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Abstract

Although machines which manipulate logic func-
tions have been investigated since the 13th century,
much more research has gone into arithmetic machines
because of their obvious computational applications.
Many newly developing applications such as logic opti-
mization, logic programming, simulation, data-bases,
graph theory, computer image processing and image
recognition, spectral transforms and signal process-
ing can be better implemented with a logic machine.
After a brief tour through the history of logic ma-
chines, this paper describes our Cube Calculus Ma-
chine (CCM2) !. This machine is based on a new
architecture in which the data path has been de-
signed to execute operations of ”cube calculus”, an
algebraic model popularly used to process and mini-
mize Boolean functions. CCM2 realizes efficiently all
cube calculus operations such as sharp and consensus.
The ”positional cube representation” used by CCM2
can also represent multiple-valued input binary out-
put cube calculus (MVCC) operands as is commonly
done for applications in Logic Synthesis, and other
computational methods based on logic. CCM2 can
also work with Generalized Multiple-valued Cube cal-
culus (gGMVCC), which I developed as an extension of
MVCC. This extension allows the machine to operate
on set logic, associative tuples, several multiple-valued
input multiple-valued output logics, multi-output re-
lations, and symbolic relations.

1 Introduction

A formal system is a set of symbols and a set of op-
erations on those symbols. All the formal systems of
mathematics are build on the foundation of set theory
(and equivalently - logic). One such system is arith-
metic. Most existing computers were designed to per-
form a subset of arithmetic operations. ALU logic op-
erations such as bit-wise AND, OR, NOT and EXOR
are just simple extensions of arithmetic operations, so
these computers can be characterized as ”arithmetic”.

Since all formal systems can be expressed in terms
of arithmetic and logic, any of these systems can be
implemented on current arithmetic computers by us-
ing the appropriate model” and software which ma-
nipulates this model. The price that is often paid for
a software based approach is severe speed degrada-

1The author is currently seeking a patent for the concept,
architecture and hardware described here.
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tion. This degradation has made the implementation
of several high-level formal systems impractical.

Two methods can be used to improve speed at
which computers can implement specialized formal
systems: (1) To design special hardware which imple-
ments the specific operations required by the systems.
Examples of this method are math, DSP, and image
processing coprocessors. (2) To execute operations in
parallel on multiple processing units.

Current approaches are based on reducing any
problem to sequences of arithmetic operations and ex-
ecuting these operations efficiently. We postulate that
for many applications, it is much more effective to use
a methodology that reduces a wide class of problems to
some elementary formal system other than arithmetic,
and then design an efficient hardware realization of the
basic operations of this system.

Multiple-valued Cube Calculus (MVCC) seems to
be one of the most general internal representations of
data in propositional logic, logic synthesis, logic pro-
gramming, logic simulation and sequential evaluation
of combinational logic, data-bases, and several areas of
AT and problem-solving. Generalized Multiple-valued
Cube Calculus(GMVCC), our extension of MVCC, is
even more powerful than MVCC because it can rep-
resent multiple-valued input, multiple-valued-output
logic (called truly mv logic), multi-output relations,
predicates and other data. This means that it can be
used for real-time AI applications, image processing,
genetic algorithms, fuzzy logic and logic programming.
As with other formalisms such as fuzzy logic, and mor-
phological image algebras, which were not fully ap-
preciated until special hardware was built for them, it
may be reasonably expected that computers which op-
erate in GMVCC will find their ”applications niche”
among computer architectures.

Our group has designed, simulated, and is currently
building a Cube Calculus Machine (CCM2) which op-
erates in GMVCC. As it will be described, the heart
of the CCM2 is a bit-slice data path constructed as an
iterative network of programmable state machines.

To give a perspective of how our machine fits in
the long history of logic machines, in the next sec-
tion we will briefly identify some of the major steps
in this history. In section 3 we will discuss binary
and multiple-valued cube calculus and show examples
of common cube calculus operations. Section 4 in-
troduces the new Generalized Multiple-valued Cube
Calculus(GMVCC). Section 5 discusses main ideas




of Cube Calculus Machines: operations on symbols,
and hardware realization of the lowest level algorithm
loops by a ring of cellular automata. In section 6 we
briefly discuss the structure of the CCM2 processor.

2 Short History of Logic Machines

By a Logic Machine we mean any machine intended
to solve problems expressed in logic form. In the long
history of computing there were several attempts to
build such machines, but most were forgotten and in
a sense not successful. Some ideas were reinvented
many times 2. The first logic machine was described
and built by Raymon Lullus (1235-1315), a Catalo-
nian mystic, professor, linguist, poet, an missionary
Ll 1]. It was designed to solve syllogisms. Dealing with

inary variables and binary counting his machine did
mechanically the same thing as a Venn diagram does
visually - enumerate all possible elements of a Carte-
sian product of sets of variables values. Also, since
variables could have more than two elements each,
the machine was able to enumerate in N-ary count-
ing (N = number of variables) all elements (minterms)
of some solution spaces as Cartesian products of the
sets of values of those multiple-valued input variables.
Lullus work can be then in a sense thought of as a pre-
cursor of multiple-valued logic and the morphological
method of invention later reinvented by Zwicky 14].
Lullus had excellent intuitions about his machine, its
ﬁeneralizations and possible uses, and he is regarded
y some authors as the father of the Science of Heuris-

tics and Mechanical Theorem Proving. ”Tabulating
combinations of terms was certainly a familiar process
to mathematicians as far back as the Greeks” [11], but
nobody before Lullus was able to create a machine and
to intuitively develop the concepts of symbolic logic
and universal methods to solve problems. His ideas in-
fluenced Leibnitz, Bruno, Pierce, other logicians, and
the developers of early arithmetic computers.

”The inventor of the world’s first logic machine, in
a stricter sense of the term, was a colorful eighteenth
century British statesman and scientist, Charles Stan-
hope (1753-1816). His curious device, which he called
a”demonstrator”, could be used for solving traditional
syllogisms by a method closely linked to Venn circles.
It also solved numerical syllogisms (anticipating De
Morgan’s analysis of such formé‘) and elementary prob-
lems of probability. Stanhope’s machine was based on
a system of logical notation which clearly foreshad-
owed Hamilton’s technique of reducing syllogisms to
statements of identity using negative terms and quan-
tified predicates.” [11].

Development of logic machines up to 1967 is de-
scribed in [11,23,33], but to give a feeling for the evo-
lution, here is a list of some of the highlights.

ZTherefore, an effort has been recently made to find and sys-
tematize all available information about such machines. Only
representative papers and those that influenced us most are
mentioned here. The history of logic machines until 1967 is pre-
sented in [11]. The reader wishing to find more details about
other machines is referred to [31]. Since non-English literature
is often not available to us, we would appreciate obtaining any
additional information or corrections that will be useful in our
monograph book on logic machines.
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* William Stanley Jevons, British logician, invented
and had a clockmaker build his ”logical piano” in 1863-
1869 [11,33). It was the first such machine with suffi-
cient power to solve a complicated problem faster than
the problem could be solved without the machine’s
aid” [11}. Jevons was one of first who recognized the
power of Boolean logic.

* A diagram variant of Jevons’ machine was created
by English logician Reverend John Venn 51834-1923).

* Another improved version of the Jevons’ ma-
chine was developed in 1881 by American professor Al-
lan Marquand (1853-1924), the inventor of Marquand
Charts. He also designed an electrical version of it,
using electromagnets, multiway switches and a rheo-
stat.

* Two Italian professors, Annibale Pastorale and
Antonio Garbasso, constructed in 1903 what can be
called the first ”analog logic machine”, precursor in a
sense to modern ”fuzzy logic machines”.

* Englishman Charles Macaulay obtained in 1913
the first patent for a logic machine which combines the
best features of Jevons’s and Marquand’s machines.

* In 1936 American psychologist Benjamin Burack
built the first electrical logic machine [5{

* William Burkart and Theodore Kalin built the
first electrical machine designed solely for proposi-
tional logic in 1947 while taking the undergradu-
ate symbolic logic course at Harvard with Professor
Willard Quine.

* Burroughs Research Center in Pennsylvania de-
signed a ten-term ”truth-function evaluator”, which
used a logical notation proposed by Polish logician Jan
Lukasiewicz [6].

While the above machines can be roughly char-
acterized as based on the scanning method of solv-
ing Boolean Equations, another line of development,
oriented towards designing circuits and minimizing
Boolean functions, started in 1952. Perhaps the
world’s first minimizing machine was build by Daniel
Bobrow, then a high school student [3]. Closely related
was the machine of Shannon and Moore [37], who in
1953 constructed an analyzer of four-variable Boolean
functions for the Bell Labs. In the fifties and sixties
many Logic Machines were constructed in the USA,
Great Britain [11}, and especially in the Soviet Union,
often by large groups and at great expense. They were
built to aid in analysis and synthesis of contact and
relay-contact circuits, but some authors also foresaw
wider applications. For instance, Rodin [35] developed
a machine for six variables that was based on the Shan-
non’s concept. A large group of researchers includ-
ing Arkhangelskyaya, Roginskii, Lazarev, Sagalovich,
Parkhomenko and Oganov [2] developed several ma-
chines for design of multiterminal cascade networks
using a theory they developed. One version could han-
dle up to 10 variables. Zakrevskii and Gavrilov [12,47]
developed what was perhaps the first "hardware accel-
erator” for logic synthesis. It was intended to work as
a co-processor in a general purpose computer. They
developed also the first computer language for solving
problems in logic.

Antonin Svoboda worked on logic machines in
Czechoslovakia and in 1968 he presented his Boolean



Analyzer (BA) at IFIP [41]. Later he moved to the
U.S. where he continued his research at UCLA [42,43].
The work of his group was perhaps the first on general
purpose binary logic machines. Several Master Theses
were written [13,22,38], but I do not know if a machine
was ever actually built.

Not knowing of all these efforts, I designed my first
logic machine at the Technical University of Warsaw
in Poland in 1973. The machine was build to solve
the set covering (Petrick function minimization) and
satisfiability /tautology problems and was based again
on a binary/ternary counter. Using ”universal digi-
tal modules” and mechanical switches for input, as a
teaching aid I actually built a prototype of this ma-
chine to solve 8 by 8 covering tables. In 1976-1982
our group created a general theoretical framework and
computer programs to solve a class of consistent la-
beling tree search problems that occur in logic, games
and design [25,26,29], [E37] (to save space the refer-
ences starting from E are from [32]). It included not
only binary but also multiple-valued input logic, which
I called ”non-univocal logic” [26,20]. This system was
perhaps the first one since Lullus’ to solve problems
in multiple-valued logic 3.

The new era of logic machines started in 1985, when
Tsutomu Sasao [36] presented a Tautology Machine,
called HART, designed to speed-up ESPRESSO and
other two-level PLA minimizers. His machine was ac-
tually built in hardware as a PAL-based co-processor
for a PC-compatible computer and gave considerable
speed improvements. To my knowledge this is the only
machine actually implemented in hardware after 1977
and the first machine to use programmable devices.
However, like many previous machines it was not com-
mercialized.

While the machine from [36] was intended for just
one task, a design we did at PSU [27] was for a general-
purpose parallel hardware logic accelerator. Our ma-
chine was optimized for satisfiability and related prob-
lems that can be reduced to the manipulation of lists of
binary and multiple-valued cubes. The proposed ma-
chine included several computers. One of them, called
the Monte-Carlo Constraints Computer (MCCC) was
the precursor of our Cube Calculus Machine(CCM).
It used a ring of simple processors which implemented
a pipelined, data flow architecture. The MCCC com-
puter was essentially a very-long-word RISC proces-
sor with enhanced logic and bit operations. The pro-
cessor executed vector-wise all two-variable Boolean
functions including such cube operations as inclusion,
supercube and intersection; comparison with binary
patterns; shifts; and such operations as selection of
the first "one” from the left, or the random one” from
the vector. It used stochastic and exhaustive search
methods and was optimized for solving problems de-
scribed by constraints. The main idea was to have
one processor for a subset of constraints equations).
The MCCC design was simulated and an NMOS chip
layout done, but the chip was not fabricated.

3Until 1985 I was not aware of positional notation of mv logic
as developed by Su and Sasao [40] [E46-E49], or any previous
efforts to build logic machines.
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At this time two other approaches to logic proces-
sors were being pursued: Content Addressable Mem-
0 {SAM) machines and Equation Solving machines.
(8 1986 we proposed a CAM-based machine, Con-
straints Optimizer [28], that was a generalization of
the machines from [27,36]. Yasuura [46] proposed a
CAM-based architecture that uses austive search
to solve the ”Traveling Salesinan”, ”Set Covering”,
and several other combinatorial problems close to
those of logic synthesis. Kida [18) presented a CAM-
based machine which is the successor of machines from
[28,45], but is.more general. (2) The second approach
was represented by a machine to solve the partial sat-
isfiability problem [21], designed in [19]. It was based
on reduction of a combinatorial problem to the partial
satisfiability problem. This problem was next reduced
to integer programming, which was solved using the
Karmarkar’s algorithm. In turn, the Karmarkar algo-
rithm used a general-purpose parallel architecture for
solving equations, which, among other matrix opera-
tions, realized the Ertended Faddev Algorithm.

As I learned about previous unsuccessful efforts to
built logic machines, I realized that because of the Am-
dahl Law, to be really useful, a machine must be much
more general than any of the machines proposed be-
fore. I also realized that logic synthesis operations are
strongly related to those used in automated theorem-
proving and computer vision, which influenced our
new architectures. For example, Ulug [44,45] proposed
an extended cube calculus machine for resolution-
based theorem-proving with applications in real time
Al and data-bases.

Our research on CCM has concentrated on achiev-
ing the following goals: (1) To determine the most
basic idea that all those architectures have in common
and built on this idea. (Based on simulation results,
the scanning principle that dominated the previous
machines was excluded as the basis of our CCM). (2)
The machine should be a general-purpose computer,
and must include the most common, and all the nec-
essary instructions of general-purpose computers. (3)
The complete machine must be a hardware acceler-
ator board for a general purpose computer, and the
component chips must be building blocks for various
massively parallel architectures such as those based
on GAPP and Transputer devices, or pipelined and
systolic DSP architectures.

These were the design goals of the CCM-1 [17], de-
signed using OCT tools. This machine introduced for
the first time: (1) a flexible number of values in liter-
als; (2) the concept of two-bit IT cell to represent a
part of an mv-literal of an arbitrary number of values;
(3) a data-path based on an iterative circuit of Finite
State Machines (FSMs) with information flowing be-
tween FSMs from left to right and from right to left.
This was also the first machine which included a more
complete set of cube calculus operations, and the first
which did not use exhaustive scanning in any way. Al-
gorithms such as tautology or satisfiability, which pre-
viously used scanning, were replaced with algorithms
based on the cube calculus operations sharp, intersec-
tion, and crosslink. A tree architecture designed from
CCM-1 and sorting chips for Generalized Satisfiability




Problem was described in [16].

Since 1989 our group developed a much improved
machine called CCM2 [30]. CCM2 introduced the fol-
lowing new concepts to logic machines: (1) Relations
and operators can be arbitrary }Hrogrammable) func-
tions of input variables. This allows us to create an
extremely large number of logic operators by com-
bining basic operators. (2) While CCM-1 executed
only set-theoretical operations on literals, CCM2 in-
troduces simple and complex symbols, as an interme-
diate level between bits and variables. This allows to
realize arbitrary truly mv logic and to deal with the
literals being various kinds of numbers. CCM2 can
also deal with data such as: number intervals, sym-
bolic predicates, associative tuples, and multi-valued
multi-output relations. These capabilities greatly ex-
pand its semantics and the range of potential applica-
tions. (3) The CCM2 machine is microprogrammed,
to make the best use of the above property. (4) CCM2
is a general-purpose computer. It belongs to a super-
set of standard arithmetic computers, string match-
ing computers, associative processors and Long-Word
Computers. (5) CCM architecture includes a Host
Procesor that controls a massively parallel structure
from CCM2 processors. The CCM2 processor chip
is designed to work in various topological configura-
tions, with various Controller and Content Address-
able Memory (CAM) chips. A hardware implementa-
tion of CCM2 is currently under development.

3 Binary and Multiple-Valued Input
Cube Calculus

There -are two basic representation methods for
switching functions used in most of the state-of-the-
art logic synthesis programs: decision diagrams, and
cube calculus. The main concepts of the cube calcu-
lus are those of a cube and an array of cubes (list of
cubes). In this paper an array of cubes will be called
a clist. In binary input, binary output (Boolean) cube
calculus and in multiple-valued (mv) binary output
cube calculus a cube usually represents one of the fol-
lowing: (1) a product of literals, (2) a sum of literals,
(3) an ezclusive sum of literals. It can also repre-
sent the EQUIVALENCE of literals, the polarity of a
unate function or a Generalized Reed-Muller (GRM)
form, an indez of a speciral coefficient, or other data
equivalent to an ordered set of ordered sets.

3.1 Basic Cube Notation

In binary logic a literal is a binary variable or its
negation. A variable x can be represented as z = z!
and its negation can be represented as F = z° . In
multi-valued input, binary output logic a literal is de-
noted as a variable with superscripts that represent
the values of the variable for which the expression is
satisfied. (For basic definitions related to mv functions
see [32]). N here denotes the number of variables (lit-
erals, positions) in a cube. A product of literals, X3 S
X252 ... X5V, is referred to as a product term, term,
or product and can be represented as a cube. A prod-
uct term that includes literals for all function variables
X1, X2, ..., XN is called a full term. A sum of prod-
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ucts is denoted as a SOPE, a product of sums is called
a POSE, and an EXOR of products is called an Ezclu-
sive Sum of Products Form or ESOP. Also, a product
of EXORs is called a Product of Ezclusive Sums ez-
pression or POES. SOPE, POSE, ESOP and POES
can all be represented as clists of cubes.

Ezample 3.1. Let us assume the order of variables
in a cube: z;, z2, 3, £4. Cube z; 3 T3 representing
a product of literals is denoted in symbol notation as
110X. SOPE z; z; T3 + T T3 ¥3 is represented as
a clist { 110X, 0X00 }. In the symbol cube notation
used in the clist entries a 1 means that variable rep-
resented by that position is present in the cube, a 0
means that the negation of the variable is present in
that position, and an X means that the variable rep-
resented by that position is not present in the cube.
Note that this same clist also represents the ESOP
ry T2 F3 ® % T3 Zs and the POS (zy + z; + Z3)
- (F1 + 73 + T3). Products of SOPEs (PSOPEs) are
also used for the Generalized Propositional Formulas
from [16]. They are represented as clists of clists of
cubes called cclists Sspecia.l separator cubes are used to
separate lower level clists in the higher order cclist).
In summary: a cube is used to represent one level of
logic (a set of literals and the linking operators), a clist
is used to represent two level logic expressions, and a
cclist is used to represent three level logic expressions.
The individual chips in CCM2 operate on cubes and
short clists. Operations on long clists and cclists are
executed by setting up pipelines between CCM chips
and/or memories and/or the Host.

Cube calculus is a set of operations on cubes, clists,
and cclists. Cube Operations are of several kinds: Cube
Operators, Cube Predicates, and Counling Operations.
The Cube Predicates take cube(s) and return logic val-
ues 0/1 which are used in the following operations.
The Cube Operators take one or two operand cubes at
a time, create from 0 to N resultant cubes and insert
these in the output clist. The Counting Operations
take cube(s) and return integers which are the result
of counting of the selected satisfied relations between
variables of the cube(s). An example of a counting op-
eration is determining the Hamming distance of two
cubes. Operations on clists and cclists are called Clist
Operations. Each Clist Operation has two kinds of
components: (1) list operation, or the kinds of generic
transformations that can be done to a list of arbitrary
elements or to several such lists. (2) cube operation,
or the kinds of transformations that can be done to a
cube or to several cubes. Clist operations are created
from all possible combinations of list operations and
cube operations.

For later examples of cube calculus operations
SOPE expressions will be used where the literals of a
cube are linked with an AND operator and the cubes
in a clist are linked with an OR operator. However,
these operators can be also applied to clists represent-
ing POS expressions. As a quick example, binary con-
sensus for SOPE is the same as the ”resolution” oper-
ation for POS in automatic theorem-proving. In fact,
every cube calculus operation can have many different
interpretations, depending on whether it is applied to
a SOPE, POSE, or ESOP. The number of possible




operations is very large and we have not yet found
practical applications for many of those we have dis-
covered.

By the base of logic machine we mean the number
of bits used to represent a simple symbolin that ma-
chine. CCM2 has a base of two (K=2), which allows
us to realize matrices of all logic operators in logics
with not more than 22 = 4 values. The four simple
symbols for base 2 are: 0 (negated variable), 1 (pos-
itive variable), X (don’t care), and € (contradiction).
They are encoded In positional notation as 10, 01, 11,
and 00, respectively. By a W-input K-base universal
cell we understand a logic function with W inputs
and one output, each input or output being a base
K signal. It means that when multiple-valued logic
is realized using binary signals, one has K wires to
represent each simple symbol from a set of 2K sym-
bols. A Universal Cell of base K realizes all matrices
of base 2K universal logic, or base K Set Logic from
[1]. In CCM each simple symbol is processed by an
iterative cell IT. K-base symbol requires K-base IT
cell. As an example, with our encoding the cube bcd
= [11 — 01 — 01 — 10]. One advantage of this nota-
tion is that the intersection of two cubes representing
products of literals corresponds simply to a bit-by-bit
product of the respective words. For instance, assum-
ing 4 binary variables, (a, b, ¢, d), the product of
ab - bed = [01—01—11—11] - [11—01— 01~ 10]
= [01-01-01-10] = abcd. When the opposite
literals are multiplied, the pair 00 is created from the
bit-by-bit product and is detected in the next stages:
ab . ab = [01—01—11—11] - [01 -10—11~11]
= [01-00—11-11] = 1leXX = contradiction.
The contradiction is detected and signaled.

Binary ”cube calculus” [7] was extended for a logic
with multiple-valued inputs by Su and Sasao [40],
[E46-EE49,E44]. For multi-valued input logic, the po-
sitional notation uses for each variable as many bits as
that variable can have values. For instance, 4 bits are
used to represent a 4-valued variable. Assuming one
variable with 4 values and a second variable wit? 6
values, the product X;4! X,4? = X, {012} x, 013} 4
represented as a cube A = [4;, Az] = [1110-010100].
In a CCM of base 2 each variable can have an arbi-
trary, but even number of values; 2,4,6,8,... Ina CCM
of base 3 each variable can have an arbitrary, but di-
visible by three number of values; 3,6,9,12,...

3.2 Examples of Operations on Cubes

In this section we will show formulas for cube op-
erations on multiple-valued input variables. We have
found that operations on cubes fall into three groups.
Intersection and supercube belong to the first group,
which we call simple combinational operations.

The definition of the intersection operation for
cubes A and B in positional notation is:

AN B = ( if there exists such i that A; N B; = 0
then ¢ else [A; N By, ..., ANNBnN] ),

where: A; is the i-th literal ( position) of cube A,
A; N B; is a set intersection of sets A; and B; in po-
sitional notation; @ denotes a vector of zeros: 00...0
with as many bits as variable { has values (i.e. as may
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¢’s as variable i has ITs). ¢ is an empty set (which
is signaled by the machine in some way other than by
creating an empty cube).

Ezample 8.2. Intersection of cubes A = x1{0.1,2}
y{123} = [1110000-0111000] and B = X{0.13)
y {025} = [1101001-1010010] is cube C = X {1} Y?
= [1100000-0010000].

The second group of operations, the complez com-
binational operations produce one cube whose literals
are calculated by conditional operations on the liter-
als of the operands. For instance, the prime operation
used in ESOP synthesis is defined as follows:

Aprime B = Xyt ... X;jAVBi X;_ A X AvB:

X'.+1Ai+n oo XpArUB XNAN

where A, U By is calculated for all those variables
X for which the relation Ay N By # 0 is satisfied.

Ezample 3.3. Prime of binary cubes A = X° Y?!
Z1 V! = [10-01-01-01] and B = X! Y© 2° V0! = [01-
10-10-11} is cube C = X° Y 21 V! = [10-01-01-11].

The third group of operations includes the so-called
sequential operations. Examples of such operations
are crosslink, non-disjoint sharp, disjoint sharp, sym-
metric consensus, asymmetric consensus, negation,
disjoint negation, neighborhood, extension, primary
crosslink. All these operations have in common that
they can produce more than one resultant cube.

Nondisjoint sharp (sharp) on cubes A and B is de-
fined as follows: A # B = (if A N B = ¢ then
Aclseif B D Athen ¢ else A #pasic B), where A
#1asic B is defined as follows: A #

{ X ..
| for suchi =

basic B =
.Xl._lAi—lXi"BinAiX‘.+1A-‘+l .. ,XNAN
1,..., N, that ~(B; 2 A}

By B; D A; we denote the relation of set inclusion,
i.e. that set B; includes set A;, in positional notation:
Vj=0,..pi1, B > Af.Formula=(B; 2 Ai)
is the predicate that is true when the relation B; 2 A;
is not satisfied. By B D A we denote positional cube
inclusion,i.e. B D A ¢ Vi=1, ., NB; 2D A

Ezample 3.4. XXX1 # 111X = { 0XX1, X0X1,
XX01}. Let us observe that simple symbol 0, shifted
from left to right in the above cubes, corresponds to
all values of i for which relation (~(B; 2 Ai)) = 1
is satisfied.

Each resultant cube has exactly one such literal,
which is called an active literal of this cube. All active
literals from the resultant cubes are called specific lit-
erals. There are as many specific literals as positions
of i for which relation rel satisfied, which is, from 0
to N. Let us also observe that while all specific literals
are calculated in parallel, the active literals are created
sequentially, with creating the resultant cubes.

Sharp is a basic operation used in generation of
prime implicants, minimization of two-level and three-
level logic, tautology verification, complementation of
switching functions, and many other fundamental al-
gorithms of logic synthesis, combinational problems-
solving and theorem-proving.

Comparing formulas for operations such as sharp,
disjoint sharp, crosslink, symmetric consensus and
asymmetric consensus one can easily observe that all




sequential operations have the same basic structure.
Each operand cube has one active literal which is the
literal 5. The operations to be performed on other
literals depend on their position with respect to this
active literal. A resultant cube is created only when
some relation rel (A4;, B;) is satisfied for the active
literal values A;, B;. For example, the relation of
intersection being empty, A; N B; = 0, is required
for crosslink to produce a cube, and negation of inclu-
sion relation, ~(B; D A;), is required for the case of
asymmetric consensus.

In the operations described above the four consid-
erations which relate to the active literal are: (1) the
relation rel(A;, B;) that must be satisfied in literal i
for this literal to become active and a resultant cube
to be created. (2) the operation executed on the ac-
tive literal i, for example, =B; N A; for sharp and
A; U B; for crosslink; (3) the operation executed on
literals before (or right of) the active literal 1, for exam-
ple copying the literals from A;4; through Ay to the
resultant cube; (4) the operation executed on literals
after (or left of) the active literal i, for example, copy-
ing the literals from A; through A;_; for sharp, and
from B; through B;_, for crosslink, to the respective
literals from 1 to i — 1 in the resultant cube.

One can observe that all those cube operators use
a loop for all variables and for various CC operations
apply different set relations and operations in before,
active and after positions. This observation is a base
of two crucial ideas of CCM: (1) executing the lowest
level loop of algorithms (the variable loop) in hard-
ware, using linear iterative array of cellular automata,
(2) programming logic functions in those automata
using electrically programmable logic, similar to those
used in Field Programmable Logic Arrays (FPGAs)
[10]. The idea of programmable logic applied to dy-
namic architectures is that of a processor reconfig-
urable at the lowest level. These two concepts are
responsible for the amazing flexibility of CCM and the
large number of operations that can be programmed
by simply changing logic functions of predicates, op-
erators and cellular FSMs. The very fast massively
parallel architectures from [10] use Xilinx and similar
general-purpose programmable devices and are then
totally programmable, however, at the expense of the
number of chips used. In contrast, our approach is to
have part of a circuit programmable, and part fixed.

One can observe and use similar structures for other
kinds of operations for which our machine was de-
signed, for instance, morphological image processing.
While the above observation allowed to map ”vari-
able loop” to one dimension of the CCM (horizontal
communication inside a CCM processor), other oper-
ation patterns are mapped to pipelined data move-
ments (shifts) between several CCMs connected in a
linear array - as in WARP computer of Kung; two-
dimensional movements: horizontal (inside CCM) and
vertical (between CCMs) - such as in SIMD meshes; or
three-dimensional (using as the third dimension RAM
memories connected to CCM processors) (as in GAPP
and similar image processing architectures). Addi-
tional advantages are createﬁ by using Content Ad-
dresable Memories (CAMs) for storing the results of
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processors. The interested reader can find descriptions
of other CC operations, or ones reducible to them and
used in CCM2, in]:l‘4,15,20,24,30,40], and [E4,E6,E14-
E19,E36,E37,E51,E54].

4 Generalized MV Cube Calculus

As said earlier, the Generalized Multiple-Valued
Cube Calculus (GMVCC), an extension to MVCC
has been developed, which allows to operate on many
data types including: Set Logic (Bio-Logic) [1], sev-
eral multiple-valued input multiple-valued output log-
ics, and symbolic relations.

Each cube of GMVCC is a vector of variables. Each
variable X has its type T(X) and length, denoted by
L(X). LSX) = R * K(IT), where K%T) is the base of
the IT cells, and R is a natural number. The types of
variables are: a symbol, a number, and a set.

(1)  Symbols are used in several discrete combi-
natorial problems, such as consistent labeling, so the
ability to work with symbols is an important inno-
vation of CCM2. In CCM2 there are two kinds of
symbols: simple symbols and compler symbols. Simple
symbols are implemented as binary strings and opera-
tions on them are efficiently realized as Boolean func-
tions described by matrices. For practical reasons the
number of different simple symbols is usually limited.
Such systems will be called Limited Finite Systems
(LFS). Complex symbols are ordered sets of simple
symbols, For instance a binary number is a complex
symbol of simple symbols 0 and 1. A ternary number
is a complex symbol of simple symbols 0, 1 and 2.

Restricting the number of logic values allows effi-
cient operations on symbols. Operations on complex
symbols are done by iterative operations on ordered
sets of simple symbols using multi-bit internal vari-
ables (iterative variables). %‘his is realized as linear
iterative circusts (Unger) of ITs with two kinds of in-
ternal variables: carry signals going from left to right,
and confirm signals going from right to left. Opera-
tions on two simple symbols can be described by two-
dimensional matrices called operator tables. Matrices
describing sharp, consensus, and other binary opera-
tors can be found in {7]. Examples of matrices for var-
ious multiple-valued logics can be found for instance
in [39] and [34].

(2) Numbers in CCM2 are represented as complex
or simple symbols. Operations on numbers are real-
ized as LFS. For instance, when K = 2, one is able to
realize binary, ternary and quaternary counting. Bi-
nary arithmetic operations for arbitrary v > K
S‘sluch as Addition and Subtraction modulo v, Minus,

ar and Min, as well as Equality and Order Re-
lations) are not decomposable to any groups of bits.
They are, however, decomposable to groups of K bits
assuming one or more carry signals, going from left to
right. The same is true about ternary or quaternary
arithmetic. Multiplication, Division, and other opera-
tions can be only described by matrices, and only for
numbers < 2K, For complex numbers these operations
are executed sequentially.

(3) Set types represent ordered sets, in particular,
sets of logic values. These types are used in MVCC.
As in the positional cube calculus notation or in Set




Logic: 1 is for an existing element, 0 for a non-existing
one. For the values of tuples (relations) we use the set
values as follows: 10 = false, 01 = true, 11- value ir-
relevant, 00 = contradiction. (Let us observe that the
Set Operations and Binary Number Operations are
the most efficiently realized since they are decompos-
able to single bits, which means that the same Boolean
function can be executed on all pairs of bits of literals).
Each cube can have two parts: input variables and
output variables. We call these the input-cube and the
output-cube. The value of each output variable can be
a set (in a set logic) or a number (in a truly mv logic).
For instance, in the case of a truly mv logic, each value
of the output variable in the output-cube represents
the value of that variable for the given input-cube.
Thus, [ 01-0110-1011} - < 3,4)Lmeans the input cube
[01-0110-1011] has value 3 in the first output variable
and value 4 in the second output variable.
Additionally, any number of adjacent variables can
be combined as a Variable Group. 4 Eramples: Two
numbers are combined as a number interval group. A
tuple can be created from four symbols; first (sim-
ple) symbol stands for tuple value, second (complex
symbol for name of relation, next two (complex
symbols for elements of this relation [44]. For in-
stance the group <10,PARENT,Mary,‘Robert) ,
denoted as 0 PARENT(Mary, Robert) states that
it is not true that Mary is a parent of Robert.
Variables in linked groups can be of various
types. For instance, assuming set variable PEO-
PLE = }l[Mary, Carol, Robert, John, Adam, Julie]||
(L(PEOPLE) = 6) the set of Mary and John is rep-
resented by literal PEQPLE{Mary, John} or in posi-
tional notation ||[100100]||. Assuming the relations: 1
PARENT(Mary, Robert), 1 PARENT(Mary, Carol),
1 PARENT(John, Robert), 1 PARENT(John, Carol),
one can create the relation group: PARENT(100100,
011000) which means that Mary and John are Par-
ents of Robert and Carol. This notation compacts
four PARENT relations to a tuple with mv variables.
GMYVCC Operations include the following compo-
nents. The GMVCC Predicates check if some relation
of operands is satisfied. This relation is set-theoretical
in the above examples, but can be arbitrary in general.
The most common relations are <, , =, #, >, <, C,
D, 2, and D. They can be either local (in a vari-
able), or global (in a group or a cube). The MVCC
Cube Operators use set-theoretical operations on pairs
of variables of operand cubes to calculate the resultant
cubes. These Symbol Operations are set-theoretical in
the examples from Section 3, but in the GMVCC Cube
Operators they can be arbitrary. The set theoretical
operations can be realized by Boolean functions of two
binary signals (they are simple symbol operations for
K=1). The results of Symbol Operations are complex
symbols, i.e. compositions of simple symbols. Numeri-
cal operations on complex symbols include: +, -, Maz,
Min, Truncated_maz, Truncated.min. Numerical op-
erations on simple symbols include: High_radiz_plus,
High_radiz_minus,  Modulo_plus, = Modulo_minus,

4¢» denotes a group of variables and ||[ ]|| a set in positional
representation.
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High_radiz_multiply, High_radiz_divide. They can
produce generalized carry signals to create complex
symbols as for instance in Radiz-$ Addition. Many
other symbol operations exist for K ¥ 1. The Couni-
ing Operations count the number of the occurrences
of satisfied relations on variables. For instance, a
numerical value of the Hamming Distance of binary
cubes A and B is calculated by counting the number
of symbols ¢ in cube C = A N B. The distance of mv
cubes is calculated by counting the number of symbols
0 in variables of cube C = A N B. In general, count-
ing serves to evaluate the quality of perfect/imperfect
matching of the operand cubes. This allows for the
realization of approzimate string maiching and fuzzy
logic algorithms.

Similarly to MVCC, operations in GMVCC are on
cubes, clists and cclists. Operations on cubes are sim-
ple combinational, complez combinational and sequen-
tial. However, the relations and operators can be dif-
ferent for each variable, and can be treated differently
in different variable groups and in different parts of
a cube. It is this flexibility which makes it possible
to use GMVCC for the wide range of formal systems
listed in the Introduction with our first mention of
GMVCC.

5 The Main Idea of the CCM

General purpose processors have simple combina-
tional instructions such as bit-wise OR, so they can ef-
ficiently execute some operations, for example, super-
cube. However, these computers require many instruc-
tions to perform other simple combinational opera-
tions, complex combinational operations and sequen-
tial logic operations. On a standard microcomputer
even the cube intersection operation is slow, because
shifted masks are used to detect contradictory cubes.
CCM2 was designed to accelerate combinational logic
operations and, more importantly, the sequential cube
calculus operations such as sharp or crosslink. Below
we will present the main principles that are applica-
ble to logic machines of any base, K. Here they are
described for K = 2, but the reader can easily modify
them for any K.

Each sequential operation can be described by a
pattern: A OP,,; B =

{ Xl'aj!(A;,Bl) .. X,‘_laf‘(Ai"'B‘-l)Xiac‘(A"Bi)

X..+lbe!(Aa+1,Bs+1) .. .XNbel(AN.BN)

| for all such i that rel(A;, B;) = 1}

An important property of functions before (for
short - bef), active (act), after (aft), and relation
(rel) is that they are K-wise functions, e.g., for K=2,
bits C*, C**! of the resultant cube of each of the
functions bef***! act*»*+1 aft**t!  and rel**+! of
a simple symbol are dependent only on bits A*, A*+1
and B*, B**! of the arguments. A complex symbol
which represents the value of variable C; of length =
R * K(IT) is a composition of R simple symbols which
are the results calculated in each of 1Ts representing
this variable. The value returned by the rel; of vari-
able C; is determined by the function relation_type.
Relation_type, here is OR, AND, or one of many other
Boolean functions of signals corresponding to partial




relations rel® **1 for simple symbols. This function
is selected for the desired type of CCM operation. An
iterative circuit similar to mults-rail Maitra cascades
is used to realize the relation_type function. A simi-
lar mechanism is used to create more global relations
for groups of variables or cubes. In general, rel signals

are arbitrary base K signals, so Boolean predicates are -

not treated in a distinct way.

The first resultant cube for a sequential CC opera-
tion is produced for the first specific literal selected as
the active one starting from the left. Later, the next
specific literal to the right is selected as the active one,
and the next resultant cube is produced. This proce-
dure is repeated until the last specific literal has been
selected as the active one. When producing a par-
ticular resultant cube, all the literals with numbers
less than the number of the active literal are of the
after type, all the literals with numbers greater than
the niumber of the active literal are of the before type.
All these operations.are totally erecuted in hardware
by the iterative network of state machines. Similar
general patterns were found for other sequential, sim-
ple combinational, and complex combinational opera-
tions.

The simple combinational operations of CCM are
vector-like extensions of standard computer instruc-
tions (logical, numerical, jumps, etc) expanded in a
SIMD pattern to separate fields (variables), each of
arbitrary length. The complex combinational oper-
ations are similar extensions, but they allow us to
execute different operations in the fields. They are
useful for ta.ggled operations, flag conditional setting,
etc. Sequential operations generalize shifts and string
matching operations. For instance, various types of
shifts can be executed in parallel for all variables, as
well as shifts between variables. In addition ta stan-
dard arithmetical/logical shifts, shifts with upary K-
wise operation in the shift loop are possible, that are
the generalizations of the K=1 case of the Johnson
counter with the controlled EXOR in the shift loop.

The tasks of the Controller Unit (CU) in the Cube
Calculus Machine are to: (1) generate signals for CC
operations, (2) generate signals for the CCM chip’s
pipelined communication with memories, other CCM
chips and the host processor. In CCM processor the
Iterative Logic Unit (ILU) is a counterpart of ALU. It
is a linear structure of I'Ts. To perform CC operations,
the CU has to provide the ILU with the correct control
signals to calculate the solution cubes. CCM processor
includes also register file and interface circuitry. Some
basic sequential CC operations are shown in Table 1.
A similar table can be created for all kinds of GMVCC
operations. Each table has columns corresponding to
the fields of a microprogrammed control unit. The
first four operations use the OR-type relation. This is
an OR-type relation because if the relation is satisfied
in at least one bit & (B;* =0, 4;* = 1), it is satisfied
for the entire variable. The last operator, crosslink,
uses AND-type relation. It is global within variable,
because for all bits of this variable the resultant bits
must be 0.

In conclusion, each CC operation can be described
as a combination of programmable logic functions and
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signals created by the CU. A Microprogrammed CU,
combined with distributed control based on communi-
cating state machines (cellular automata) in the ILU,
and overall function programmability creates an as-
tronomical number of possible logic/arithmetic/set-
theoretic/symbol operations. The overall control of
the CCM is hierarchical: the highest control level is
software in the Host, the intermediate level is the mi-
croprogram of the CCM Controller Unit, and the low-
est level is the programmability of logic cells and state
machines in every CCM processor chip.

6 Hardware Architecture of CCM2
Processor

All the known software subroutines process the lit-
erals sequentially, but for most of the literals the re-
sultant cubes generated will have contradictions and
that will have to be removed later. CCM2 implements
a completely new architecture to take advantage of the
peculiarities of sequential cube calculus operations.
The architecture is an iterative logic array (ILU) with
”carry” signals running from left to right end from
right to le%t through the iterative circuit of Posilion
State Machines (PSMs). The fundamental advantage
of this approach is that only cubes without contra-
dictions are generated. The CCM2 Processor consists
of a set of bit-slice ILU processing units, an interface
controller, and a control unit. The processing unit is
implemented as an iterative logic array (ILU) of basic
buiding blocks. A single cell (block) from an ILU is
called a ITerative Cell (IT).

Basically, CCM2 has a base of two (K(IT) = 2),
which allows us to realize matrices of all logic opera-
tors in logics with not more than 22 = 4 values. Since
it is important to realize resolution/unification opera-
tions of theorem-proving (44] and other truly mv log-
ics, base 3 operations can be also realized in CCM2.
The CUBEX concept of theorem-proving [44] has
three variants: propositional logic, predicate logic and
hybrid.  This concept uses new ”cross” cube calcu-
lus operations (cross-intersection, cross-sharp, cross-
consensus, cross-subsume), which require four addi-
tional symbols. The total set of symbols for base 3
CCM is then 0, 1, X, ¢, R, L, Y, Z, which leads to
K=3. They are coded: 010, 001, 011, 000, 111, 100,
101, 110, respectively (which is different from [44]).

By a W-input K-base universal cell one means a
logic function with W inputs and one output, each in-
put or output being a base K signal. It means that
when multiple-valued logic is realized using binary sig-
nals, one has K wires to represent each simple symbol
of a set of 2X symbols. A universal cell of base K real-

izes all matrices of base 2X universal logic, or base K
set logic. In CCM2 each simple symbol is processed by
an iterative cell IT. A K-base symbol requires a K-wise
IT cell. The number of ITs is denoted by n, so that the
number of bits is 2n and we can process n binary vari-
ables. Besides combinational logic each IT[i] includes
a Position State Machine (PSM) that influences the
local interpretation of the micro-instructions. In this
sense each IT is a small processing unit that processes
a part of a cube in parallel and communicates with




other processors that are connected in a linear orga-
nization. A processor with two ITs of K=2 is shown
in Fig. 6.1. For explanation purposes we will divide
each IT[i] into four blocks accorging to the function
that it performs: RELATIONg{,, STATE[i] (name of
the PSM block), MATCH_.COUNTER(i], and OP-
ERATION[]. We also discuss simplified signals
for MVCC operations from section 5 with K=2." (1)
Block RELATION(i] has the task of identifying the
position of the IT within the literal and generating a
Boolean signal VARIABLE[i] that is true when the
IT(i} is a part of a literal that satisfies the selected re-
lation "rel”. To calculate the value of VARIABLE[i],
the RELATION[i] block uses two iterative signals.
CARRY][i] is an iterative signal that runs from left to
right and is true when all ITs of the same literal to the
left of the IT satisfy the AND-type relation encoded
in rel. CONF[i] (confirm) says that at this position
all ITs have satisfied the relation. As we see, the sig-
nal CARRY goes from left to right, up to the end of
variable, and next returns as signal CONF, back to all
ITs of this variable. This explanation is only for AND-
type relations. Similar explanation for OR-type and
other relations can be given. (2) Block STATEfi] is
an FSM essential to executing sequential operations.
The state of the STATEfi] block represents the posi-
tion of the IT[i] in relation to the active literal. The
STATE[i] is in state active if the IT[i] is a part of
an active literal; it is in the before state if the IT]i] is
to the right of active literal; and in afier state if the
IT[i] is to the left of the active literal. All STATEfi]
are Initialized to the state before with the global sig-
nal from CU. (3) MATCH.COUNTER(Ji] counts the
number of satisfied predicates in IT[i]. (4) OPERA-
TION[i] creates bits of resultant cubes by performing
the operation on bits of the operand cubes. This is
where the operator matrix is programmed in.

CCM2 has also support for data-flow communi-
cation on clists and two-dimensional data with op-
erations such as Global Reduction, Mapping, Inver-
sion, All Pairs, Associative Selection, Dot Product,
Vector Product, Simple Cartesian Product, Sequen-
tial Cartesian Product, Convolution. All Permuta-
tions, All Subsets, All Combinations and other. Vari-
ous structures of parallel processors can be configured
from CCM processor chips, controllers and CAMs:
Long Word Processors, Pipelined Processors, Trees,
and Pyramides. CAMs allow for fast realization of
several associative operations, as well as operations
such as sorting and absorbing, which are very com-
mon in our class of applications.

In various simulation experiments and program
measurements we found that for many logic synthesis
algorithms such as tautology, satisfiability, primes gen-
eration, set covering, ESOP minimization, up to 98%
of time is spend on CC operations and sorting. For in-
stance, a Host operating at 10 MHz was assumed for a
tree architecture [16] to minimize Generalized Propo-
sitional Formulas. Assuming a tree with three levels (7
processors), in order to fetch all four leaf node proces-
sors in every execution cycle, the processors’ clock rate
was set at 2.5 MHz. With this setting, the architec-
ture can solve a 1000-clause Generalized Propositional
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Formula in approximately 0.7 milliseconds (i.e. 1698
cycles * 0.4 mllliseconds}'cycle . On the other hand,
a two-level tree, with 2 leaf node processors operating
at 5 MHz, can solve the same problem instance in 1.4.
milliseconds (i.e. 3470 cycles * 0.4 milliseconds/cycle).
To solve this problem instance by simulating the same
scheme a conventional PC-compatible computer, op-
erating at 10 MHz, requires 70.8 and 76.7 seconds,
respectively. Such results are encouraging and give
hope that even with a small number of processors the
machine will give significant speedup for several appli-
cations.

7 Conclusion

The paper briefly introduces new Generalized
Multiple-Valued Cube Calculus and the basic features
of our Cube Calculus Machine CCM2, the first uni-
versal multiple-valued logic machine. CCM2 archi-
tecture has been designed for pipelining, local elec-
trical programmability, K-wise serial processing, two-
dimensional systolic processing, associative process-
ing, and microprogramming. The innovative property
of CCM is a data path based on communicating cellu-
lar automata that executes GMVCC operations. The
CCM2 bit-slice chip and CCM2 processor board are
currently under development at PSU.

We predict that logic machines, which have a his-
tory longer than their arithmetic counterparts, also
have a bright future in a world that is increasingly de-
pendent on real-time intelligent processing of symbolic
information.
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Table 5.1. Sequential Cube Calculus Operations.

A1 A2 B182 A3A4 B3IB4

»|
>

»
-~

A

F.JV

OPERATION(1}|

vy

c1c2 Di1D2

IT[1]
Fig. 6.1

L
vy

C3C4 D3D4

IT[2]




