described and in section 7 some experimental results

are presented and discussed.
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2 Background 3 Testability of AND/XOR Networks

While there are only two canonical forms for the
Boolean AND/OR networks, the number of possi-

ble canonical representations of a function for the
AND/XOR networks is very large [4]. One class of

AND/XOR networks, the first to be noted in the lit-
erature, is that of the Reed-Muller canonical (RMC

/form [9, 10] and its superset, the Consistent Genera -
ized Reed-Muller (CGRM) canonical forms [4].

The RMC representation consists of only positive
product terms and is given as:

2“-1

f(W, ~2,... )% ) = @ a;p~ (1)

i=o

where a; E {O, 1} and pi = zne”zn_le”-l . . .X2eZZ1e1

= ~~=1 ~jeJ where ej E {O, 1} such that e~e~-1...e~el

is a binary number which equals i. Moreover Zio = 1

and xil = xi. @ denotes the summation over GF(2),
the Galois field of two elements.

If the restriction that all the variables should take
positive polarity is removed and they are also allowed
to take negative polarities, one can have a Generalized

Reed-Muller (GRM) canonical form. If the variables

are, however, restricted to retain the same polarity,
either positive or negative, in all product terms, the

canonical form will be that of the Consistent Gener-
alized Reed- Muller (CGRM) form.

For n variables, there are 2n possible arrangements

of polarities; hence, there are 2n possible CGRM forms
for a function. Depending on the polarity of the vari-

ables, the number of terms in the expansion varies. As
an example for three variables, the function Z1 Z2Z3 is

represented in RMC as:

~1~2~3 = l@~l@~2@~l *2@~3@~l~3@$2*3 @@132~3.

(2)
The same function will just be represented as 31 Z2Z3

if negative polarities are chosen for all the three vari-

ables. This CGRM obviously has less number of
terms. The problem of finding those polarities of the
variables which result in a CGRM with a least num-

ber of terms is essentially the minimization problem
of interest here.

In order to differentiate between the Boolean prod-

uct terms and the terms in Reed-Muller forms, the
term “monoterm” will be used for the latter.

Definition 1 A monoterm is a product term in Reed-

Muller canonical forms.

The minimization problem can be formulated in
terms of the minimal polarity. In this paper, the bi-

nary number ? = plpz . . . pn where pi c {O, 1} such

that ~i = xip’ M called the polarity. If pi = O, ii = Zi
and if pi = 1, $i = z~. For all possible CGRM forms
of a switching function, the minimal polarity is the
polarity which results in a CGRM form with the least

number of monoterms. The polarity of each literal in
this polarity is called the polarity literal.

The inherent high testability of AND XOR net-
{works has long been known [11, 12]. It has een shown

[11] that all single stuck-at-faults of the RMCnetwork,
assuming the primary inputs are fault free, can be de-
tected by the set of (n+4) tests which are independent
of the function. With faulty primary inputs, the same

number was shown to be sufficient to detect stuck-
at-faults provided that an extra observable AND gate

is added to the network. With addition of extra ob-
servable outputs, the same n + 4 independent tests

can detect all single and multiple stuck-at-faults. It
has been shown that the tests for detecting bridging

faults of the RMC network are also independent of the
function. It has to be noted that the test set for the

CGRM networks is of the same cardinality as one for
the RMC network. The only difference is that the test
vector bits for the variables with negative polarities

are the opposites of the ones in the RMC network.

The distinction between CGRM networks and other

AND/XOR networks was made by Pradhan [12]. Al-
though the test set for the other AND/XOR networks

is also independent of the function, its cardinality is
higher than CGRM networks.

4 Fast Realization of the CGRM

Following Fisher [6], the problem of CGRM mini-

mization of a switching function can be divided into
two steps. The first step is to identify the minimal
polarity and the second is to realize the CGRM ex-

pansion of the function with this polarity. In this sec-
tion a fast method dealing with the second step will be

presented. The identification of the minimal polarity
is the subject of sections 5 and 6.

One efficient method for realizing a CGRM expan-
sion of switching functions is by operating on the set
of disjoint cubes which represent the function [6, 7, 8].

In this method, the function is represented by disjoint

cubes rather than minterms to reduce the memory re-
quirements. Monoterms representing each cube are

expanded and those occurring in an odd number of
cubes are retained as the ones representing the fnnc-
tion. The fast method introduced here uses the new
operations of cube commonality, difference, and sym-
metric difference together with a fast Gray-code ap-
proach to realize a CGRM expansion. Before intr-

oducing the method, the monoterms representing each
cube, originally reported by Fisher [6] for the case of

CGRM, are given by Theorem 1:

Theorem 1 The monoterms originating from a cube
for the RMC expansion are all the cubes lhat have
their Is in the same literal positions as the 1s of the
original cube and either “O” or ‘t-” in the O-hteral po-

sitions of the original cube.

These monoterms will be referred to as monoterms
representing the cube from now on.
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Table 1: Equivalence Operator for a Simple Bit

Observation 1 The monoterms are generated by the
ones of ihe cube and zeros being replaced by DCS and
then alternately replacing the positions of zeros with

ones and DCS going through all the possible combina-
tions. If the number of zerosin a cube is denoted by

No, the total number ofmonoterms representing that

cube will be2N” as this is the total possible numherof
combinations. This can be proven based on the fact

that @ can be represented by 1 @x. Any negative vari-
able then contributes two terms to the expansion.

Theorem 1 gives the monoterms representing the

cube at polarity 11...1 or the RMC. In order to ob-
tain the representation for any other polarity, first a

matching operation of the original cube and the po-
larity cube is performed to find the equivalent RMC

representation. Then Theorem 1 is used to generate
the monoterms of this equivalent cube, Finally the
mat thing op erat ion is performed on each monot erm
generated to get CGRM form of interest. The match-

ing operation here is the bitwise equivalence operation.
Table 1 shows this operation for a single bit.

When a function is comprised of more than one
cube, the monoterms that represent this function are

not the simple union set of the monoterms of each cube
but only those that occur in an even number of cubes.

These will be referred to as expansion monoterms from
now on.

To formulate the process of CGRM generation,
analogies with set theory will be used. For two cubes,

the expansion monoterms are those that are not com-
mon in the two cubes. For this purpose the commonal-
ity of two cubes needs to be identified. The cube com-
monality is a cube representing the monoterms that

are common in two cubes and is given below:

Definition 2 Let Cl and (72 be two cubes. The cube
commonality operator on Cl and C2 is defined as fol-
10Ws:

{

0clfu~ = ~a if 3i such that C1i I’C2i = 0
otherwise, where Cai = C1i I’C’2;

(3)
where Cki represents the i-th literal of the cube Ck, and
the commonality operator for a single bit is defined in

Table 2.

By the same analogy with set theory, the expan-
sion monoterms of two disjoint cubes are the result of
the symmetric difference of the two. The difference of
two cubes is the set of all the monoterms which rep-

resent the first cube and do not represent the second.
This operation which is the counterpart of the sharp
operation for the case of monoterms is given below:

Table 2: Cube Commonality Operator for a Single Bit

Table 3: Cube Difference Operator for a Single Bit

Definition 3 Let Cl and C2 be two cubes. The cube

difference operator of C1andC2, Cl – C2, is:

{

Cl if Clj – CX = 0 for some i;

0 if Cli– Cz~=6f0r Ulli=l,2, . ..)n

lj if (CII, CIZ,.. .,ai,.. ., Cl*) otherwise,
where the U is for all those i for which

C~~ – Czi = ~i G {–,1}

(4)
where Cki is the i-th literal of the cube Ck and the

literal difference operator is defined in Table 3.

Definition 4 Let Cl and C2 be two cubes. The sym-
metric difference of the two cubes is:

cl @C2= (cl - C2)U(C2 – cl). (5)

Difference and symmetric difference follow the same
properties as in set theory. As an example, the sym-

metric difference is commutative and associative:

c~@c~=c2@cl; (6)

(cl@c2)@c3 =cl@(c2@c3) =cl@c26c3. (7)

The associativity of symmetric difference, given in
Equation (7), makes it possible to extend this oper-

ation to more than two cubes. That is: the expansion
monoterms of a switching function, given as a set of

disjoint cubes, are obtained from the n-argument sym-
metric difference of all the cubes, i.e. C1@C2@. . .@Cn.

The process of realization of CGRM expansion for a
given polarity can now be outlined. First, the function
is represented as a set of disjoint cubes. The cubes are
then operated by the equivalence operation with the
polarity of the CGRM. The symmetric difference of all
these cubes is found and monoterms representing each

of the resulting cubes are generated in a Gray-code or-
der. Finally, the Equivalence operation with the po-

larity cube 1s performed on each of these monoterms
to give the CGRM efpansion.

The number of the resulting monoterms can be
found from the inclusion-exclusion principle. This

number is given by the following theorem:

Paper 3.1
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Theorem 2 Let Cl, C2, . . . . C~ be a set of n disjoint
cubes. Let Sk denote the sum of the number of all
monoierms common in all possible k cubes. The num-
ber of monoterms representing the set of cubes is:

SI–2S2+4S3–8S4+. . +-(–2)k-lSk+. . .+(–2)”-lSn.

[8)
In the above equation, S1 denotes the number of ’u!l

monoterms that are only in one cube, S2 denotes the
number of all monoterms that are common in any two

cubes, etc.

5 Exact Minimization

Although identification of the minimal polarity is
an NP-hard problem, certain features of the array
of disjoint cubes can be used to reduce the required
search space. Some of these features, if present in an

array, can be used to find the minimal polarity with-

out any search. Others can just reduce the amount of
search needed to find the exact solution. In the case

that none of the features exist, the whole exhaustive
search needs to be performed.

The number of expansion monoterms for a set of
disjoint cubes is the difference between the total sum
of the number of monoterms representing each cube

and the number of monoterms that are subtracted be-
cause they occur in an even number of cubes. Both of
these numbers change with different polarities. The

minimal polarity is the one which results in the opti-

mum balance between these two numbers resulting in
the least number of expansion monoterms.

There are certain features of the function that can
be used to reduce the search space for identifying the
minimal polarity. For the case of functions that are

comprised of only one cube, the minimal polarity can
be found directly without any search.

Theorem 3 The minimal polarities for a single cub~
are the polarities which match all the literals in the

cube. The number of such polarities is equal to 2NDc

where NDC is the number of DC-lit erals in the cube.

When a function is comprised of more than one
cube, there are other features that if they exist, lead

to the search space reduction. Theorem 4 provides
one criteria for identifying a minimal polarity literal
based on the columns of an array of disjoint cubes,
using Theorem 2.

Theorem 4 Let S1i denote the sum of Sis of the
cubes which have a value of 1 in a given column. Let

SOi denote the sum of Sis of the cubes which have a

value of O in that column. Let S1–Dc”i denote the
sum of Zis of the cubes lltal have bol[l 1s and DC$ in

the column, assuming the 1 has been changed to a O.

Let SO-Dci denote the sum of Sis of the cubes that
have both 0s and DCS in the column. The correspond-

ing minimal polarity literal for a column in the array

of disjoint cubes should be changed when

~(-2)w +~(-2)k-’s5Dc* (9)

k=l k=2

n n

From Theorem 4, it is possible to infer the following
theorem:

Theorem 5 For a column comprised of all 0s or all
1s, the corresponding minimal polarity literal is the

same as the value in the column. (If the opposite
is chosen, the number of monoterms representing the

cubes would be double d.) For a column comprised of
all DC values, either O or 1 will be the minimal literal
value.

In the Exact method of minimization, first it is
checked if the function is only comprised of one cube
or two. Direct solution for these cases is found using
Theorems 3,4, and 5. If there are more cubes involved,
first Theorem 5 is used to identify any columns in the
array of disjoint cubes for which minimal polarity lit-
eral can be found readily. All the other columns are set
to the zero polarity and a search for minimal polarity
is performed in Gray-code order, changing one column
at a time. This method is given formally below:

The exact algorithm
CGRMIN.EXA CT

{
~f ( the function is comprised of one or two cubes)

‘ Preset the columns to the minimal polarity;

Generate the CGRM of the array; )

else {
Preset the columns

to minimal polarity literals if possible, or
to polarity O otherwise;

for ( all combinations of the columns with

undetermined polarities )

{

‘ Set one column to its opposite polarity using
Gray-code order;

Generate the CGRM of the array;

if ( No. of monoterms decreases )
rein-polarity = polarity- of-current. CGRM;

)
Generate the CGRM of rein-polarity; )

}

6 Heuristic Minimization

In this section, a fast heuristic approach to the min-
imization problem is introduced. The corresponding
heuristics combine the characteristics of the the overall
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number of monoterms and the ones subtracting, in or-
der to identify the minimal CGRM polarity for a given

array of disjoint cubes. Based on these heuristics, a

priority of search for different polarities is devised and
a minimization algorithm is introduced.

Here, similar to the Exact method, the columns
minimal polarities of which can be identified without
any search are first pre-set to their minimal polari-

ties. Next, for all the remaining columns in the ar-
ray of disjoint cubes, the polarity literals are chosen
such that there will be the least number of 0s in each
column. Referring back to Table 1, the least num-
ber of 0s in a column results from a polarity which is

equivalent to the value that occurs the most in that

column. That is, there will be the least number of

non-matching values in that column with its corre-

sponding polarity literal. Since the overall number of
monoterms is determined by the number of zeros in the

cubes, this polarity is used as a starting point for the
minimization. However, the minimum number of 0s
in the array does not guarantee the minimum number
of expansion monoterms. For many functions it was

shown experimentally that this first choice gives the
minimal solution. For other cases, however, a search

scheme is required. The general heuristics below can
be used in any minimization scheme:

● As the number of monoterms for a cube is 2N01
where No is the number of 0s in the cube, if a
cube has a relatively large number of 0s, some po-

larity literals should be changed to reduce the con-
tribution of this cube to the number of expansion

monoterms.

● From (9), if the number of occurrences of a 1 or a
O in a column with no DC values is much higher

than its opposite value, it is more lzkely that this
value will be the minimal polarity literal for that
column. A ratio of ~ to 1 for the most occurn”ng

and least occurring values almost guarantees this
likelihood.

v When there are DC values involved in a column,

the greater the number of the DC values, the less

will be the overall number of monoterms aflected
if’ the polarity of that column is changed.

● For functions with large number of cubes, the
monoterms which are common in two or three

cubes are the main subtracting monoterms.

Here, based on the above heuristics, a priority is
calculated for every column minimal polarity of which
can not be found without search. This priority is used
to guide the search towards the minimal polarity.

Let the priority of the column i be represented by
17i. Let the number of the 1s in that column be rep-

resented by Nli, and the number of 0s by Noi. Then

(N’i)’
‘i = Nli + NOi

(lo)

The Quasi-minimal

formally as follows:

method can now be presented

The quasi-minimal algorithm

CGRMIN

{
Preset the columns

to minimal polarity literals if possible, else
to most occum”ng values in the columns;

Find the values of column priorities, rs ;
Sort I’s in descending order;

~r (k= 1; k <No.of.undetermined-polarities; k++)

‘ Set the column with priority k to its opposite
polarity;

Generate the CGRM of the array;

if ( No. of monoterms representing the array or

the overall number of monoterms decreases );
I

~ rein-polarity = polarity-o f-current- CGRM;

continue;

)
else

change the column back to its previous polarity;
1

Generate the CGRM of min.polarity;

}’

In this algorithm, the number of searches required

for the worst case will be of order 2n, for a function of
n variables which significantly contributes to its speed.

7 Experimental Results

The Exact and Quasi-Minimal methods were tested

for 112 MCNC benchmark functions. As most of the
benchmarks are multi-output, the BLIF format of the

functions was used to generate single output compo-
nents of these functions for testing. Several of these
functions are shown for comparison in Table 4. In
this table n stands for the number of variables in the

functions and No. for the number of terms.
The times given in the table are the CPU times

in seconds on a Sequent S27 - two 386 processors -
machine. The table includes the time comparisons

of the functions for MINGRM [7], an existing exact
CGRM minimizer, ESPRESSO, and CGRMIN, the
CGRM minimizer developed based on the algorithms
described earlier.

For the functions tested, the two level AND/OR
and CGRM were found to be relatively comparable.
!lar the 112 functians overall, while ESPRESSO found

1193 terms, this number for exact CGRM was found
to be 1382 and the quasi-minimal program gave 1557.
Depending on the functions, AND/OR can be a better
choice for realization while for others it is the CGRM
that certainly gives the better alternative. The func-

tions rd532, rd732, and rd844 in Table 4 are exam-
ples of the latter; mis20, mis59, and sao22 are exam-
ples of the former. EXORCISM [1] gives 102 terms
for 9sym, 5 for con12 and rd532, 9 for f51m4, 22 for
sao23, and 16 for misex20. It is obvious that classi-
fying functions according to their linearity and using

multi-level AND/OR/XOR minimizers will definitely
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T@-rr
9sym
bw7
con12
duke8
f5 lm4
rd532
rd732
rd842
sao22
sao23
mis20
mis59
vg28
242

Ti

7-

;

7
22

8
5
5

1:
10
10
12
25

7—

No.

85
6
5

18
16
64

128
20
22

7
4

2;

sec
-7n-

3.9
0.0
0.0
0.0
0.1
0.1
0.9
3.1
0.2
0.9
0.0
0.0
0.0
0.4

MINGRK

%-
173

8
8
4
7
5
7
8

52
47
62
26
13
9

sec
T
1851.3

0.4
1.2

*

4.5

4;::
364.2
642.1
905.9
309.6

1166.1
*

12.3

cGmlTFJ-

%
173

12
8
6
9
5
7
8

61
59
66
26
13
13

sec
-im-
10.3
0.0
0.0
0.0
0.1
0.1
1.5
5.7
0.4
0.5
0.2
0.0
0.0
0.4

Table 4: Two Level AND/OR Compared to Two Level
CGRM

lead to more economical realizations of switching func-
tions.

The differences between the minimal and quasi-
minimal results demonstrate the quality of heuristics
used. For majority of the functions, 66 out of 112
to be precise, the heuristic program found the exact
minimum solutions. There were only 6 functions that
differed by more than 10 terms; the largest being 12
terms for the function sao23. As indicated in the ta-
ble, CGRMIN is extremely fast and overall with the
results presented, it demonstrates the high quality of
the approach.

8 Conclusions

In this paper fast Exact and Quasi-Minimal meth-
ods for minimization of fixed polarity AND/XOR
canonical forms were presented. First, a fast cube-
based method for the generation of these forms was in-
troduced which can handle functions with large num-
bers of variables. In addition, certain features of
switching functions represented as arrays of disjoint
cubes were presented. It was shown that if these fea-
tures are present in the function, they can significantly
reduce the minimization task. Based on these features,
exact and heuristic algorithms were introduced, imple-
mented, and tested with 112 single output functions
created from the MCNC benchmark functions. These
methods give faster results than any method published
previously. The Quasi-Minimal method proved to be
based on high quality heuristics. Out of 112 functions,
it gives the exact solution for 66 while only 6 deviate
by 10 or more terms, the highest being 12 terms.

The results presented confirm also the merits of the
AND/XOR networks. By identifying XOR contents

* stands for unavailable data.

of the Boolean functions, one can create more com-
pact realizations of these functions. This study can
be used for classification of functions and multi-level
AND/OR/XOR and other XOR realizations. The fast
programs introduced can be used to bring more XOR
utilization into the realm of logic synthesis. This re-
search will also be expanded into multi-output, incom-
pletely specified, multi-valued functions.
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