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ABSTRACT

In this paper a hierarchical Hough Transform (HT) based
on pyramidal architecture is described, being a main component
of the low-to-medium spatial vision subsystem for a mobile
robot. It was implemented on a 386-based personal computer
with 640k memory and it proved to give results of high quality
as compared with the standard Hough transform implementa-
tion. The scheme is very well snited for parallelization.

1. INTRODUCTION

There is recently a renowed interest in Hough Transform (HT) theory
and implementations (1,2,6,7,16,17,18,20,22,23,25,26,28,29,32,34,35], as
well as in pyramidal architectures for image procesing {5,13,27,30,31].
While in 1983 the annual survey by Azriel Rosenfeld in Computer Vision,
Graphics and Image Processing journal included only 5 positions on HTs,
there have been more than 80 papers since 1988.

The primary goal of the reported research was the development of a
simple, inexpensive and automatic low-to-medium-level image processing
subsystem that is directed towards the development of a high-level vision
system for a mobile robot. The most critical aspect of the development was
the determination of the line feature extraction and characterization since
this stage determines how the scene is characterized for storage or for use by
the recognition task. The result of this stage is practically the basis of the
vision capability of the mobile robot [33,12,21]. Since, because of real-time
requirements, the method is to be ulimately implemented in a multi-
processor [1,5,7,32], the Hierarchical Hough Transform was chosen. Pro-
cessing in image pyramides is naturally parallel and recursive. This
approach overcomes the complications and disadvantages that are inherent
to the standard HT. It gives also rise to the development of some data
abstraction to simulate a pyramid structure so as to make the line extraction
and characterization scheme implementable in a standard PC-3865X. The
data structure also provided for the output of the features in terms of the
hierarchical levels, a form which was found useful for the scene recognition
task. From the point of view of typology of parallel computers for HT from
[1) our scheme can be characterized as “distributed image memory and dis-
tributed transform memory” and is similiar to those from [1,28,32,7].

The feature extraction method used for a recognition system highly
depends on the features of interest and the subsequent characterization
amenable to the required recognition task. Image features are closely associ-
ated with object boundaries identified in the image. Extraction of such
features were addressed in different ways depending on some prior
knowledge of the type of objects expected in the image and the intended
treatments of the extracted features. Scenes of the inside of a building are
described in terms of characterizations of line features, e.g., their relative
orientations, relative lengths, and relative positions. This paper centers the
issue of feature extraction and characterization on straight line features.

The sequence of processing in our system originally conceived to be
essential to the extraction of line features in indoor scenes consists of: Histo-
gram Equalization, Smoothing with the use of the median filter, Edge Detec-
tion using the Sobel edge detectors, Binarization to extract the edges
detected, Labeling, reBinarization and Thinning to refine the edges to thin
lines and Line Extraction using a hierarchical approach to the HT method.
The Binarization step includes the automatic determination of the binariza-
tion threshold from the gray level histogram of the image using the
Between-Class-Variance method (BCV). The reBinarization step converts
the labeled image back to the black and white state using a threshold of one
[11,8,9]. It was the task of this research to establish the importance of each
step for the success of the hierachical HT.

2. REVIEW OF LINE FEATURE EXTRACTION TECHNIQUES

Collinearity and proximity of edge points is of course the primary con-
cern in linear feature extraction. Each researcher has his own way of impos-
ing such constraints. The following works are but a few of the numerous
efforts done on the extraction of linear features.

Kahn, Kitchen and Riseman [19] extracted lines by using their so-
called connected components algorithm to group pixels with similar intensity
gradients into fine support regions and fitting lines to these regions. Burns
[3] also grouped pixels of similar gradient orientations into line-support
regions and used the structure of the associated intensity surface to deter-
mine the location and properties of the line, Nevatia and Babu [24] linked
edge clements based on proximity and orientation and approximated the
linked elements by piecewise linear segments. Hung and Kasvand [15] used
the chain code and the difference codes on quantized thin lines to identify
the “critical pixels" (pixels marking significant bends in the line) and used
these critical pixels’ positions to determine linear approximations to the
lines. The chain code is a sequence of numbers generated by labeling pixels
with direction numbers corresponding to a fixed set of orientations on a fixed
grid. The sequence of numbers generated by taking the differences of suc-
cessive chain code elements is the difference code which indicates the rela-
tive direction of the chain code segments. Shneier [31) made use of the
pyramid structure in his line extraction process. His method involves build-
ing a series of successively lower resolution images from the original image,
applying line-detector masks to each level followed by a line enhancement
step and grouping the line-response points into line segments by means of a
stepwise clustering process. His stepwise clustering process first groups
points with similar direction and then subdivides each group on the basis of
the separation between the points. The number of points in each subgroup
determines the existence of the line. The same treatments are used for each
pyramid level, therefore, each line in the lower resolution level corresponds
to elongated lines in the original image. The extraction and representation
allows for finding relevant areas in the image for further examination or pro-
cessing. Among many advantages of pyramids for robot navigation is also
that they allow for relatively easy determination of symmetries in pictures
(4.

HT is a means of feature extraction from raster images originally
patented by Hough [14] for identification of straight lines, but next general-
ized for curves by Duda and Hart [10), circles, ellipses [22], parabolas, algo-
rithms that employ gradient direction and magnitude, arbitrary templates,
and motion detection. It was shown that HT is a particular case of Radon
Transform, and several extensions of HT were created. There is also much
research on parallel and VLSI realizations of HT. HT is also used for deter-
minig vanishing point from perspective images [23] which is used in our
robot navigation.

The Fast Hough Transform of Li at al [20] uses a recursively divided
parameter space to reduce memory and improve speed. Illingworth and
Kitler’s Adaptive HT approach (16] is based on stepwise incrementation of
the resolution in parameter space. Wallace [34] proposed a "divide and con-
quer” approach to apply HT independently to parts of image. Risse [29]
uses a quad-tree subdivision. Similar approach is also presented in [25]. An
interesting approach to hierarchical HT is the work by Princen, Illingworth
and Kittler [26]. Line segments are identified in small subimages using the
conventional HT parameterization and these short line segments are grouped
into longer ones at each higher level of the hierarchy. They used the over-
lapped pyramid structure for the hierarchical grouping. Another approach to
hierarchical HT is presented in {6]. Pyramidal architectures for HT were
also proposed in {18) and [2]. The pyramid structure was also used by
Shneier [30,31], Rosenfeld [27], Hong [13] and many other authors in edge
feature extraction and other applications, but employing much different tech-
niques for extracting the lines and relating the higher level lines with their
lower level components.

Of the linear feature extraction techniques, the HT method seems to be

the most tolerant to missing edge points and random extraneous data which
are almost always inherent in digitized real images. The HT method is also
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applicable to non-linear shapes, both for shapes described in terms of some
parametric curves, or non-analytic shapes. Illingworth and Kittler [17] made
a comprehensive review of the HT method and the researches done in the
area. The review cited several desirable features of the method that make it
superior to other boundary-based feature extraction techniques for shape and
even motion analysis in natural images. In most cases natural images contain
noisy, missing and extraneous data. Among the advantages are: (1) the
method treats each edge point independently, making it possible to be imple-
mented in more than one processing unit; (2) it combines events based on
the transform space rather than the input image thereby making it tolerant of
partial or slightly deformed shapes in the image; (3) it is very robust to the
addition of random data produced by poor image segmentation; (4) it can
simultaneously accumulate evidence for several occurrences of a particular
shape in the image.

However, the standard implementation of the HT method entails large
storage and computational requirements. The review described also some
work done to overcome this drawback like the use of small-sized accumula-
tors and the use of extra data to restrict the range of parameters which need
to be addressed in the case of non-linear shapes.

We use here the parameterization based on the normal form of the
straight line equation:

p =x cosO +y sinb @.1

where p is the length of the normal vector and € is the angle the normal vec-
tor makes with the x -axis.

With the same principle as the slope-intercept parameterization, each
point (x;, ;) maps therefore to a sinusoidal curve in the p—0 parameter
space. When O is restricted to the interval (0, ), the parameter space
sinusoids that describe all the points in the image space line will intersect at
a unique point (p, 8) in the parameter space. Thus, an intersection point in
parameter space defines the unique (p, 8) parameters of the image space line
formed by the points. In a study of the discretization errors in the HT, Van
Veen and Groen [35] suggested that the sampling is optimal when:

Ap=1 sinATe 2.2
where / is the length of the segment in the image space, Ap and A are the
quantization intervals for the parameter space.

3. APPROACHES TO THE USE OF THE HOUGH TRANSFORM
A Standard HT Method

The simplest implementation of the method is by the parameterization
of all the edge points in the whole image into a single accumulator array and
scanning the array for counts greater than a threshold length set for a valid
line. However, this requires a huge accumulator array if an optimal quanti-
zation interval is to be observed. The simplest way to implement the accu-
mulator is with the use of an array type data structure, setting aside as much
computer memory data space as required by the parameterization space.
Implementation on a PC-based machine poses problems because of the way
memory space is segmented according to the operating system used.
Assuming that memory data space is limitless, still, allocating such huge
space is not a wise engineering practice since only a number of the array
cells will indicate the valid lines, some cells may not even get voted into,
meaning a big chunk of the space is not really useful in the final analysis. A
hash table or a linked list implementation may be more economical but these
implementations may also present drawbacks in the ease and speed by which
the cells may be accessed.

The transform’s independent treatment of edge points may also be
viewed as a weakness in the standard HT because it could result into
accidental associations of edge points which are by accident collinear but
really belongs to some other true line. Accidental associations may occur
for example when we have several true lines which may all be intersected by
one line that does not really exist. All the interscction points are of course
collinear and would vote for the same cell in the accumulator array and if the
number of points satisfy the threshold set for valid lines then the faise line
will be declared to exist. Also, line segments that happen to be collinear will
be declared as one long line regardless of their spatial separation.

Finally, localization of the lines in the image space must be con-
sidered. Since the parameter values describe an infinite length line, finding
the specific location and extent of the line in the image space may require
some back-transformation to find the endpoints of the line.

The Hierarchical Approach

Splitting the whole image into smaller subimages and implementing

the transform on the smaller subimages has three advantages: parallelization
of tasks, smaller accumulator array, and the localization of the lines detected
to the subimage region. Localizing the parameter space to each subimage
reduces the possibilities of accidental associations of points into a line, and
eliminates the combination of widely separated collinear segments into sin-
gle lines. The location of the subimage region also provides the exact loca-
tion of the lines in the image. This application of the HT method results in a
number of short lines, each line localized to its subimage region.

Since the ultimate goal is to come up with a global description of the
image in terms of the lines found in the image, it is then a matter of grouping
the line segments into longer lines according to some collinearity and prox-
imity constraints. To maintain the proximity requirement, a neighborhood of
subimages is treated as a single subimage, and line segments detected in
these subimages that happen to be collinear are grouped into longer lines.
This results in a set of longer lines, each one localized to its bigger subimage
region.

The process of grouping the lines in the neighboring subimages to
form longer lines in the combined neighborhood is continued until no more
neighboring subimages may be combined into larger areas or no more lines
can be grouped together. Each grouping of lines in a neighborhoods of
subimages into longer lines in the bigger subimage constitutes one level of
the hierarchy. Thus, the lowest level of the hierarchy consists of the image
containing the edge pixels, the first level consists of the line segments in
each subimage of the input image, the second level consists of grouped first
level line segments in neighboring subimages, and so on.

4. THE LINE EXTRACTION SCHEME
The Hierarchical Structure

The hierarchical approach uses the concept of the overlapped pyramid
structure. Each level of the pyramid consists of lines found in the subimage
components of the level. This representation makes it different from the
conventional pyramid structure which consists of successively lower resolu-
tion images [30,6). The pyramid concept was used in the way the subimages
are grouped into bigger subimages to reflect the extent of collinear line seg-
ments in successive levels of the hierarchy. At each level, a neighborhood
of 2 X 2 subimages in the lower level is treated as one subimage as shown in
Fig. 4.1. The lowest level of the hierarchy consists of short line segments
determined from subimages which comprise the binary line-thinned image
resulting from the edge extraction operations. The pyramid is built from the
bottom to the top by grouping line segments from 2 X 2 adjacent subimages
(to be called central subimages) to form longer line segments in the next
higher level, provided there is sufficient support for the existence of the tine
from within the central subimage region or from the immediate neighbors of
the central subimage region. The subimages in the 4 X 4 neighborhood
composed of the central subimages and their immediate neighbors will be
called sibling subimages and the region corresponding to the span of the cen-
tral subimages in the higher level will be referred to as the parent subimage.
Fig. 4.2 shows a neighborhood of sibling subimages used to form longer line
segments for a parent subimage.

It must be noted that the parent subimages define the subimage com-
ponents of the new level. The central 2 X 2 regions that make up the parent
subimage are disjoint. However, they share rows and columns with adja-
cent central subimage regions to provide support information for the
confirmation of the line existence in the parent subimage. Fig. 4.3 shows the
overlapped regions for the adjacent subimages. This technique was first pro-
posed by Shneier [30] for his edge pyramid and was later used by Princen,
et.al. [26] for line segment grouping.

Formation of new levels continues as long as new parent subimages
may be formed from the lower level sibling subimages. The formation of the
parent subimage is actually implemented in terms of the grouping of col-
linear line segments in the lower level sibling subimages. This results into a
longer line segment that is indicated to exist inside the parent subimage.

The Data Structure Representation of the Hierarchy

The hierarchical structure is implemented as a hierarchy of data struc-
tures as shown in Fig. 4.4. The pyramid itself may be viewed as a list of lev-
els (Fig. 4.4a) with the head of the list corresponding to the highest level.
Considering the manner by which the line segments are grouped, the most
obvious representation of each level is by an array of cells, each cell contain-
ing the line segment groups that exist in each subimage component of the
level. However, because only longer line segments propagate to higher lev-
els, it is highly probable that not all the subimage components will contain
line groups. It was then decided to store only those subimage components
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that contain line groups. To preserve the topology of the subimage partition-
ing for the level, the lines are listed according to the order by which their
subimage locations occur in the image. This was effected by representing
each level as a list of rowlists (Fig. 4.4b). Each rowlist corresponds to a row
of subimages of the partitioning, it contains all the line segments along the
row (Fig. 4.4c). Each line segment in turn is attributed with the pointer to the
local center of its subimage location, its normal parameters, and a list of the
lowest level subimage regions that contain the subsegments comprising the
line.

The Lowest Level Line Segment Determination

At the lowest level, the binary line-thinned image is partitioned into
subimages of size L (L X L pixel neighborhoods). The line segment deter-
mination in each subimage involves the p—8 parameterization of each edge
point, incrementing the appropriate accumulator cell for each parameter
point found and finally scanning the accumulator cells for counts that satisfy
the threshold count for valid lines.

As shown in Fig. 4.5, the expanse of the L-sized central subimage
implies that only lines intersected by the corresponding normal vector inside
the circular region may exist inside the central subimage. This imposes the
parameter space limits for the valid lines:

—%—Sps—lzi and 0<6<m @1

However, the shortest possible line that may pass the edge of the circular
region will not be detectable from the accumulator counts, even if it is a part
of a longer line that happens to pass through the subimage. In order to make
these lines detectable, it is necessary that the immediate neighborhood of the
subimage be considered to provide a support information for the line. Thus,
an overlapped region of size 2L that contains the subimage as the central
part and L/2 rows and columns of pixels that immediately surround the
subimage was considered for the HT. The use of the overlap contributes also
to a more uniform distribution of detectable counts. This is because for the
scheme with overlaps the ratio of the longest and the shortest line length,
length(AB)/length(CD) = 1.55, which is much lower than the ratio of a
scheme with no overlaps: length(EF)/length(GH) = 3.41. This uniformity
helps in setting a safe threshold value for the counts that will be taken as
indicative of valid lines, i.e. for GH to be detectable the threshold must not
be greater than the length of GH, which however would be too small for EF.
Whereas if the overlaps were considered, the threshold may be a reasonable
fraction of AB as the threshold will already be able to detect enough counts
for CD. Thus, with the overlap, imposing that 50% of the line must be within
the region to be detectable is sufficient to detect the properly supported short
segment, whereas, a much lower requirement must be set for the non-
overlapped case. Setting a low number of pixels as a threshold will result
into indications of short segments that are really parts of longer segments,
thereby introducing redundant results.

The size of the region and the parameter space limits dictate the quant-
ization intervals (84, pa) which must be sufficiently small to distinguish all
possible valid lines in the region. The number of possible line orientations
in the overlapped region is taken as 4L. This requires the parameter space
quantization intervals to be:

)
Bp= %, pa=L sm—2—A— 4.2)

Thus the accumulator array needed to represent the parameter space will
consist of(ﬁ +1) X4L cells.

It must be recalled that the normal parameters (p, 0) are referenced to
the center of the x—y coordinate system. In a similar sense, the (p, 8)
parameters found for the collinear edge points in the subimage are refer-
enced to the local center of the subimage. For the benefit of notational con-
venience, let the local parameters of the line segment be denoted as
(Po, 8,), the local coordinates of the edge points as (x;, y;), and the local
subimage center as (X;,ys). Thus, the detected line segments may be
thought of as collinear edge points that satisfy (2.1), i..:

Po =% €088, +y; sinb,

Higher Level Grouping

Line segments from neighborhoods of 4 X 4 subimages containing the
2 X 2 central subimages are grouped into longer line segments, provided that
the line segments are collinear in a sense that will be explained shortly.

Each line segment detected in a lower level may be described as a
feature point at the intersection of the line and its normal in the lower level
subimage region, i.e.,

Xo =P COSO,, Yo =P, Sinb, .

Fig. 5.6 shows a neighborhood of subimages containing a straight line
represented as feature points marked at the foot of the normal (X, , Y, ),
local to each subimage involved. Since each feature point is represented
with respect to its local origin (x, y; ) and must be now considered with
respect to the center of the parent subimage (x,, ¥, ), the appropriate param-
eter space curve is determined by adjusting the x and y of (2.1) for the local
centers of the subimages as:

P = — (Xp = X5 ))c0S0 + (Vo — (¥p — ¥s )) sind. @.3)

The conventional HT parameterization scheme is used to find the collinear
line segments in the neighborhood of the feature points using (4.3) for the
p-8 mapping of the feature points. The parameterization introduces, how-
ever, discretization errors, Ap and A8 (different from the sampling intervals
Pa and 64). Ap s taken to be ¥2, the minimum bar width that can include
all edge points for a line of any angle if the line is drawn on a discrete grid
with a point spacing of one pixel. A8 is the O sampling interval used in the
lower level. The possible p, 8 values for a feature point (X, , y,) in the new
parameter space will be therefore given by:

90~% seseo+%, (4.42)
po— AP <p<p, + 42 @.4v)

This sets the collinearity constraints for the feature point (X, , ¥, ), meaning
that any other feature point that would have a (p, 8) value within this range
is collinear with the point (X,, y,). The bounds given by (4.4a) and (4.4b)
narrow down the range of the parameter space that need to be examined for
collinear feature points.

Just like the lowest level scheme, the feature points in the sibling
subimages are parameterized, this time according to (4.3) and only within
the range of the collincarity constraints for the feature point. The appropri-
ate accumulator cells increased by one for each parameter point found.
Similarly, a longer line segment is detected, if there are collinear line seg-
ments in at least two neighboring subimages of the 4 X 4 neighborhood.
Line segments identified to be collinear are grouped together and treated as a
single longer line segment, this longer segment is attributed now with its
local parent subimage center, represented as its (X;, Yy ), its local parameters
(Po» 85), and a list of member subsegments. Each member subsegment is
represented as a pointer to the center of the lowest level subimage region
that contains the subsegment. The segments that become members of the
new groups at the higher level are deleted from the lower level, and their
lists of member subsegments are now linked to the new group’s subsegment
list. The grouping scheme terminates shorter lines at lower levels in the
hierarchy, and allows only longer lines to participate at higher level group-
ings, thereby reducing the amount of calculations needed at the higher lev-
els.

The quantization intervals are set in the same manner as was used in
the lowest level according to (4.2) where the L is now the size of the central
region which is twice the size in the preceding level. The assumed error
bound A9 given by (4.4a) and the sample spacing 6, implies that only five
samples of © are relevant for each feature point. The width Ap from (4.4b)
and the sample spacing pa imply that the number of cells that need to be
increment\c}d along the p axis for each © value is equal to the rounded off
value of p—i + 1. (The sparsity of the feature points from the sibling subim-

ages suggests also that the conventional accumulator array (which indeed
grows larger as the level in the hierarchy increases) may be represented as a
linked list with elements for only the relevant cells).

5. THE IMPLEMENTATION OF THE HIERARCHICAL HOUGH
TRANSFORM SCHEME

The hierarchical scheme for the line feature extraction and characteri-
zation using the HT technique is divided into 2 routines:

(1) the lowest level line segment determination from the binary line-
thinned image;

(2) the high level line segment grouping.

To simplify references to the routines, let hhlow refer to the lowest level
line segment determination routine; and hhigh refer to the high level line
segment grouping routine. The square of 2" X 2" pixels will be called an
exp2 square. The smallest exp2 square that may encompass the input image
is first determined and the image centered in this square. This is necessary
for the uniform partitioning of the image into subimage regions at each level
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of the hierarchy. The main algorithm may be summarized as follows:

(1)  center input image in smallest exp2 square;

(2) call hhlow to generate the first level, given the exp2-square-centered
input image.

(3) call hhigh to generate the second level given the first level;

(4) as long as a new level is generated, repeat calling hhigh , each time
giving it the last level generated.

The program implementing this algorithm was written in C++ and
runs on PC-386SX under Turbo C++ compiler (11]. It is available on
request from Portland State University together with all other pre-procesing
stages and test images.

The Lowest Level Line Segment Determination Implementation
The lowest level line segment determination scheme described is
implemented according to the following pseudocode:

1* lowest level line segment determination */
/* begin hhlow */
{ Do initialization steps
while (an image row is part of subimage row)
{ Set up the subimage row in buffer
Set up first subimage
while (an image column is a part of the central subimage)
{ List edge points found in overlapped subimage
if ((edge point count >= threshold) & & (central points count > 0))
{ Parameterize edge points
FindPeaks in the accumulator array
if (linesegments found)
link up linesegments into linelist

Set up next subimage

if (linelist is not empty)
{ attach rowmarker to head of linelist
if (is first rowlist)
mark as head of rowlists
else
link up to rowmarker of last rowlist

Shift out upper L rows in buffer, shift up lower L rows
return (list of rowlists)

7
* end of hhlow */

The initialization steps consist of setting up buffers to hold a row of
overlapped subimages, setting up the space for the accumulator array, setting
up the sine-cosine lookup table for use in the parameterization, selting up
pointers to the first subimage row in the image row buffers and seiting up the
Hough Transform parameter space settings. Buffering the image rows that
comprise the subimages avoids frequent access 1o the image memory during
the processing of the subimages. It was considered reasonable 1o set up the
sine-cosine look-up table for the parameterization so as to minimize calls (o
the sine and cosine functions in the compiler’s math library. It may be noted
that each edge point would have to be sampled for all possible 8 in the
parameterization range. Since the line segment determination is done for
each subimage separately, the same accumulator array may be re-used for
each subimage.

Subimage settings. The subimage size used for the lowest level line segment
determination is L =4, meaning, the exp2-square-centcred binary line-
thinned image is partitioned into 4 X 4 pixel wide subimages. This means
that an overlapped region for a subimage is a 8 X 8 pixel ncighborhood with
the 4 x4 pixel subimage centered in it.

Hough Transform parameter space seltings. Based on the discussion given
earlicr, the parameter space sampling intervals are as {ollows:

=K _ T
=71 =16
pa=L xsin% =040

Therefore the quantized parameter space seitings arc:

number of intervals range
theta axis: 4L =16 [0. 7]
rho axis: L +1=11 [-2.+2]
A

A 11X 16 accumulator array was used to represent the quantized
parameter space, each cell corresponding to a point in the quantized space.
Since array cell indices are always positive integers, the p-axis need to be
shifted so that all the p-ordinates may be addressed in terms of the row
indices. This requires that each of the p values computed in terms of the
quantized space (pg) will have to be adjusted by:

pql =Pg t Pzero

where p,,,, is the index for the middle row that corresponds to the center of
the quantized p axis (pg =0).

The threshold for the counts that indicate a valid line is set at 4.
assuming that at least 50% of the points on the line must exist in the over-
lapped image to indicate this line as valid.

Line segment determination in the subimage. Prior (o the parameterization.
the number of edge points n the overlapped subimage is first counted. If the
number of edge points is at least equal to the threshold set, and there is at
least one edge point in the central subimage, then the subimage is subjected
to all the rigors of the HT method, otherwise the subimage is simply dis-
carded. As was stressed in section 4, each edge point is sampled for each 8
in the quantized space, the appropriate accumulator cell incremented for
each (p, 6) determined, and the accumulator is finally scanned for counts
that satisfy the threshold. Each identified line segment is represented as a
hstAelemem containing its local (p,, 8, and the local center of its subimage
region (X;, y;), which is then linked to the list of segments found in its
subimage row.

) Level [ of the hierarchy is therefore composed of at most 16 lists of
line segments for the 256 x 240 image. each list corresponding to each row
of subimages.

Higher Level Line Segment Grouping Scheme Implementation

The grouping of collinear line segments in a neighborhood of lower
level subimages is very similar to the scheme used for the low level line seg-
ment determination. This time the elements of the subimage are no longer
image pixels but feature points representing the lower level lines. A 4 X 4
array of pointers to line segment nodes in the lower level rowlists keeps
track of the component feature points for each of the 4 x 4 sibling subim-
ages that comprise the overlapped subimage. The inner 2 X 2 pointers keep
track of the feature points in the central subimages. Given the list of rowlists
that constitutes the last level, Ahigh returns a list of rowlists for the new
level formed. The pseudocode for the implementation of the high level
grouping scheme is as follows:

/* higher level line segment grouping */
/* begin hhigh */
{ while (lowlevel rowlist is part of central subimage row)
{ Set up pointers to lowlevel rowlists comprising the subimage row
while (not end of all the lowlevel rowlists of row)
{ Set up the siblings window
if ((feature points >= threshold) &<& (central point > 0))
{ Label central points (line segment nodes in central siblings)
for (each feature point is in a central siblings)
{ Get collinearity votes from immediate sibling point
Form a group for the highest voted (p, 8) cell
if (group found)
{ mark feature points as "grouped”
link up new line segment into linelist

else
mark the feature point as "not grouped”

Finalize Labels of central points
Shuffle pointers to the next siblings window

if (linelist not empty)
{ get rowmarker for linelist
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if (first rowlist)
mark as head of rowlists
else
link up new rowlist to head of last rowlist

Delete grouped segments from the upper 2 lowlevel rowlists
Shove out the upper 2 lowlevel rowlists, include the next 2 rowlists

Delete grouped segments in the last group of lowlevel rowlists
if (list of rowlists not empty)

Delete rowmarkers to empty lowlevel rowlists
return (list of new rowlists)

J
/* end of hhigh */

The subimage size at each new level is the combined size of the 2x2
neighborhood of central sibling images. Thus, the subimage size L for a
new level is simply twice the size in the last level.

The quantized parameter space settings are determined in the same
manner as that in the lowest level. TABLE I presents a summary of the
quantized parameter space settings for each of the levels for a 256 X 240
input image centered in a 256 X 256 square.

TABLE I

SETTINGS FOR THE HOUGH TRANSFORM QUANTIZED PARAME-
TER SPACE

level susli);r:nzge smenApling inle;vAals n(;é of inlcr\énls —i rfx)n%::L Paero
1 4 % 04 16 1t 2542 s
2 8 3’-‘{ 0.4 32 21 4> 44 11
3 16 -6’% 04 64 41 8->48 21
4 32 T?i( 0.4 128 81 S16->+16 | 4l
5 64 7% 0.4 256 161 32432 | 81
6 128 5—71‘7 04 512 321 64 -> +64 161
7 256 ’105271' 04 | 1024 641 | -128->+128 | 321

The tabulation shows that as the level increases the size of the accu-
mulator array increases as well. However, as explained earlier, only the 0
values within +'4A0 and the p values within £2Ap need to be sampled for
each feature point. Since A is one haif of the 64 of the previous level, and
Ap is a constant of 0.707, then only 5 samples need to be taken for the 8
dimension, and 3 samples for the p dimension. Thus, the accumulator array
cells just required for the sampling were considered and represented as a list
of 5 sets of p cells. Each set of p cells represents the 3 consecutive cells in
the conventional array that lie within the range of the p values that need to
be sampled. Each cell consists of a counter field for the accumulation, and a
field where the identity of contributors to the count are noted. This provides
a way of tracking the feature points that belong to a group, if ever one is
indicated. The same space was used for the groupings in all the levels, each
time initializing the space by assigning the appropriate accumulator array
coordinates to the cells, according to the range established by the feature
point’s collinearity constraint. For simplicity, let us refer to this subspace of
the parameter space as the voting array.

Similar to the low lIevel scheme, there must be enough feature points
in the sibling subimages, and there must be at least one in the central region
for the line segments to be considered for grouping. Each feature point
establishes the range of p and © that need to be used for the sampling. For
each central feature point, each point in the immediate neighboring sibling
subimages is sampled. It is sampled under condition that the ranges of 6 of
both points overlap. The appropriate cell in the voling array is incremented
by one for every p, 9 that is within the range of the voting array. The "iden-
tity" of the voter is also noted in the cell if it is a central feature point. A
group corresponding to a longer line segment is formed when a cell indicates
more than one vote. Since there are 15 possible lines that the feature point
can be assigned to, and each neighboring feature point may vote for these
possibilities as its own collinearity constraints allow, it is then always possi-
ble that several cells may accumulate more than one vote. Thus, to get the
best line description of a new group, the voting array is searched for the cell
that obtains the highest vote. The parameter space point represented by the
cell is then taken as the set of p, © parameters for the new group. Since we
are now dealing with short line segments that are being combined into longer

line segments, a feature point is allowed to be a part of only one group. To
ensure this, all the central feature points that get included in a group are
appropriately marked as "grouped” feature points, so that they will no longer
be considered in the formation of other groups within the same parent
subimage.

Each feature point must be initially labeled to be able to keep track of
the identity of the central feature points. This also differentiates the central
feature points from those of the supporting sibling subimages. It must be
recalled that the feature points in the sibling subimages outside of the central
subimage region simply provide support information for the existence of a
group, but are not included in the group formed for the parent subimage. The
label assigned to a central feature point changes during the grouping process,
depending on whether the feature point becomes a group member or not.
The labels are finally changed after all the central feature points were con-
sidered to mark the feature point for the deletion from its lower level, if it
became a group member in the higher level, or for the retention in its level if
its presence was not indicated in the new level.

When a line segment becomes a member of a new group, its list of
subsegments is detached from the node used to represent the line segment
and linked up to the new group’s subsegment list. After a new rowlist is
completed, the last level’s rowlists used for the grouping are cleared of the
elements that were indicated as "grouped” and have no more subsegment
lists anyway. These elements are detected by the finalized labels. Using the
labels as the basis for deletion, rather than the subsegment lists, allows the
use of the same cleaning up treatment for all levels, including the cleaning
up of the first level lines which do not have the subsegment lists. Finally,
when the whole level is completed, the last level is cleared of empty rowl-
ists, thereby cleaning up the remnants of the segments that have propagated
to longer lines, and leaving only those lines that really belong to the level.

The images in Fig. 5.1b to Fig. 5.1h show the lines formed at each
level when the aforementioned scheme was applied to the binary line-
thinned image shown in Fig. 5.1a.

The first level remap (Fig. 5.1b) shows that isolated streaks shorter
than 4 pixels were not detected, which was of course expected. It is also
noticeable that small discontinuities and/or irregularities in the lines were
smoothed out, exhibiting the robustness of the HT method to missing data
and to irregularities in the data.

The higher level remaps show that longer lines indeed propagate to
higher levels. However, there are also short lines that propagate up regard-
less of their lengths. These are the lines that lie across the boundaries of
adjacent subimages that do not get grouped into one parent subimage until at
a much higher level. All throughout the lower level groupings, the part of
the line that lies in one subimage consistently supports the other part located
in other subimage. This results in the propagation of both parts to the level
where their subimages become parts of a central subimage region. This may
be attributed to the constraint that was set for the detectability of a line
group. For this implementation, a line group is considered detectable or is
indicated to exist if there are at least two feature points that are collinear, one
feature point located in a central subimage and the other point lying in an
immediate neighboring subimage which may be a central subimage or a
sibling subimage outside of the central subimage region. Because of this
constraint, the propensity of the HT method for combining feature points
that are collinear in adjacent subimages into a single line, regardless of the
their discontinuity in the lower level, is exhibited in the formation of the
level 5 lines.

6. IMPACT OF THE INITIAL SUBIMAGE SIZE ON THE LINE
FEATURE EXTRACTION

The higher level grouping simply takes the line segments available in
the lower level for consideration. It is obvious that the amount of detail that
may be extracted depends highly on the lowest level line segment extraction
from the input image. The amount of detail is determined by the initial
subimage size into which the input image is partitioned, noting that the ini-
tial proximity constraint imposed by the circular region in the central subim-
age and the threshold for the shortest detectable line are determined by the
subimage size. A smaller subimage size means a smaller accumulator array,
which is a good point, but a smaller subimage size would also mean more
grouping levels and more line segment nodes to handle at each level.
TABLE II presents the effects of the initial subimage size on the processing
times for the lowest level line segment determination and the higher level
groupings when the scheme was applied to the line-thinned images in Fig.
6.1a and Fig. 6.1b. Presented in TABLE III are the number of line segments
identified at each level before and after the grouping.
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TABLEII

PROCESSING TIMES FOR THE LINE FEATURE EXTRACTION WITH
DIFFERENT INITIAL SUBIMAGE SIZES

Tmagel Image2
4] 8 16 4 8 16
hhlow || 31 | 51 | 101 35 | 64 | 130
hhigh || 53 | 1S 514 66 | 24 11
total 84 | 66 | 106 || 101 | 88 | 141

TABLE III

NUMBER OF LINES EXTRACTED BY THE HIERARCHICAL SCHEME
AT DIFFERENT INITIAL SUBIMAGE SIZES

Tmagel Tmage?

size 4 8 16 4 8 16

level i f i [ 1 f i i 1 { 1 f
i 1090 | 107 |1307 | 4 || 116 g1 1379 57 | 470 T2 g
2 562 34 [ 174 | 12 63 2 729 30 | 254 7] 112 | 10
3 3280 374 99 [ 14| 35 3 413 2441 {13 63 ] 3
4 177 31 51 9 19 3 222 25 80 9 37 7
5 88 17 27 5 8 8 114 15 411 14 15 115
6 44 13 11 | 11 - - 60 14 16 | 16 - -
7 14 14 - - - - 20 20 - - - -

total 253 65 25 185 80 44

The results show that a smaller subimage size requires lesser process-
ing time for the lowest level line segment determination, but incurs more
time in the higher level grouping. The timing results indicate that the
optimal subimage size is 8. The lowest level remaps for the image in Fig.
6.1a shown in Fig. 6.2a, Fig. 6.2b and Fig. 6.2c for subimage sizes 4, 8, and
16, respectively, show that size 4 made the best extraction of the diagonal
line defining the corridor outline, whereas a considerable part of this line
was not detected with size 8 and the line was totally not visible with size 16.
A clear outline of the corridor was propagated to level 6 (1 step from the top
level) for the size 4 case, whereas a part of the corridor detected with size 8
was propagated to level 4 (2 steps from the top level) as shown in Fig. 6.3a
and Fig. 6.3b, respectively.

Thus, size 4 was deemed to be a good initial subimage size despite the
longer processing time involved considering the credibility of the features
extracted and made visible at the higher levels.

7. EVALUATION OF THE RESULTS

Presented in TABLE IV are the processing times for each of the
operations when applied to Imagel shown in Fig. 7.1 as implemented in a
PC-386SX.

TABLE IV
EXECUTION TIMES FOR THE IMAGE PROCESSING OPERATIONS

operation t(sec) | % ol total ime
Histogram Equalization 20 7.02
Smoothing 59 20.70
Edge Detection 50 17.54
Binarization 18 6.32
Labeling & reBinarization 23 172
Thinning 30 10.53
Line Extr. & Charac. 86 30.17
(total) 285 100

A total processing time of 285 seconds is indeed unattractive for the
real-time application envisioned for the system. To minimize the processing
time, the necessity or redundance of the operations is evaluated based on
their impact on the scene description extracted and the processing times
involved. Among the operations, Histogram Equalization, Edge Detection,
Binarization, Thinning and Line Feature Extraction and Characterization are
considered indispensable. However, Smoothing, Labeling and reBinariza-
tion are considered enhancement steps. Smoothing was used to reduce noise
in the digitized image, hopefully to improve the detectability of the edges
and to prevent the detection reduce the detection of false edges. Labeling
and reBinarization are supposed to get rid of small spots or streaks in the
binarized image, thereby reducing the number of pixels that will be pro-
cessed by the Thinning and Line Extraction steps. Noling the processing

times, Histogram Equalization, Smoothing, Edge Detection and Binarization
have constant execution times since the operations process all the image pix-
els regardless of the image quality or the density of edge features in the
image. On the other hand, the processing times for Labeling, Thinning and
Line Extraction are affected by the amount of pixels comprising the
extracted edges. The evaluation is therefore centered on the examination of
the factors that affect the execution time of the Thinning and the Line
Extraction steps and the impact of the Smoothing and Labeling steps on the
execution times and the resulting quality of the scene features extracted [11].

The impact of the smoothing and labeling processes are determined by
their effects on the Line Feature Extraction step. TABLE V shows their
effects on the processing times and TABLE VII shows the number of lines
identified at each level before and after the line segment grouping.

TABLEV

EFFECTS OF SMOOTHING AND LABELING ON THE PROCESSING
TIMES OF THE LINE FEATURE EXTRACTION ROUTINES

Smoothed Image unSmoothed Image
with Labelling | no Labelling || with Labelling | no Labelling
hhlow 33 31 41 36
hhigh 59 53 95 84
hpost 2 2 2 2
total 94 86 138 122

TABLE VI

EFFECT OF SMOOTHING AND LABELING ON THE NUMBER OF
LINES EXTRACTED

Smoothed Image unSmoothed Image

Level || with Labelling | no Labelling || with Labelling | no Labelling
1 1090 107 1194 127

2 562 34 611 45 |1 773 78 863 91

3 328 37 355 43 || 443 67 491 84

4 177 31 191 35 || 240 51 262 54

5 88 17 96 15 || 126 31 138 38

6 44 13 49 16 54 22 56 24

7 14 14 15 15 14 14 14 14
total 253 296 411 496

The use of the Labelling step for the removal of small blobs or streaks that
may thin out to very short lines which will not be detectable anyway,
improves the total execution time for both the smoothed and unsmoothed
image. The figures for the number of lines detected in the lowest level how-
ever show that some lines were made undetectable by the Labelling step.
This phenomenon was cited in the subimage size determination analysis as
caused by the tendency of ends of the edges to get eroded because of the
Labelling step’s negligence of vertex-connectivity in adjacent blobs. Also,
weak edges that tend to appear as a series of aligned streaks are of course
eliminated. So in a sense, the Labelling step causes some losses in the
detectable lines especially if the extracted edges that will yield the line are
rather weak.

Elimination of the Smoothing step increased the processing times even
more, because of the increased number of white pixels that need to be
parameterized. The number of lines formed at the lowest level is notably
much higher than those formed with the smoothed image. Since the HT is
not concerned about connectivity of pixels as long the right number of pixels
vote for a parameter pair, then, the noise spots that cluster within a span of
the initial subimage size are contributors to a line if the number is right. But
as long as the lines formed by the noise spots are rather isolated from the
lines indicated by the true edges, then there are no complications since these
noise lines will never propagate into the higher levels. The problem arises
when the noisy spots cluster around the edges and form lines with the real
edge pixels. Remaps of the results show that the lines are indeed formed by
the noise clusters and get linked with real lines during the grouping so that
the now-adulterated line becomes longer and propagates to higher levels.

Because of the propensity of noise to gather around edges. and
because of the high regard of the HT scheme for collinear points regardless
of their connectivity, it is not really safe to disregard the initial noise remo-
val from the processing sequence. However, the Labeling step is redundant
since the small pixel blobs which the labeling step removes are discarded
just the same by the lowest level line segment determination step. Though
there is an increase in the line extraction step processing time, the increase is
still less than time incurred for the Labelling and the reBinarization. The
tendency of the Labelling routine to cut off edges is indeed detrimental to
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the extraction of the desired features especially when the edges are rather
weak because of poor image quality or inadequate lighting.

8. CONCLUSIONS AND FUTURE WORK

In the reported research, for the first time the entire low-to-medium
image processing for a mobile robot system was completely implemented in
a standard 386 PC. The crux of this research is the development of a feature
extraction technique that provides the scene recognition system a credible
and easy to reconstruct description of the scene. The hierarchical approach
to line extraction using the basic concepts of the HT method and pyramids
offset the weaknesses of the HT and allow the exploitation of its strong
points towards a robust line feature extraction scheme. The program
developed was proven to efficiently extract line feature descriptions of real
indoor scenes even with relatively poor image quality. Now it is about time
to improve the real-timeliness of the system. We plan to develop an inex-
pensive parallel "on-board" system for the robot that will be entirely built
from commercially available 486-based PC motherboards and DSP co-
processors. The nature of the algorithms developed makes them very suit-
able for this system.
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Fig. 4.1. Grouping of 2x2 subimage neighborhoods into bigger subimages.
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Fig. 4.2. Neighborhood of subimages used to form line seg-
ment groups for a parent subimage.

Fig. 5.1a. The binary line-thinned image. Fig. 5.1b. The level L Lnes. Fig. 53d.
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Fig. 4.4, Hierarchical representation of the hicrarchical structure.
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Fig. 4.5. An overlapped subimage used for the lowest level
line segment determination.
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Fig. 4.6. A neighborhood of subimages containing collinear
line segments.

Fig. 7.1a. Input image for Tablo IV. Fig. 7.16. A binarized smoothed image. Fig. 7.1¢. A binarized unsmoothed image.
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