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ABSTRACT 

In this paper a hierarchical Hough Transform (HT) based 
on pyramidal architecture is described, being a main component 
of the low-to-medium spatial vision subsystem for a mobile 
robot. It was implemented on a 386-based personal computer 
with 640k memory and it proved to give results of high quality 
as compared with the standard Hough transform implementa- 
tion. The scheme is very well suited for parallelkation. 

1. INTRODUCTION 
There is recently a renowed interest in Hough Transform (HT) theory 

and implementations [1,2,6,7,16,17,18,20,22,23,25,26,28,29,32,34,35], as 
well as in pyramidal architectures for image procesing [5,13,27,30,311. 
While in 1983 the annual survey by &el Rosenfeld in Computer Vision, 
Graphics and Image Processing journal included only 5 positions on HTs, 
there have been more than 80 papers since 1988. 

The primary goal of the reported research was the development of a 
simple, inexpensive and automatic low-to-medium-level image processing 
subsystem that is directed towards the development of a high-level vision 
system for a mobile robot. The most critical aspect of the development was 
the determination of the line feature extraction and characterization since 
this stage determines how the scene is characterized for storage or for use by 
the recognition task. The result of this stage is practically the basis of the 
vision capability of the mobile robot [33,12,21]. Since, because of real-time 
requirements, the method is to be ulimately implemented in a multi- 
processor [1,5,7,32], the Hierarchical Hough Transform was chosen. Pro- 
cessing in image pyramides is naturally parallel and recursive. This 
approach overcomes the complications and disadvantages that are inherent 
to the standard HT. It gives also rise to the development of some data 
abstraction to simulate a pyramid structure so as to make the line extraction 
and characterization scheme implementable in a standard PC-386SX. The 
data structure also provided for the output of the features in terms of the 
hierarchical levels, a form which was found useful for the scene recognition 
task. From the point of view of typology of parallel computers for HT from 
[ 11 our scheme can be characterized as "distributed image memory and dis- 
fribufed transform memory" and is similiar to those from [1,28,32,71. 

The feature extraction method used for a recognition system highly 
depends on the features of interest and the subsequent characterization 
amenable to the required recognition task. Image features are closely associ- 
ated with object boundaries identilied in the image. Extraction of such 
features were addressed in different ways depending on some prior 
knowledge of the type of objects expected in the image and the intended 
treatments of the extracted features. Scenes of the inside of a building are 
described in terms of characterizations of line features, e.g., their relative 
orientations, relative lengths, and relative positions. This paper centers the 
issue of feature extraction and characterization on straight line features. 

The sequence of processing in our system originally conceived to be 
essential to the extraction of tine features in indoor scenes consists of: Histo- 
g m  Equalization, Smoothing with the use of the median filter, Edge Detec- 
tion using the Sobel edge detectors, Binarization to extract the edges 
detected, Labeling, reBinarization and Thinning to refine the edges to thin 
lines and Line Extraction using a hierarchical approach to the HT method. 
'Ihe Binarization step includes the automatic determination of the binariza- 
tion threshold from the gray level histogram of the image using the 
Between-Class-Variance method (BCV). The reBinarization step converts 
the labeled image back to the black and white state using a threshold of one 
[11,8,91. It was the task of this research to establish the importance of each 
step for the success of the hierachical HT. 

2. REVIEW OF LINE FEATURE EXTRACTION TECHNIQUES 

Collinearity and proximity of edge points is of course the primary con- 
cern in linear feature extraction. Each researcher has his own way of impos- 
ing such constraints. The following works are but a few of the numerous 
efforts done on the extraction of linear features. 

Kahn, Kitchen and Riseman [19] extracted lines by using their so- 
called connected components algorithm to group pixels with similar intensity 
gradients into line support regions and fitting lines to these regions. Bums 
[3] also grouped pixels of similar gradient orientations into line-support 
regions and used the structure of the associated intensity surface to deter- 
mine the location and properties of the line. Nevatia and Babu [24] linked 
edge elements based on proximity and orientation and approximated the 
linked elements by piecewise linear segments. Hung and Kasvand 11.51 used 
the chain code and the difference codes on quantized thin lines to identify 
the "critical pixels" (pixels marking significant bends in the line) and used 
these critical pixels' positions to determine linear approximations to the 
lines. The chain code is a sequence of numbers generated by labeling pixels 
with direction numbers corresponding to a fixed set of orientations on a fixed 
grid. The sequence of numbers generated by taking the differences of suc- 
cessive chain code elements is the difference code which indicates the rela- 
tive direction of the chain code segments. Shneier [31] made use of the 
pyramid structure in his line extraction process. His method involves build- 
ing a series of successively lower resolution images from the original image, 
applying line-detector masks to each level followed by a line enhancement 
step and grouping the line-response points into line segments by means of a 
stepwise clustering process. His stepwise clustering process first groups 
points with similar direction and then subdivides each group on the basis of 
the separation between the points. The number of points in each subgroup 
determines the existence of the line. The same treatments are used for each 
pyramid level, therefore, each line in the lower resolution level corresponds 
to elongated lines in the original image. The extraction and representation 
allows for finding relevant areas in the image for further examination or pro- 
cessing. Among many advantages of pyramids for robot navigation is also 
that they allow for relatively easy determination of symmetries in pictures 

HT is a means of feature extraction from raster images originally 
patented by Hough [14] for identification of straight lines, but next general- 
ized for curves by Duda and Hart [lo], circles, ellipses [22], parabolas, algo- 
rithms that employ gradient direction and magnitude, arbitrary templates, 
and motion detection. It wits shown that HT is a particular case of Radon 
Transform, and several extensions of HT were created. There is also much 
research on panllel and VLSI realizations of HT. HT is also used for deter- 
minig vanishing point from perspective images [23] which is used in our 
robot navigation. 

The Fast Hough Transform of Li at al [20] uses a recursively divided 
parameter space to reduce memory and improve speed. Illingworth and 
Kitler's Adaptive HT approach [16] is based on stepwise incrementation of 
the resolution in parmeter space. Wallace [34] proposed a "divide and con- 
quer" approach to apply HT independently to parts of image. Risse [29] 
uses a quad-tree subdivision. Similar approach is also presented in [25]. An 
interesting approach to hierarchical HT is the work by Princen, Illingworth 
and Kittler [26]. Line segments are identified in small subimages using the 
conventional HT panmeterization and these short line segments are grouped 
into longer ones at each higher level of the hierarchy. They used the over- 
lapped pyramid structure for the hierarchical grouping. Another approach to 
hierarchical HT is presented in [6]. Pyramidal architectures for HT were 
also proposed in [18] and [2]. The pyramid structure was also used by 
Shneier [30,31], Rosenfeld [27], Hong [13] and many other authors in edge 
feature extraction and other applications, but employing much different tech- 
niques for extracting the lines and relating the higher level lines with their 
lower level components. 

Of the linear feature extraction techniques, the HT method seems to be 
the most tolerant to missing edge points and random extraneous data which 
are almost always inherent in digitized real images. The HT method is also 
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applicable to non-linear shapes, both for shapes described in  terms of some 
parametric curves, or non-analytic shapes. Illingworth and Kittler [I71 made 
a comprehensive review of the HT method and the researches done in the 
area. The review cited several desirable features of the method that make it 
superior to other boundary-based feature extraction techniques for shape and 
even motion analysis in natunl images. In most cases natural images contain 
noisy, missing and extraneous data. Among the advantages are: (1) the 
method treats each edge point independently, making it possible to be imple- 
mented in more than one processing unit: (2) it combines events based on 
the transform space rather than the input image thereby making it tolennt of 
partial or slightly deformed shapes in the image; (3) it is very robust to the 
addition of random data produced by poor image segmentation: (4) it can 
simultaneously accumulate evidence for several occurrences of a particular 
shape in the image. 

However, the standard implementation of the HT method entails large 
storage and computational requirements. The review described also some 
work done to overcome this drawback like the use of small-sized accumula- 
tors and the use of extra data to restrict the range of parameters which need 
to be addressed in the case of non-linear shapes. 

We use here the parameterization based on the normal form of the 
straight line equation: 

p =x cos0 + y  sine (2.1) 

where p is the length of the normal vector and 8 is the angle the normal vec- 
tor makes with the x -axis. 

With the same principle as the slope-intercept pmmeterization, each 
point (x;, y ; )  maps therefore to a sinusoidal curve in the p-0 parameter 
space. When 8 is restricted to the interval (0, x) ,  the pmmeter space 
sinusoids that describe all the points in the image space line will intersect at 
a unique point (p, e) in the parameter space. Thus, an intersection point in 
parameter space defines the unique (p, e) parameters of the image space line 
formed by the points. In a study of the discretization errors in the HT, Van 
Veen and Groen [35] suggested that the sampling is optimal when: 

~p = I  sin@- 2 
where 1 is the length of the segment in the image space, Ap and A0 are the 
quantization intervals for the parameter space. 

3. APPROACHES TO THE USE OF THE HOUGH TRANSFORM 
A Standard HT Method 

The simplest implementation of the method is by the parameterization 
of all the edge points in the whole image into a single accumulator array and 
scanning the a m y  for counts greater than a threshold length set Cor a valid 
line. However, this requires a huge accumulator array if an optimal quanti- 
zation interval is to be observed. The simplest way to implenlent the accu- 
mulator is with the use of an array type data structure, setting aside as much 
computer memory data space 3s required by the parameterization space. 
Implementation on a PC-based machine poses problems because of the way 
memory space is segmented according to the operating system used. 
Assuming that memory data space is limitless, still, allocating such huge 
space is not a wise engineering practice since only a number of the m y  
cells will indicate the valid lines, some cells may not even get voted into, 
meaning a big chunk of the space is not really useful in the final analysis. A 
hash table or a linked list implementation may be more economical but these 
implementations may also present drawbacks in the ease and speed by which 
the cells may be accessed. 

The transform’s independent treatment of edge points may also be 
viewed as a weakness in the standard HT because it could result into 
accidental associations of edge points which are by accident collinear but 
really belongs to some other true line. Accidental associations may occur 
for example when we have several true lines which may all be intersected by 
one line that does not really exist. All the interscction points are of course 
collinear and would vote for the same cell in the accuinulator may and if the 
number of points satisfy the threshold set for valid lines then the false line 
will be declared to exist. Also, line segments that happen to be collinear will 
be declared as one long line regardless of their spatial separation. 

Finally, localization of the lines in the image space must be con- 
sidered. Since the parameter values describe an infinite length line, finding 
the specific location and extent of the line in the image space may require 
some back-transformation to find the endpoints of the line. 
The Hierarchical Approach 

Splitting the whole image into smaller subimages and implementing 

the transform on the smaller subimages has three advantages: parallelization 
of tasks, smaller accumulator array, and the localization of the lines detected 
to the subimage region. Localizing the parameter space to each subimage 
reduces the possibilities of accidental associations of points into a line, and 
eliminates the combination of widely separated collinear segments into sin- 
gle lines. The location of the subimage region also provides the exact loca- 
tion of the lines in the image. This application of the HT method results in a 
number of short lines, each line localized to its subimage region. 

Since the ultimate goal is to come up with a global description of the 
image in terms of the lines found in the image, it is then a matter of grouping 
the line segments into longer lines according to some collinearity and prox- 
imity constraints. To maintain the proximity requirement, a neighborhood of 
subimages is treated as a single subimage, and line segments detected in 
these subimages that happen to be collinear are grouped into longer lines. 
This results in a set of longer lines, each one localized to its bigger subimage 
region. 

The process of grouping the lines in the neighboring subimages to 
form longer lines in the combined neighborhood is continued until no more 
neighboring subimages may be combined into larger areas or no more lines 
can be grouped together. Each grouping of lines in a neighborhoods of 
subimages into longer lines in the bigger subimage constitutes one level of 
the hierarchy. Thus, the lowest level of the hierarchy consists of the image 
containing the edge pixels, the &st level consists of the line segments in 
each subimage of the input image, the second level consists of grouped first 
level line segments in neighboring subimages, and so on. 

4. THE LINE EXTRACTION SCHEME 
The Hierarchical Structure 

The hierarchical approach uses the concept of the overlapped pyramid 
structure. Each level of the pyramid consists of lines found in the subimage 
components of the level. This representation makes it different from the 
conventional pyramid structure which consists of successively lower resolu- 
tion images [30,6]. The pyramid concept was used in the way the subimages 
are grouped into bigger subimages to reflect the extent of collinear line seg- 
ments in successive levels of the hierarchy. At each level, a neighborhood 
of 2 X 2 subimages in the lower level is treated as one subimage as shown in 
Fig. 4.1. The lowest level of the hierarchy consists of short line segments 
determined from subimages which comprise the binary line-thinned image 
resulting from the edge extraction operations. The pyramid is built from the 
bottom to the top by grouping line segments from 2 X 2 adjacent subimages 
(to be called central subimages) to form longer line segments in the next 
higher level, provided there is sufficient support for the existence of the line 
from within the central subimage region or from the immediate neighbors of 
the central subimage region. The subimages in the 4 x 4  neighborhood 
composed of the centnl subimages and their immediate neighbors will be 
called sibling subimages and the region corresponding to the span of the cen- 
tn l  subimages in the higher level will be referred to 3s the parent subimage. 
Fig. 4.2 shows a neighborhood of sibling subimages used to form longer line 
segments for aparent subimage. 

It must be noted that the parent subimages define the subimage com- 
ponents of the new level. The central 2 X 2 regions that make up the parent 
subimage are disjoint. However, they share rows and columns with adja- 
cent central subimage regions to provide support information for the 
confirmation of the line existence in the parent subimage. Fig. 4.3 shows the 
overlapped regions for the adjacent subimages. This technique was first pro- 
posed by Shneier [30] for his edge pynmid and w s  later used by Princen, 
et.al. [26] for line segment grouping. 

Formation of new levels continues as long as new parent subimages 
may be formed from the lower level sibling subimages. The formation of the 
parent subimage is actually implemented in terms of the grouping of col- 
linear line segments in the lower level sibling subimages. This results into a 
longer line segment that is indicated to exist inside the parent subimage. 
The Data Structure Representation of the Hiemchy 

The hierarchical structure is implemented as a hierarchy of data struc- 
tures as shown in Fig. 4.4. The pyramid itself may be viewed s a list of lev- 
els (Fig. 4.43) with the head of the list corresponding to the highest level. 
Considering the manner by which the line segments are grouped, the most 
obvious representation of each level is by an m y  of cells, each cell contain- 
ing the line segment groups that exist in each subimage component of the 
level. However, because only longer line segments propagate to higher lev- 
els, it is highly probable that not all the subimage components will contain 
line groups. It was then decided to store only those subimage Components 
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that contain line groups. To preserve the topology of the subimage partition- 
ing for the level, the lines are listed according to the order by which their 
subimage locations occur in the image. This was effected by representing 
each level as a list of rowlisfs (Fig. 4.4b). Each rowlist corresponds to a row 
of subimages of the partitioning, it contains all the line segments along the 
row (Fig. 4.4~). Each line segment in turn is attributed with the pointer to the 
local center of its subimage location, its normal parameters, and a list of the 
lowest level subimage regions that contain the subsegments comprising the 
line. 
The Lowest Level Line Segment Determination 

At the lowest level, the binary line-thinned image is partitioned into 
subimages of size L ( L  x L pixel neighborhoods). The line segment deter- 
mination in each subimage involves the p-8 parameterization of each edge 
point, incrementing the appropriate accumulator cell for each parameter 
point found and finally scanning the accumulator cells for counts that satisfy 
the threshold count for valid lines. 

As shown in Fig. 4.5, the expanse of the L-sized central subimage 
implies that only lines intersected by the corresponding normal vector inside 
the circular region may exist inside the central subimage. This imposes the 
parameter space limits for the valid lines: 

- $ - S p < L  2 and O S B < n :  (4.1) 

However, the shortest possible line that may pass the edge of the circular 
region will not be detectable from the accumulator counts, even if it is a part 
of a longer line that happens to pass through the subimage. In order to mnke 
these lines detectable, it is necessary that the immediate neighborhood of the 
subimage be considered to provide a support information for the line. Thus, 
an overlapped region of size 2L that contains the subimage as the central 
part and L / 2  rows and columns of pixels that immediately surround the 
subimage was considered for the HT. The use of the overlap contributes also 
to a more uniform distribution of detectable counts. This is because for the 
scheme with overlaps the ntio of the longest and the shortest line length, 
Ieiigth(AB)/le~igth(CD) = 1.55, which is much lower than the ratio of a 
scheme with no overlaps: lengih(EF)/lenRth(GH) = 3.11. This uniformity 
helps in setting a safe threshold value for the counts that will be taken as 
indicative of valid lines, i.e. for GH to be detectable the threshold must not 
be greater than the length of GH, which however would be too small for EF. 
Whereas if the overlaps were considered, the threshold may be a reasonable 
fraction of AB as the threshold will already be able to detect enough counts 
for CD. Thus, with the overlap, imposing that SO% of the line must be within 
the region to be detectable is sufficient to detect the properly supported short 
segment, whereas, a much lower requirement must be set for the non- 
overlapped case. Setting a low number of pixels as a threshold will result 
into indications of short segments that are really parts of longer segments, 
thereby introducing redundant results. 

The size of the region and the parameter space limits dictate the quant- 
iwtion intervals @A, PA) which must be sufficiently small to distinguish all 
possible valid lines in the region. The number of possible line orientations 
in the overlapped region is taken as 4L.  This requires the parameter space 
quantization intervals to be: 

(4.2) 

Thus the accumulator array needed to represent the parameter space will 
consist of(-c;'- + I ) x 4~ cells. 

It must be recalled that the normal parameters (p, e) are referenced to 
the center of the x-y coordinate system. In a similar sense, the (p, e) 
parameters found for the collinear edge points in the subimage are refer- 
enced to the local center of the subimage. For the benefit of notational con- 
venience, let the local parameters of the line segment be denoted as 
(Po, eo), the local coordinates of the edge points as (xi, y,), and the local 
subimage center as (x,,~,). Thus, the detected line segments may be 
thought of as collinear edge points that satisfy (2.l), i.e.: 

p, = X I  cos0, + y I  sine, 

P A  

Higher Level Grouping 
Line segments from neighborhoods of 4 x 4 subimages containing the 

2 X 2 central subimages are grouped into longer line segments, provided that 
the line segments are collinear in a sense that will be explained shortly. 

Each line segment detected in a lower level may be described as a 
feature point at the intersection of the line and its normal in the lower level 
subimage region, i.e., 

x, = p, cos0, , yo = po sine, . 
Fig. 5.6 shows a neighborhood of subimages containing a straight line 
represented as feature points marked at the foot of the normal (x, , yo ) ,  
local to each subimage involved. Since each feature point is represented 
with respect to its local origin (x,, ys ) and must be now considered with 
respect to the center of the parent subimage (xp, y p  ), the appropriate param- 
eter space curve is determined by adjusting the x and y of (2.1) for the local 
centers of the subimages as: 

p = (x, - (xp -1, ))cos0 + 6, - (yp - ys ))sine. (4.3) 
The conventional HT parameterization scheme is used to find the collinear 
line segments in the neighborhood of the feature points using (4.3) for the 
p-€I mapping of the feature points. The parameterization introduces, how- 
ever, discretization errors, Ap and Af3 (different from the sampling intervals 
PA and 0 ~ ) .  Ap is taken to be 6, the minimum bar width that can include 
all edge points for a line of any angle if the line is drawn on a discrete grid 
with a point spacing of one pixel. A0 is the 8 sampling interval used in the 
lower level. The possible p, e values for a feature point (x, , y o )  in the new 
parameter space will be therefore given by: 

e , -@se<e ,+ - - ,  A8 
2 2 (4.44 

(4.4b) 

This sets the collinearity constraints for the feature point (x,, yo) ,  meaning 
that any other feature point that would have a (p, 6) value within this range 
is collinear with the point (x,, yo). The bounds given by (4.43) and (4.4b) 
narrow down the range of the parnmeter space that need to be examined for 
collinear feature points. 

Just like the lowest level scheme, the feature points in the sibling 
subimages are parameterized, this time according to (4.3) and only within 
the range of the collinearity constraints for the feature point. The appropri- 
ate accumulator cells increased by one for each parameter point found. 
Similarly, a longer line segment is detected, if there are collinear line seg- 
ments in at least two neighboring subimages of the 4 x 4 neighborhood. 
Line segments identified to be collinear are grouped together and treated as a 
single longer line segment, this longer segment is attributed now with its 
local parent subimage center, represented as its (x,, y s ) ,  its local parameters 
(pot e,), and a list of member subsegments. Each member subsegment is 
represented as a pointer to the center of the lowest level subimage region 
that contains the subsegment. The segments that become members of the 
new groups at the higher level are deleted from the lower level, and their 
lists of member subsegments are now linked to the new group's subsegment 
list. The grouping scheme terminates shorter lines at lower levels in the 
hierarchy, and allows only longer lines to participate at higher level group- 
ings, thereby reducing the amount of calculations needed at the higher lev- 
els. 

The quantization intervals are set in the same manner as was used in 
the lowest level according to (4.2) where the L is now the size of the central 
region which is twice the size in the preceding level. The assumed error 
bound A0 given by (4.44 and the sample spacing 0~ implies that only five 
samples of e are relevant for each feature point. The width Ap from (4.4b) 
and the sample spacing PA imply that the number of cells that need to be 
incremente along the p axis for each 0 value is equal to the rounded off 
value of 2 + 1. (The sparsity of the feature points from the sibling subim- 

ages suggests also that the conventional accumulator m a y  (which indeed 
grows larger as the level in the hierarchy increases) may be represented as a 
linked list with elements for only the relevant cells). 

5. THE IMPLEMENTATION OF THE HIERARCHICAL HOUGH 
TRANSFORM SCHEME 

The hierarchical scheme for the line feature extraction and characteri- 
zation using the HT technique is divided into 2 routines: 
(1) the lowest level line segment determination from the binary line- 

thinned image; 
(2) the high level line segment grouping. 
To simplify references to the routines, let hhlow refer to the lowest level 
line segment determination routine; and hhigh refer to the high level line 
segment grouping routine. The square of 2" X 2" pixels will be called an 
exp2 square. The smallest exp2 square that may encompass the input image 
is first determined and the image centered in this square. This is necessary 
for the uniform partitioning of the image into subimage regions at each level 
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of the hierarchy. The main algorithm may be summarized as follows: 
(1) 
(2) 

(3) 
(4) 

center input image in smallest exp? square: 
call hhlow to generate the first levcl, givcn the cxp2-square-centered 
input image. 
call hhigh to generate the second level given the first level: 
as long as a new level is generated, repcat calling hhigh , each time 
giving it the last level generated. 
The program implementing this algorithm W:IS written in C++ and 

runs on PC-386SX under Turbo C++ compiler [ I l l .  It is available on 
request from Portland State Universily together with all othcr pre-procesing 
stages and test images. 

The Lowest Level Line Segment Determination Implcmentation 

implemented according to the following pseudocode: 
I* lowest level line segment determination *I 
I* begin hhlow *I 
{ Do initialization steps 

The lowest level Line segment determination scheme described is 

while (an image row ispart of subimage row) 
{ Set up the subimage row in buffer 

Set up j r s t  subimage 
while (an image column is a part of the centrul subimage) 
{ List edge points found in overlapped subimage 

if ((edge point count >= threshold) && (ccn/ral[)oints L'ollllt > 0)) 
{ Parameterize edge points 

Findpeaks in the accumulator array 
if (linesegments found) 

link up linesegments inro linelist 
I 
Set up next subimage 

1 
if(line1ist is  not empty) 
{ attach rowniarker to head of linelist 

$(isfirst rowlist) 
mark as head of rowlists 

link up to rowmarker of last rowlisl 
else 

I 
Shift out upper L rows in buffer, shift up lower L rows 

I 
return ( l ist ofrowlists) 

I 
I* end of hhlow *I 

The initialization steps consist of setting up buffers to hold a row of 
overlapped subimages, setting up the space for the accumulator array, sctting 
up the sine-cosine lookup table for use in the parameterization, sctting up 
pointers to the first subimage row in the image row buffers and sclting up thc 
Hough Transform parameter space settings. Buffering the imagc rows that 
comprise the subimages avoids frequent access to thc image memory during 
the processing of the subimages. It was considered rcasoriablc to set up the 
sine-cosine look-up table for the parameterizatioll so :IS to minimize calls to 
the sine and cosine functions in the compiler's math librxy. It may be noted 
that each edge point would have to be sampled for all  possible 8 in  the 
parameterization range. Since thc line segment dclcrmination is done for 
each subimage separately, the same accumulator a m y  may be re-used for 
each subimage. 

Subimage settings. The subimage size used for the lowest lcvcl line segment 
determination is L = 4, meaning, the exp2-square-centcrcd binary line- 
thinned image is partitioned into 4 x 4 pixel wide subimages. This means 
that an overlapped region for a subimage is 3 8 X 8 pixel ncighborhood with 
the 4 X4 pixel subimage centered in it. 

Hough Transform parameter space settings. Based on the discussion given 
earlier, the parameter space sampling intervals are :IS l'ollows: 

e,=-&.=+ 

pa = L x sin% = 0.40 

Therefore the quantized parameter space scttings arc: 

number of intervals rnnge 
4L = 16 [O.  7Cl 

1-2. +2] 
theta axis: 
rho axis: - + 1 = 1 1  L 

P A  

A 11 X 16 accumulator array was used to represcnt the qu:uitizcd 
parameter space, each cell corresponding to a point i n  the quuntized space. 
Since array cell indices are always positive integers. the p-axis need to be 
shifted so that all the p-ordinates may be addressed in term of the row 
indices. This requires that each of the p values computed in terms of the 
quantized space (p,) will have to be adjusted by: 

Pg ' = Py + Pzwo 

where pzero is the index for the middle row that corresponds to the center of 
the quantized p axis (p, = 0). 

The threshold for the counts that indicate a valid line is set at 4. 
assuming that at least 506 of the points on the line must exist in  the over- 
lapped image to indicate this line as valid. 

Line segment determination in the subimape. Prior to the parameterizaiion. 
the number of edge points in the overlapped subimage is first counted. If the 
number of edge points is at least equal to the threshold set. and there is at 
least one edge point in the central subimage. then the subimage is subjected 
to all the rigors of the HT method. otherwise the suhimage is simply dis- 
carded. As was stressed in section 4, each edge point is sampled for each 8 
in the quantized space, the appropriate accumulator cell incremented for 
each (p, 0) determined, and the accumulator is finally scanned for counts 
that satisfy the threshold. Each identified line segment is represented 3s a 
list element containing its local (p, , 8,) and the local center of its subimage 
region ( x 5 , y 5 ) ,  which is then linked to the list of segments found in its 
subimage row. 

Level 1 of the hierarchy is therefore composed of at most 16 lists of 
line segments for the 256 x 240 imase. each list correspondin, (7 to each row 
of subimages. 

Higher Level Line Seqment Grouping Scheme Implementation 
The grouping of collinear line segments in a neighborhood of lower 

level subimages is very similar to the scheme used for the low level line seg- 
ment determination. This time the elements of the subimage are no longer 
image pixels but feature points representing the lower level lines. A 4 x 4 
m a y  of pointers to line segment nodes in  the lower level rowlists keeps 
track of the component feature points for each of the 4 X 4 sibling subiin- 
ages that comprise the overlapped subimage. The inner 2 x 2 pointers keep 
track of the feature points in the central subimages. Given the list of rowlists 
that constitutes the last level, hhigh retunis a list of rowlists for the new 
level formed. The pseudocode for the implementation of the high level 
grouping scheme is as follows: 

I* higher level line segment grouping * I  
I* begin hhigh *I 
{ while (lowlevel rowlist is part of central subinznge row) 

while (not emf of all the lowlevel rmdists of row) 
{ Set up the siblings window 

{ Set up pointers to lowlevel rowlists ~ U I I Z ~ J ~ ~ S ~ I I ~  the srrbimnge ~ O K  

if((feature points >= threshold) && (cenrrdpuinr > 0))  
{ Label central points (line segnirnt nodes in r'enlrc~l s ibl iqs)  

for (each feature point is in a central sibliqs) 
{ Get collinearity votesfioni immediate sibling point 

Form a group for the highest voted (p, 0) cell 
i f (group found) 
{ mark feature points as "grouped" 
link up new line segment into linelist 

I 
else 

mark the feature point as "not groulied" 
I 
Finalize Labels of central points 

I 
Shi@e pointers to the i m t  siblings window 

I 
if (linelist not empi))) 
{ get rowmmkerfor linelist 
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if(frrst rowlist) 

else 
murk as head of rowlists 

link up new rowlist to head oflast rowlist 
I 
Delete grouped segmentsfrum the upper 2 lowlevel rowlists 
Shove out the upper 2 lowlevel rowlists, include the next 2 rowlists 

I 
Delete grouped segments in the last group of lowlevel rowlists 
if(1ist of rowlists not empty) 

relurn (list of new rowlists) 
Delete rowmurkers to empty lowlevel rowlists 

I 
I* end of hhigh * I  

The subimage size at each new level is the combined size of the 2 X 2 
neighborhood of central sibling images. Thus, the subimage size L for a 
new level is simply twice the size in the last level. 

The quantized panmeter space settings are determined in the same 
manner as that in the lowest level. TABLE I presents a suminary of the 
quantized parameter space settings for each of the levels for a 256 X 240 
input image centered in a 256 X 256 square. 
TABLE I 

SETTINGS FOR THE HOUGH TRANSFORM QUANTIZED PARAME- 
TER SPACE 

- 
:vcl 

1 

2 

3 

4 

9 

6 

7 

- 

- 

suhimngc 
size L 

4 

8 

16 

32 

M 

128 

256 

__ 

- 

sampling inlcrvnls 

' 0.4 ' 0.4 ' 0.4 ' 0.4 

0.4 $ 0.4 

e A  P A  

rn 

no. of intervals p nnge  

-16 --> +I6 

256 -32 -> +32 

- 

P W O  

5 

11 

21 

41 

81 

161 

321 

- 

- 

The tabulation shows that as the level increases the size of the accu- 
mulator array increases as well. However, as explained em.licr, only the e 
values within &%A8 and the p values within k%Ap need io be sampled for 
each feature point. Since A8 is one half of the 8a of the previous level, and 
Ap is a constant of 0.707, then only 5 samples need to be tkcn  for the 8 
dimension, and 3 samples for the p dimension. Thus, the accumulator a m y  
cells just required for the sampling were considered and represented as a list 
of 5 sets of p cells. Each set of p cells represents the 3 consecutive cells in 
the conventional array that lie within the range of the p values that need to 
be sampled. Each cell consists of a counter field for the accumulation, and a 
field where the identity of contributors to the count are noted. This provides 
a way of tracking the feature points that belong to a group, if ever one is 
indicated. The same space was used for the groupings in a11 the levels, each 
time initializing the space by assigning the appropriate accumulator m y  
coordinates to the cells, according to the range established by the feature 
point's collinearity constraint. For simplicity, let us refer to this subspace of 
the parameter space as the voting array. 

Similar to the low level scheme, there must be enough feature points 
in the sibling subimages, and there must be at least one in the central region 
for the line segments to be considered for grouping. Each feature point 
establishes the range of p and 8 that need to be used for the sampling. For 
each central feature point, each point in the immediate neighboring sibling 
subimages is sampled. It is sampled under condition that lhe ranges of 8 of 
both points overlap. The appropriate cell in the voting 'may is incremented 
by one for every p, 8 that is within the range of the voting army. The "iden- 
tity" of the voter is also noted in the cell if it is a centrd feature point. A 
group corresponding to a longer line segment is fonned when a cell indicates 
more than one vote. Since there are 15 possible lines that the feature point 
cm be. assigned to, and each neighboring feature point may vote for these 
possibilities as its own collinearity constraints allow, i t  is then always possi- 
ble that several cells may accumulate more than one vote. Thus, to get the 
best line description of a new group, the voting array is searched [or the cell 
that obtains the highest vote. The pmmeter space point represented by the 
cell is then taken 3s the set of p, 8 parameters for the new group. Since we 
are now dmling with short line segments that are being combined into longer 

line segments, a feature point is allowed to be a part of only one group. To 
ensure this, all the central feature points that get included in a group are 
appropriately marked as "grouped" feature points, so that they will no longer 
be considered in the formation of other groups within the same parent 
subimage. 

Each feature point must be initially labeled to be able to keep track of 
the identity of the central feature points. This also differentiates the central 
feature points from those of the supporting sibling subimages. It must be 
recalled that the feature points in the sibling subimages outside of the central 
subimage region simply provide support information for the existence of a 
group, but are not included in the group formed for the parent subimage. The 
label assigned to a central feature point changes during the grouping process, 
depending on whether the feature point becomes a group member or not. 
The labels are finally changed after all the central feature points were con- 
sidered to mark the feature point for the deletion from its lower level, if it 
became a group member in the higher level, or for the retention in its level if 
its presence was not indicated in the new level. 

When a line segment becomes a member of a new group, its list of 
subsegments is detached from the node used to represent the line segment 
and linked up to the new group's subsegment list. After a new rowlist is 
completed, the last level's rowlists used for the grouping are cleared of the 
elements that were indicated as "grouped" and have no more subsegment 
lists anyway. These elements are detected by the finalized labels. Using the 
labels as the basis for deletion, rather than the subsegment lists, allows the 
use of the same cleaning up treatment for all levels, including the cleaning 
up of the first level lines which do not have the subsegment lists. Finally, 
when the whole level is completed, the last level is cleared of empty rowl- 
ists, thereby cleaning up the remnants of the segments that have propagated 
to longer lines, and leaving only those lines that really belong to the level. 

The images in Fig. 5.lb to Fig. 5.lh show the lincs formed at each 
level when the aforementioned scheme was applied to the binary line- 
thinned image shown in Fig. 5 .h .  

The first level remap (Fig. 5.lb) shows that isolated streaks shorter 
than 4 pixels were not detected, which was of course expected. It is also 
noticeable that small discontinuities and/or irregularities in the lines were 
smoothed out, exhibiting the robustness of the HT method to missing data 
and to irregularities in the data. 

The higher level remaps show that longer lines indeed propagate to 
higher levels. However, there are also short lines that propagate up regard- 
less of their lengths. These are the lines that lie across the boundaries of 
adjacent subimages that do not get grouped into one parent subimage until at 
a much higher level. All throughout the lower level groupings, the part of 
the line that lies in one subimage consistently supports the other part located 
in other subimage. This results in the propagation of both parts to the level 
where their subimages become parts of a central subimage region. This may 
be attributed to the constraint that was set for the detectability of a line 
group. For this implementation, a line group is considered detectable or is 
indicated to exist if there are at least two feature points that are collinear, one 
feature point located in a central subimage and the other point lying in an 
immediate neighboring subimage which may be a central subimage or a 
sibling subimage outside of the central subimage region. Because of this 
constraint, the propensity of the HT method for combining feature points 
that are collinear in adjacent subimages into a single line, regardless of the 
their discontinuity in the lower level, is exhibited in the formation of lhe 
level 5 lines. 

6. IMPACT OF THE INITIAL SUBIMAGE SIZE ON THE LINE 
FEATURE EXTRACTION 

The higher level grouping simply takes the line segments available in 
the lower level for consideration. It is obvious that the amount of detail that 
may be extracted depends highly on the lowest level line segment extraction 
from the input image. The mount  of detail is determined by the initial 
subimage size into which the input image is partitioned, noting that the ini- 
tial proximity constraint imposed by the circular region in the central subirn- 
age and the threshold for the shortest detectable line are determined by the 
subimage size. A smaller subimage size means a smaller accumulator array, 
which is a good point, but a smaller subimage size would also mean more 
grouping levels and more line segment nodes to handle at each level. 
TABLE I1 presents the effects of the initial subimage size on the processing 
times for the lowest level line segment determination and the higher level 
groupings when the scheme was applied to the line-thinned images in Fig. 
6.la and Fig. 6.lb. Presented in TABLE 111 are the number of line segments 
identified at each level before and after the grouping. 
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TABLE I1 

PROCESSING TIMES FOR THE LINE FEATURE EXTRACTION WITH 
DIFFERENT INITIAL SUBIMAGE SIZES 

Line Exi.  & Charac. 
(total) 

hhlow 
hhigh 
total 

TABLE111 

NUMBER OFLINES EXTRACTED BY THE HIERARCHICAL SCHEME 
AT DIFFERENT INITIAL SUBIMAGE SIZES 

86 30.17 
285 100 

size 
level 

1 
2 
3 
4 
5 
6 
7 

low 

The results show that a smaller subimage size requires lesser process- 
ing time for the lowest level line segment determination, but incurs more 
time in the higher level grouping. The liming results indicale [hat the 
optimal subimage size is 8. The lowest level remaps cor the image in Fig. 
6.la shown in Fig. 6.2a, Fig. 6.2b and Fig. 6 . 2 ~  for subimage sizes 4, 8, and 
16, respectively, show that size 4 made the best exlractio~~ of the diagonal 
line defining the corridor outline, whereas a considerable part of this line 
was not detected with size 8 and the line was tolally not visible with size 16. 
A clear outline of the corridor was propagated to level 6 ( I  slep from the top 
level) for the size 4 case, whereas a px t  of the corridor detected with size 8 
was propagated to level 4 (2 steps from the top Icvcl) :IS shown in Fig. 6.31 
and Fig. 6.3b. respectively. 

Thus, size 4 was deemed to be a good inilial subimage size despite the 
longer processing time involved considering the credibility of the features 
extracted and made visible at the higher levels. 

7. EVALUATION OF THE RESULTS 
Presented in TABLE IV are the processing times for each of the 

operations when applied to Image1 shown in Fig. 7.1 as implemented in a 

TABLE IV 
EXECUTION TIMES FOR THE IMAGE PROCESSING OPERATIONS 

PC-386SX. 

operation 

Smoothing 20.70 
Edge Detection 17.54 
Binarization 6.32 
Labeling & reBinarization 7.72 
Thinning 30 10.53 

A total processing time of 285 seconds is indeed unaltractive for the 
real-time application envisioned for the system. To minimize the processing 
time, the necessity or redundance of the opcr:itions is evaluakd based on 
their impact on the scene description extracted and the processing times 
involved. Among the operations, Histogram Equalizalion, Edge Detection, 
Binarization, Thinning and Line Feature Extraction and Characterization are 
considered indispensable. However, Smoothing, Labeling and reBinariza- 
tion are considered enhancement steps. Smoothing was used to reduce noise 
in the digitized image, hopefully to improve the detectabilily of the edges 
and to prevent the detection reduce the detection of false edges. Labeling 
and reBinarization are supposed to get rid of small spols or streaks in the 
binarized image, thereby reducing the number of pixels that will be pro- 
cessed by the Thinning and Line Exhction steps. Noting the processing 

times, Histogram Equalization, Smoothing, Edge Detection :uid Binarization 
have constant execution times since the operations process :ill the image pix- 
els regardless of the image quality or the density of edge femres in the 
image. On the other hand, the processing times Cor Labeling. Thinning and 
Line Extraction are affected by the amount of pixels comprising the 
extracted edges. The evaluation is therefore centered on the examination of 
the factors that affect the execution time of the Thinning and the Line 
Extraction steps and the impact of the Smoothing and Labeling steps on the 
execution times and the resulting quality of the scene features extncted [ I  11. 

The impact of the smoothing and labeling processes are determined by 
their effects on the Line Feature Extraction step. TABLE V shows their 
effects on the processing times and TABLE VI1 shows the number of lines 
identified at each level before and after the line segment grouping. 

TABLE V 
EFFECTS OF SMOOTHING AND LABELING ON THE PROCESSING 
TIMES OF THE LINE FEATURE EXTRACTION ROUTINES 

unsmoothed Image 
with Labelling no Labelling wirh Labelling no Labelling 

hhlow 
hhigh 
hpost 
totd 94 86 118 I77 

TABLE vr 
EFFECT OF SMOOTHING AND LABELING ON THE NUMBER OF 
LINES EXTRACTED 

The use of the Labelling step for the removul of small blobs or streah that 
may thin out to very short lines which will not be delectable anyway. 
improves the total execution time for bolh the smoothed md unsmoothed 
image. The figures for the number of lines detected in the lowest level how- 
ever show that some lines were made undetectable by the Labelling step. 
This phenomenon was cited in the subimage size determination annlysis as 
caused by the tendency of ends of the edges to get eroded because of the 
Labelling step's negligence of vertex-connectivity in adjacent blobs. Also, 
weak edges that tend to appear as a series of aligned streaks are of course 
eliminated. So in a sense, the Labelling step causes some losses in the 
detectable lines especially if the extracted edges that will yield the line we 
rather weak. 

Elimination of the Smoothing step increased the processing times even 
more, because of the increased number of white pixels that need to be 
parameterized. The number of lines formed at the lowest level is notably 
much higher than those formed with the smoothed im;ige. Since the HT is 
not concerned about connectivity of pixels as long the right number of pixels 
vote for a parameter pair, then, the noise spots that cluster within a sp'm of 
the initial subimage size are contrihutors to a line if the number is right. But 
as long as the lines formed by the noise spots are rather isolated from the 
lines indicated by the true edges, then there are no complications since these 
noise lines will never propagate into the higher levels. The problem arises 
when the noisy spots cluster around the edges nnd form lines with the real 
edge pixels. Remaps of the results show that the lines are indeed formed by 
the noise clusters and get linked with real lines during the grouping so that 
the now-adulterated line becomes longer and propagates to higher levels. 

Because of the propensity of noise lo gather around edges. and 
because of the high regard of the HT scheme for collinear points regardless 
of their connectivity, it is not really safe to disregard the initial noise remo- 
val from the processing sequence. However, the Labeling stcp is redundant 
since the small pixel blobs which the labeling step removes are discarded 
just the same by the lowest level line segment determination step. Though 
there is an increase in the line extraction step processing time. the increase is 
still less than time incurred for the Labelling and the reBinarization. The 
tendency of the Labelling routine to cut off edges is indeed de~rimenlal to 
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the extraction of the desired features especially when rhe edges are rather 
weak because of poor image quality or inadequate lighting. 

8. CONCLUSIONS AND FUTURE WORK 
In the reported research, for the first time the entire low-to-medium 

image processing for a mobile robot system was completely implemented in 
a standard 386 PC. The crux of this research is the development of a feature 
extraction technique that provides the scene recognition system a credible 
and easy to reconstruct description of the scene. The hierarchical approach 
to line extraction using the basic concepts of the HT method and pyramids 
offset the weaknesses of the HT and allow the exploitation of its strong 
points towards a robust line feature extraction scheme. The program 
developed was proven to efficiently extract line feature descriptions of real 
indoor scenes even with relatively poor image quality. Now i t  is about time 
to improve the real-timeliness of the system. We p1.m to develop an inex- 
pensive parallel "on-board" system for the robot that will be entirely built 
from commercially available 486-based PC motherboards and DSP co- 
processors. The nature of the algorithms developed makes them very suit- 
able for this system. 
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Fig. 4.1. Grouping of 2x2 subimage neighborhoods into bigger subimages. 

[I71 Illingworth, J. and J. Kittler, "A Survey of the Hough Transform", 
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Fig. 4.2. Neighborhood of subimages used lo form line . .  seg- 
ment groups for a parent subimage. 

Fig. 4.3. Overlapping regions for adj:iccnt central subimages. 
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Fig. 4.4. Hierarchical representation of the hicrmchical structure. 
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Fig. 4.5. An overlapped subimage uscd for the lowest level 
line segment determination. mT central subunages 
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Fig. 4.6. A neighborhood of subimages containing collinear 
line segments. 
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