
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL I I . NO. I O . OCTOBER 1992 1207

Effective Computer Methods for the Calculation of
Rademacher-Walsh Spectrum for Completely and

Incompletely Specified Boolean Functions
Bogdan J. Falkowski, Member, JEEE, Ingo Schafer, and Marek A. Perkowski, Member, JEEE

Abstract-A theory has been developed to calculate the Ra-
demacher-Walsh t ransform f rom a cube a r r a y specification of
incompletely specified Boolean functions. T h e importance of
representing Boolean functions a s a r r a y s of disjoint ON- a n d
Ix-cubes has been pointed out , a n d a n efficient new algori thm
to generate disjoint cubes f rom nondisjoint ones has been de-
signed. The t r ans fo rm algori thm makes use of the propert ies
of an a r r a y of disjoint cubes and allows the determinat ion of
the spectral coefficients in a n independent way. The programs
for both algorithms use advantages of C language to speed u p
the execution. The comparison of different versions of the al-
gorithm has been carr ied out . T h e presented algorithm a n d its
implementation is the fastest a n d most comprehensive program
(having many options) known t o us for the calculation of Ra-
demacher-Walsh t ransform. I t successfully overcomes all
drawbacks in the calculation of the t r ans fo rm f rom the design
automation system based on spectral methods-the SPECSYS
system f rom Drexel University tha t uses Fast Walsh Trans -
form.

Index Terms-Algorithms, Rademacher-Walsh t ransform,
Spectral coefficients, Logic design, C u b e calculus, Ar ray of dis-
joint cubes, Sum-of-products expression, Completely and in-
completely specified Boolean functions, S t anda rd trivial func-
tions, Or thogonal functions.

I. INTRODUCTION
N DIGITAL logic design, spectral techniques have been I used for more than 30 years. They have been applied to

Boolean function classification [9], 1221, 1231, [36], 1371,
disjoint decomposition 1231, [50]-[52], [54], parallel and
serial linear decomposition [lo], 1221-1251, [51], [52],
1541, spectral translation synthesis (extraction of linear
pre- and post-filters) 1101, [24]-1261, [28], 15 11, 1521,
[54], multiplexer synthesis 1231, [3 13, prime implicant
extraction by spectral summation 1231, [26], 1281, 1291,
threshold logic synthesis [9], 1221, [25], logic complexity
[25], [55] and state assignment 1251, 1531. Spectral meth-
ods for testing of logical networks by verification of the
coefficients in the spectrum have been developed [lo],

Manuscript received April 24, 1990; revised December 31, 1990, and
July 11, 1991.

B. J. Falkowski was with Portland State University. Portland. OR. He
is now with the Division of Electronic Engineering, Nanyang Technolog-
ical University, Singapore 2263.

I . Schafer and M . A. Perkowski are with the Department of Electrical
Engineering. Portland State University, Portland, OR 97207.

IEEE Log Number 9107738

1211, 1231, 1241, [261, [321-[351, 1381, 1481, 1491. It
should be stressed that an important problem of finding
the complement of a Boolean function that has high com-
plexity in the Boolean domain [2], [47] can be solved very
easily in the spectral domain because complementing the
Boolean function corresponds to changing the sign of
every spectral coefficient [22], [23]. Tautology of a Bool-
ean function can be verified by calculating a certain coef-
ficient (DC coefficient). The problem of constructing op-
timal data compression schemes by spectral techniques has
also been considered. The latter approach is very useful
for compressing test responses of logical networks and
memories 1241, [26], [48], (491. The renewed interest in
applications of spectral methods in logic synthesis is
caused by their excellent design for testability properties
and the possibility of performing the decomposition with
gates other than the ones used in most classical ap-
proaches. Another area of application is signal process-
ing, especially image processing and pattern analysis [13,
1261, [35], 1451. Spectral techniques have also been used
for data transmission, especially in the theory of error-
correcting codes and for digital filtering 1261.

Two design automation systems have used spectral
methods as the tool for designing digital circuits 1401,
[51], 1521, [54], 1551. Computation of the spectrum is a
complex operation that requires, in the general case, n2"
operations of additions/subtractions when the Fast Walsh
Transform [l] is used and the Boolean function has IZ in-
put variables. In order to store the calculated spectrum,
2" memory locations are required [l] , 1231. The SPEC-
SYS (for SPECtral Synthesis System) developed at Drexel
University on VAX 11/780 uses the Fast Walsh Trans-
form [I] for the calculation of the spectrum and can pro-
cess Boolean functions having a maximum of 20 input
variables [5 I], [54]. The DIADES design automation sys-
tem developed at Portland State University [40] does not
have any limit on the number of input variables of Bool-
ean functions that can be processed and uses the methods
described in this article for the generation of spectral coef-
ficients of Boolean functions.

Logic synthesis for recently developed field-pro-
grammable gates arrays (FPGA's), gate arrays, and PLD's
creates new requirements for design automation systems
because of fundamental architectural differences with re-

0278-0070/92$03,00 '62 1992 IEEE

1208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10. OCTOBER 1992

spect to existing technologies. A high demand exists for
the methods that produce circuit realizations with EXOR
gates [7], [28]. “A four-input XOR (in Xilinx 2000 Logic
Cell Arrays) uses the same space and is as fast as a four-
input AND gate. - - * Logic design for Xilinx devices is
therefore limited by fan-in-not by logic complexity as in
PLD’s” quoted from [7]. “Any system which flattens
functions into 2-level AND-OR form, or which factors based
on the “unate paradigm” (as do MIS-11, BOLD, and Syn-
opsys), is going to have problems with strongly non-unate
functions like parity, addition, or multiplication. Since
these sorts of functions occur frequently in real designs,
synthesis tools need reasonable ways of handling them”
quoted from [28].

The DIADES design automation system methodology
is oriented towards detecting the linear (EXOR) part of a
Boolean function. It uses, among others, spectral methods
to detect EXOR parts of a Boolean function. Since the
DIADES system uses spectral methods together with the
programs based on the “unate paradigm,” it can easily
handle not only functions close to strongly unate but
strongly non-unate ones as well. The decomposition of
Boolean functions with both pre- and post-linear parts by
spectral means leads to highly testable circuit realizations
that can be efficiently implemented in several technol-
ogies (LHSSOI from Signetics, 2000/3000 Logic Cell Ar-
rays from Xilinx, and some EPLD’s with EXOR gates).
Only spectral methods currently allow for this kind of de-
composition [25], [54].

In this paper, the main emphasis is placed on the effi-
cient computer calculation of the Rademacher-Walsh
spectrum of Boolean functions since this particular order-
ing of Walsh transforms is frequently used for logic de-
sign [l], [6], [9], [lo], [22]-[26]. The ordering of Walsh
transforms describes the sequence in which Walsh func-
tions are placed in the transform matrix. There are two
Rademacher-Walsh spectra of Boolean functions, and
these are known in the literature under the names of R and
S spectra [6], [9], [11]-[13], [22]-[26]. In the following
material, these spectra are referred to by symbols R and
S. The particular coefficients from these spectra are re-
ferred to as ri and s[, where symbol I is called an index
and is used to denote any spectral coefficient from a given
spectrum. Both spectra are formed as the product of a 2”
X 2” Rademacher-Walsh transform matrix Tand a 2” vec-
tor representation of a Boolean function F (vector repre-
sentation of a truth table) [25], [29]. The truth vector for
spectrum R is coded by its original values: 0 for false min-
terms (minterms that haye logical values 0) , 1 for true
minterms (minterms that have logical values I), and 0.5
for don’t care minterms (minterms for which the Boolean
function can have an arbitrary logical values 0 or 1). In
the case of S spectrum the true minterms are denoted by
- 1, false minterms by + 1, and don’t care minterms by
0.

This paper shows two new merhods for the calculation
of the Rademacher-Walsh spectrum of incompletely
specified Boolean functions. Both these methods can cal-

culate a Walsh spectrum of any ordering since the algo-
rithms are independent of the ordering of the spectral coef-
ficients. Since a direct linear relationship exists between
the R and S spectra described in the next section, then this
article uses mainly the S spectrum. The first method,
which allows calculation of the spectrum directly from a
Karnaugh map, is introduced here for better understand-
ing of the meaning of spectral coefficients in classical logic
terms. The second method has been implemented in the
DIADES automation system [40].

This paper resolves many important issues conceming
the efficient application of spectral methods in computer-
aided design of digital circuits. The main obstacle in these
applications was, up to now, memory requirements for
computer systems. By using the algorithms presented in
this article this obstacle has been overcome. Moreover,
the methods presented in this article can be regarded as
representative of a whole family of methods, and the ap-
proach presented can be easily adapted to other trans-
forms used in digital logic design. For example, the ad-
aptation of the first method for Adding and Arithmetic
Transforms was described in [141, while the adaptation of
the second method for Reed-Muller Transform was pre-
sented in 1171. Both methods are also universal for mul-
tiple-valued binary functions and the extension of the j r s t
method for such functions was presented in [16].

The advantages of the approach presented were pos-
sible due to new insight and the formulation of spectral
techniques. By investigating the links between spectral
techniques and classical logic design methods, this inter-
esting area of research is presented in a simple manner.
The real meaning of spectral coefficients in classical logic
terms (such as minterms and cubes) is shown. An algo-
rithm is presented to ease the calculation of spectral coef-
ficients for completely and incompletely specified Bool-
ean functions by manipulations directly on Kamaugh
maps. All the mathematical relationships between the
number of true, false, and don’t care minterms and spec-
tral coefficients, as well as between the size of disjoint
cubes and spectral coefficients, are stated.

One of the drawbacks of spectral techniques is that
practically all the existing algorithms for calculating the
spectral coefficients start from a Boolean function, rep-
resented either as a list of true minterms (alternatively-
a list of false minterms) [22], [23], [25], [26], [51], [52],
[54] or as an already minimized sum-of-products Boolean
expression (SOPE) [23], 1351. The algorithm presented
overcomes this weakness by representing a completely
specified Boolean function as a set of disjoint cubes that
completely covers this function. A disjoint cube represen-
tation of a Boolean function (called “a disjoint cover”
and generated from a minimized SOPE) was used to cal-
culate the “autocorrelation” of a Boolean function in
[54]. By using a nonunique disjoint-cube representation
of a Boolean function, each spectral coefficient can be cal-
culated separately or all the coefficients can be calculated
in parallel. These advantages are absent in the existing
methods. The possibility of calculating only some coef-

FALKOWSKI et al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM I209

ficients is very important since there are many spectral
methods in digital logic design for which the values of
only a few selected coefficients are needed. Some exam-
ples of such cases in which the entire spectrum need not
be computed are: Walsh and Reed-Muller spectral tech-
niques for fault detection [4], [lo], [2 11, [23], [24], [26],
[32]-[34], [38], [48], [49]; spectral translation techniques
for extracting core functions [22], [23], [29], [30]; de-
signing of multiplexer-based universal-logic modules
[3 11; prime implicants extraction [26], [29]; estimation of
logic complexity [25], [53], [55]; and approximate im-
plementation of logical functions [35].

Most of the current methods in the spectral domain deal
only with completely specified Boolean functions. On the
other hand, all the algorithms introduced here are valid
not only for completely specified Boolean functions but
also for functions with don’t cares, since don’t care min-
terms can be represented in the form of disjoint cubes as
well.

In order to use Boolean functions that are represented
as arrays of nondisjoint cubes, a fast algorithm to generate
disjoint cubes is presented. The use of the disjoint cube
representation of Boolean functions has been found ad-
vantageous in many algorithms used in digital logic de-

The theory of calculation of the spectral coefficients for
incompletely specified Boolean functions is new for both
of the methods introduced. The second method also al-
lows for the calculation of spectra of a system ofBoolean
functions. When the system of incompletely specified
Boolean functions is processed, there is a restriction in
[25] that all the functions in the system are assumed to be
undefined at exactly the same points (minterms of a Kar-
naugh map). Optimal completion of don’t care minterms
for such a system of Boolean functions from the point of
view of a minimal number of spectral coefficients differ-
ent from 0 (and thereby obtaining simpler implementation
of such a system of functions) was presented in [25].
However, this is a severe restriction. The second method
can process not only such functions but any system of
completely and incompletely specified Boolean functions.
Each function in the system of functions processed by the
second method can have don’t care minterms anywhere in
the function domain.

A short description of previously known properties of
the classical Rademacher-Walsh transform as applied to
Boolean functions should make this article self-sufficient.
All properties regarding incompletely specified Boolean
functions are new. The formal proofs of these new prop-
erties by mathematical induction are trivial and therefore
omitted. A number of examples are given that should help
to introduce these ideas to people working in the areas of
test generation and logic design automation. The use of
complicated mathematical formulas, so typical in articles
on the subject, is minimized in this presentation. This is
important since, unfortunately, up to now the unfamiliar-
ity with the mathematical side of the spectral approach
seems to have been too great a hurdle to overcome for

sign ~21, [31, 181, ~121, ~ 9 1 , 1391, [411.

finding a fruitful place for practical CAD applications of
these ideas.

11. LINKS BETWEEN SPECTRAL TECHNIQUES AND

CLASSICAL LOGIC DESIGN
A method of calculating Chow parameters, which are

used in the classification of linear logical functions, was
shown in [181. The method was stated only for completely
specified Boolean functions. It was based on the compu-
tation of the number of agreements minus the number of
disagreements between the values in the truth table of a
Boolean function in S coding (the minterms of the func-
tion are coded according to the S coding) and the values
of each successive row of the Rademacher-Walsh matrix
T. A minterm in S coding and an element in the row of a
transform matrix agree with each other when they have
the same value (either 1 or - 1); otherwise they disagree.
Due to the relationships between the Chow parameters and
Rademacher-Walsh spectral coefficients [I 81, [191, and
mutual relationships between both S and R spectra stated
for completely specified Boolean functions in [23], the
same method can be applied for finding spectral coeffi-
cients of only completely specified Boolean functions.
However, the agreementldisagreement method, which is
suitable for hand calculations, takes into the consideration
all 2“ combinations of values of n variables of a Boolean
function.

A similar method for hand calculation of the spectral
coefficients was proposed in [6]. The advantage of this
approach is that only one half of all the combinations of
n variables of a Boolean function has to be considered.
Thus, the speed of this proposed technique is at last twice
the speed of the agreement/disagreement method. How-
ever, this method was presented only for completely spec-
ified Boolean functions and only for the S spectrum (which
was erroneously denoted by symbol R in [6]). Due to mu-
tual relationships between both spectra, this method can
be easily extended for the calculation of the R spectrum.

In this paper, all important relationships between spec-
tral coefficients from both spectra and classical logic terms
are stated. Moreover, for the first time these relationships
are presented not only for completely specified Boolean
functions but for incompletely specified Boolean func-
tions as well. The latter problem has been solved by the
authors for both S and R spectra. It has also been con-
firmed that the relationships that bind both these spectra
together (see (4) and (5)) are still valid for the spectra
calculated for incompletely specified Boolean functions.
By expressing spectral coefficients through different for-
mulas (this has never been done thoroughly even for com-
pletely specified Boolean functions, and (IO)-(13) and
(15) are new for such functions) one is able to calculate
the spectral coefficients from different available data that
makes the methods more flexible.

Let us show more clearly the meaning of rl and sI spec-
tral coefficients in classical logic terms. Moreover, let us
also expand our considerations for incompletely specified

1210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11 , NO. 10, OCTOBER 1992

X I X I a 1 a 1

X I a 1 2 1 X I

X I

X I

Fig. 1 . Standard trivial functions for a four-variable incompletely speci-
fied Boolean function.

Boolean functions. A standard trivial function denoted by
a symbol uI describes some area on a Kamaugh map that
has an influence on the value of a spectral coefficient sI.
The formal definition of a standard trivial function [22] is
given in Property 3.6. All but one standard trivial func-
tion for a four variable Boolean function are shown as the
circled areas in Fig. 1. The standard trivial function cor-
responding to the first spectral coefficient so is the whole
Kamaugh map and is denoted by symbol h. Since for this
spectral coefficient the corresponding row in the trans-
form matrix T has all elements equal to 1 (there are no
changes of value in the row), this coefficient is called a
direct current coeficient [23]. The symbol I used in the
description of spectral coefficients and standard trivial
functions is called an index, and the same symbol is used
for all the coefficients. The index is composed of subin-
dexes; each spectral coefficient has different subindexes.
The subindexes of a given spectral coefficient describe the
variables of the Boolean function that indicate the area of
the standard trivial function corresponding to this spectral
coefficient. For example, the standard trivial function de-
scribed by x1 8 x2 8 x3 8 x4 corresponds to spectral
coefficient s1,2,3,4 and the general symbol of such a coef-
ficient in sI.

The following symbols will be used in the equations.
Let ul be the number of true minterms of a Boolean func-
tion F in the area for which both the function F and the
standard trivial function uI have the logical value 1 ; let bl
be the number of false minterms of the Boolean function
F i n the area for which the function F has the logical value
0 and the standard trivial function uI has the logical value

1; let cI be the number of true minterms of the Boolean
function F in the area for which the function F has the
logical value 1 and the standard trivial function uI has the
logical value 0; let dl be the number of false minterms of
the Boolean function F in the area for which both the
function F and the standard trivial function uI have the
logical values 0; let eI be the number of don't care min-
terms of the Boolean function F in the area for which the
standard trivial function uI has the logical value 1 ; and let
fi be the number of don't care minterms of Boolean func-
tion F in the area for which the standard trivial function
uI has the logical value 0.

Then, for completely specified Boolean functions hav-
ing n variables, the following formulas hold for all but
the so and ro spectral coefficient (when I # 0) [22]:

(1)
and [22]

(2)
For the so and ro spectral coefficients [22]:

(3)

al + bl + cl + dl = 2"

ai + bl = cl + dl = 2"-'.

UO + bo = 2"

as co and do are both zero.

lows [23]:
The relationships between spectra R and S are as fol-

ro = (2" - so> (4)

(5)

and [23]

when I f 0.
Accordingly, for incompletely specified Boolean func-

tions having n variables, the following formulas hold for
all but the so and ro spectral coefficient (when I # 0):

(6)

(7)

(8)

1 rl = - sl

al + bl + c1 + dl + el + fi = 2"

al + bl + el = cl + dl + f i = 2"-'

a. + bo + eo = 2"

and

For the so and ro spectral coefficients:

as eo, do, andfo are all zero.
Subsequently, (1)-(8) are used, where necessary, in or-

der to derive different alternative expressions for spectral
coefficients and the final formulas are presented.

The so spectral coefficient for completely specified
Boolean functions can be defined in the following alter-
native ways [22]:

(9)

(10)

(11)
The sI spectral coefficients (when I # 0) for completely

specified Boolean functions can be calculated according

so = 2" - 2a,

SO = 2bo - 2"

SO = bo - uO.

or

or [22]

FALKOWSKI er al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM 121 I

to any of the following formulas:

or

s, = 2" - 2(b, + c,) (13)

or [22]

s, = 2(a, - c,) (14)

or

SI = 2(d, - b,)

or [22]

SI = (a1 + d,) - (b, + c,). (16)
Similarly, for completely specified Boolean functions

having n variables, the ro spectral coefficient can be de-
fined in three ways from (9) to (11) by using (4). The r,
spectral coefficients (when I # 0) for completely speci-
fied Boolean functions having n variables can be defined
in five ways from (12) to (16) by using the relationship of
(5) .

Let us now expand our considerations for incompletely
specified Boolean functions having n variables. Then, the
so spectral coefficient can be defined in the following al-
ternative ways:

(17) so = 2" - 2ao - eo

At this point, it is interesting to note the following
properties of the above equations. First, (4) and (5) are
valid for spectra calculated for both completely and in-
completely specified Boolean functions. Secondly, (1 1)
and (19) for the calculation of the direct current (so) and
the corresponding formulas for the calculation of the ro
coefficient are exactly the same for both completely and
incompletely specified Boolean functions. The same phe-
nomenon occurs in (16) and (24) and in the corresponding
formulas for the calculation of r, (when I # 0) spectral
coefficients. A number of don't care minterms e, and fi
are eliminated from these formulas. Of course, this does
not mean that the spectral coefficients for an incompletely
specified Boolean function do not depend on the number
of don't care minterms. They do, but this dependence is
included in (6)-(8).

Example 1 : As a numerical example, consider a four-
variable incompletely specified Boolean function for
which all standard trivial functions and values of all cor-
responding a,, d,, and f r are shown in Fig. I . According
to (17) and (20), the s, spectral coefficients for this func-
tion are as follows:

SO = 16 - 24 - 1 = -9, S I = 18 + 1 - 16 = 3

~ 2 = 2 2 + 1 - 1 6 = 7 , ~ 3 = 1 8 + 1 - 1 6 ~ 3

~4 14 + 1 - 16 = -1, ~ 1 2 = 18 + 1 - 16 = 3

= 14 + 1 - 16 = -1 , si4 = 18 + 1 - 16 3

(18) S23 = 18 + 1 - 16 = 3,

s~~ = 10 + 1 - 16 = -5 ,

~ 1 2 3 = 14 + 1 - 16 = -1,

S24 14 + 1 - 16 = -1 so = 2bo + eo - 2"

or

so = bo - a0 (19) si24 = 18 + 1 - 16 = 3

The s, spectral coefficients (when I # 0) for incom-
pletely specified Boolean functions can be calculated ac-
cording to the following formulas:

s~~~ = 14 + 1 - 16 = - I , ~ 2 3 4 = 10 + I - 16 = -5 ,

s~~~~ = 14 + 1 - 16 = -1.

s, = 2(a, + dl) + e, + f r - 2"

s, = 2" - 2(b, + c,) - (e, + A)

sl = 2(a, - cl) + e , -fi

sl = 2(d1 - bl) + f r - e,

SI = (a/ + d,) - (b, + ~ 1) .

(20)

(21)

(22)

(23)

(24)

Similarly, for incompletely specified Boolean functions
having n variables, the ro spectral coefficient can be de-
fined in three ways from (17) to (19) by using (4). The r,
spectral coefficients (when I # 0) for completely speci-
fied Boolean functions having n variables can be defined
in five ways from (20) to (24) by using the relationship of
(5) .

or

or

or

or

As can be seen from the above example, the$rst method
can generate spectral coefficients in any ordering of Walsh
functions or only some subset of them.

The relations that have been determined in this section
allow the derivation of many properties of spectral coef-
ficients that are important in their applications to the anal-
ysis and synthesis of logical circuits. The next section de-
scribes the classical approach to the calculation of spectra
of Boolean functions. For illustration, instead of Fast
Walsh Transform, the matrix multiplication method is
presented. The advantages of introduced algorithm over
Fast Transforms are shown. All essential terms and prop-
erties of the Rademacher-Walsh S and R spectra are in-
cluded.

111. BASIC PROPERTIES OF RADEMACHER-WALSH
SPECTRUM

The Rademacher-Walsh spectra S and R of an n-variable
Boolean function are alternative canonical representations
of the Boolean function. Other related canonical descrip-

1212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

tions of Boolean functions are the Adding and Arithmetic
forms [141 and the Reed-Muller from [4], [171, [20]. The
latter form, however, is a canonical representation of only
completely specified Boolean functions.

The Rademacher-Walsh spectrum S is formed as the
product of a 2" X 2" Rademacher-Walsh matrix T and a
2" vector representation M of a Boolean function F. When
the Boolean function is represented as a truth table of all
minterms, M will be either the (+ 1, - 1) vector repre-
sentation of the truth table for a completely specified Bool-
ean function, or the (+ 1, 0, - 1) vector representation
of the truth table for an incompletely specified Boolean
function [l], [22], [23], [25], [26], [34]. In the coding
scheme the conventional (0, 1, -) values (false, true and
don't care minterms) correspond to (+ 1, -1, 0) cod-
ings, respectively (" -" stands for "don't care"). This
type of coding of the truth vector is called the S coding,
and the coded truth vector is denoted by M. The values
of the minterms in the original truth vector and the coded
vector M are ordered according to the straight binary code
(SBC) of variables describing these minterms. For ex-
ample, the first entry in the vector is the logical value of
the minterm that is described by all negated variables of
a Boolean function (minterm 0), the second entry in the
truth vector is the logical value of the second minterm that
is described by all negated variables except xI (minterm
1, the least significant bit of SBC = I) , etc. The Rade-
macher-Walsh matrix T represents the Walsh functions in
Rademacher ordering. The rules for recursive generation
of such matrices are described in [25].

The Rademacher-Walsh spectrum R results from an-
other coding of the truth table of a Boolean function in
which the conventional (0, 1, -) values correspond to
(0, 1, 0.5). This Rademacher-Walsh spectrum is called
the R spectrum, and this type of coding is called the R
coding. The relationships between the spectral coeffi-
cients of the S and R spectra were given in the previous
section.

Besides the matrix method presented here, recursive al-
gorithms, data flow-graph methods, and parallel calcula-
tions similar to the Fast Fourier Transform have also been
used to calculate the Rademacher-Walsh and other related
transforms [l], [23], [26], [54]. All the methods men-
tioned reduce the necessary number of calculations from
n X n to n X log2 n, but still require an excessive com-
puter memory. They also have some undesirable proper-
ties, discussed mainly in Section X, that are overcome by
using the second spectrum calculation method introduced
here.

The principal properties of the coefficients of the S
spectrum for completely specified Boolean functions for
the four well-known Walsh-type transform matrices are
shown below according to [I], [9], [221, [231, [251, [261.
TheProperties3.7, 3.9, 3.10, 3.13, and 3.17arenew.

3.1) The transform matrix of each ordering of the
Walsh functions is complete and orthogonal;
therefore, there is no information lost in the S

3.2)

3.3)

3.4)

3.5)

3.6)

3.7)

3.8)

and R spectra concerning the minterms of the
Boolean function F.
Only the Hadamard-Walsh matrix describing the
Hadamard-Walsh transform has the recursive
Kronecker product structure. Other possible
variants of the Walsh transforms, described by
the corresponding matrices, are known in the lit-
erature as the Walsh-Kaczmarz, Rademacher-
Walsh, and Walsh-Paley transforms.
Only the Rade,macher-Walsh matrix is not sym-
metric; all other variants of Walsh matrices are
symmetric, so that, disregarding a scaling fac-
tor, the same matrix can be used for both the
forward and inverse transform operations.
Each spectral coefficient sI or rI is described by
its order, subindexes and magnitude. The order
of the spectral coefficient is equal to the number
of subindexes, and the subindexes are the sub-
scripts of all variables of a standard trivial func-
tion corresponding to the coefficient. The mag-
nitude of a spectral coefficient is its value. In the
sequel, i, j, and k denote subindexes, and the
order is denoted by 0.
When the classical matrix multiplication method
is used to generate the spectral coefficients for
different Walsh transforms (different T matrices
represent different Walsh functions with differ-
ent orderings), the only difference in the result
is the ordering of the spectral coefficients. The
coded vector M corresponding to the original
truth vector of a Boolean function is the same for
all orderings of Walsh functions. The values of
the coefficients sI and rf with the same subindices
are the same for every ordering of Walsh trans-
forms.
Each spectral coefficient (either sI or rI) gives a
correlation value between the Boolean function
F and a standard trivial function uI correspond-
ing to the coefficient. The standard trivialfunc-
tions for the spectral coefficients are, respec-
tively: for the dc coefficients (direct current
coefficients) so or ro, the universe of the Boolean
function F denoted by uo; for the first order coef-
ficients sI or r,(Z = i , i # 0), the variable x, of
the Boolean function F denoted by U,; for the
second order coefficients sI or rI(Z = 0, i # 0 , j
0, i # j), the Exclusive-OR function between
variables xi and x, of the Boolean function F de-
noted by uV ; for the third-order coefficients sI or
rI(Z = ijk, i # 0, j # 0, k # 0, i # j , i # k , j
k) , the Exclusive-OR function between vari-
ables x,, xl, and x k of the Boolean function F de-
noted by Uyk, etc.
The number of spectral coefficients of zth order
is equal to Ci = (g), where n is the number of
variables of a Boolean function.
For a completely specified Boolean function the
maximal value of any individual spectral coeffi-

FALKOWSKI et al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM 1213

- -
-9
- 1

3
7
3

-5

- '

3

-5

- 1

- '

- 1
- -

cient sI is +2" and the minimal value is -2".
These values occur when the Boolean function F
is equal to either a standard trivial function u1
(sign +) for the maximal value or to its comple-
ment (sign -) for the minimal one. In either
case, all the remaining spectral coefficients have
zero values because of the orthogonality of the
transform matrix T.

3.9) The maximal value of any spectral coefficient r,
except r, is + 2" - and will result when the Bool-
ean function F is equal to complement of a
standard trivial function U / . The minimal value
is -2n-I and will result when F is equal to a
standard trivial function uI. In either case, all the
remaining spectral coefficients have zero values
because of orthogonality of the transform matrix
T.

3.10) For an incompletely specified Boolean function
the maximal value of any individual spectral
coefficient s1 is +2" - I and the minimal one is
-2" + 1. These occur when the Boolean func-
tion F is equal to either a standard trivial func-
tion for the maximal value of s1 or to its comple-
ment for the minimal value, in all but one
minterm.

3.1 1) The maximal value of the ro spectral coefficient
is +2" and will result when the Boolean function
F is a tautology. The minimal value is -2" and
will result when F is equal to the complement of
the tautology. The tautology is the logical func-
tion for which all the minterms are true.

3.12) When, for more than half of the spectral coeffi-
cients of any completely specified Boolean func-
tion F , the majority of the minterms have the
same logical values as the minterms of standard
trivial functions, the sum of all of the coeffi-
cients of the S spectrum has a maximum value
equal to +2". When, for more than half of the
spectral coefficients, the majority of minterms of
F have the complemented logical values to the
minterms of standard trivial functions, the sum
of all of the coefficients of the S spectrum has a
minimal value equal to -2".

3.13) For any incompletely specified Boolean function
the sum of all the coefficients of the S spectrum
has a maximal value of +2" - 1 and a minimal
value of -2" + 1 . The maximal or minimal
value happens when the Boolean function has
exactly one don't care minterm and all the spec-
tral coefficients follow the rule found in Property
3.12.

3.14) With the exception of uo, every standard trivial
function uI corresponding to an n variable Bool-
ean function F has the same number of true and
false minterms. That number is equal to 2"- I .

3.15) For each true minterm the coefficients from the
spectrum S are so = 2" - 2, and all remaining
2" - I spectral coefficients sI are equal to f 2 .

so
sq

s3
s2

s 1

S N

'24

'23
'14

'13

s12

s234

S I 3 4

'124

'123

$1234

T

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 - 1 - I - 1 - 1 - 1 - 1 - 1 -1

1 1 1 1 - 1 - 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1 - 1

1 1 - 1 - 1 1 1 - 1 -1 1 1 - 1 - 1 1 1 - 1 - 1

1 - 1 1 - 1 1 - 1 1 -1 1 -1 1 - 1 1 - 1 1 - 1

1 1 1 1 - 1 -1 - 1 -1 - 1 -1 - 1 - 1 1 1 1 1

1 1 -1 - 1 1 1 - 1 - 1 - 1 - 1 1 1 - 1 - 1 1 1

1 1 -1 - 1 - 1 - 1 1 1 1 1 - 1 - 1 - 1 -1 1 1

1 - 1 1 - 1 1 - 1 1 - 1 - 1 1 - 1 1 - 1 1 - 1 1

1 -1 1 - 1 - 1 1 - 1 1 1 - I 1 - 1 - 1 1 - 1 1

I -1 -1 1 1 - 1 - 1 1 1 - 1 -1 1 1 - 1 - 1 1

I 1 -1 - 1 - 1 - 1 1 1 -1 - 1 1 1 1 1 - 1 - 1

1 - I 1 - 1 - 1 1 - 1 1 - I 1 - 1 1 1 - 1 1 - 1

1 - 1 -1 1 1 - 1 - 1 1 - 1 1 1 - 1 - 1 1 1 - 1

1 - 1 - 1 1 - 1 1 1 -1 1 - 1 - 1 1 - 1 1 1 - 1

1 -1 - 1 1 - 1 1 1 - 1 -1 1 1 - 1 1 - 1 - 1 1
-

-
0

- 1

-1

-1

1

-1

-1

-1

1

1

1

1

- I
1

1

1
-

M

Fig. 2 . Calculation of Rademacher-Walsh S spectrum

The method for choosing the signs of spectral
coefficients is defined in Section V (Properties

3.16) The spectrum S of each false minterm is given

3.17) For each don't care minterm the coefficients from
- 1 , and all re- the spectrum S are s () = 2" - i

maining 2" - 1 spectral coefficients sI are equal
to + 1 . The method for choosing the signs of
spectral coefficients is defined in Section V
(Properties 5.6-5.8) .

5.6-5.8).

by SI = 0.

ExampEe 2: An example of the calculation of Rade-
macher-Walsh spectrum S of a four-variable incompletely
specified Boolean function is shown in Fig. 2. The matrix
T describes the discrete Walsh functions in Rademacher
ordering. The coding truth vector M represents the values
of minterms of a Boolean function in the S coding. In this
example, the function from Fig. 1 is used. One can notice
easily that the first entry in the vector M has value 0 since
it corresponds to the logical value don't care of the min-
term described by all variables negated on Kamaugh maps
from Fig. 1. Since the Boolean function has only one don't
care minterm, all other entries in the vector M are either
+ 1 or - 1. The obtained spectrum is exactly the same as
the one obtained by the$rst method.

The second new method of calculating spectral coeffi-
cients of Boolean functions described in this article needs
the representation of Boolean functions in the form of ar-
rays of disjoint cubes. The method gives the correct val-
ues of spectral coefficients independently from the shape
and size of disjoint cubes in the array of cubes as long as
all the minterms of the function are covered only once by
a cube. The next section describes the algorithm that gen-
erates this kind of representation of Boolean functions.

IV. ALGORITHM TO GENERATE DISJOINT CUBES
The calculation time for the Rademacher-Walsh spec-

trum increases linearly with the number of disjoint cubes.
Thus, the determination of a quasi-minimal number of

1214

TABLE I

BENCHMARK FUNCTIONS
COMPARISON OF THE NUMBER OP DISJOINT CUBES FOR THE MCNC

Input output ESPRESSO Our
Variables Variables -Ddisjoint Program

b12 15 9 654 51
clip 9 5 185 162
inc I 9 34 34
misexl 8 7 32 15
misex2 25 18 29 28
rd53 5 3 32 31
rd73 I 3 141 127
sa02 10 4 151 98
5xpl I 10 106 70
9sym 9 1 189 166

cubes in the disjoint cube representation of a Boolean
function is crucial for the effective calculation of its spec-
trum.

Several algorithms for the generation of arrays of dis-
joint ON- and Dc-cubes (if any) or an array of disjoint OFF-
cubes were described and used in PALMINI [39], UMINI
[3], EXORCISM [19], EXORCISM-MV [41], and ES-
PRESSO [2]. Here the algorithm and its implementation
as described in [17] and [18] are improved. The random
ordering of the cubes is replaced by an array of cubes in
which the cubes are sorted according to their size. The
sorting can be performed in a short computation time by
using a skip list [43] to determine the relative sizes of
cubes. Thus, the new algorithm (Algorithm 1) compares
the largest cube with all others, starting from the smallest
one. In the next step, the second largest cube is taken and
compared to all smaller ones, etc. As a last step of the
algorithm, the cubes are merged, where possible, to ob-
tain a smaller total number of disjoint cubes. When the
new algorithm is applied to a system of Boolean func-
tions, it always tries to minimize the total number of dis-
joint cubes describing the functions in the system.

Example 3: The new algorithm is applied to the func-
tion for Example 1 and [18]. The steps of the execution
are illustrated in Fig. 3.

A ‘*’ in the array of cubes indicates that the disjoint
sharp operation (#,) [7], [46] has to be performed between
those two cubes. If the two chosen cubes in Fig. 3(d) are
in a different order, the result cannot be merged to a
smaller number of cubes. In order to find the optimal so-
lution in every case, a branching for each sharp operation
would be necessary, but is not implemented in our algo-
rithm.

In Table I the new algorithm is compared to the option
-Ddisjoint of ESPRESSO [2]. The functions shown in Ta-
ble I have been taken from the MCNC benchmarks. The
functions have been minimized by ESPRESSO before cal-
culating their disjoint representation. The execution time
for our algorithm was always less than one second, while
ESPRESSO took up to 300 s (b12).

The second and third columns of Table I give the num-
ber of input/output variables of the MCNC benchmark
functions, listed in the first column. The fourth column

gives the number of disjoint cubes obtained by ES-
PRESSO using the -Ddisjoint option. The right column
shows the number of disjoint cubes obtained by our al-
gorithm. The number of disjoint cubes obtained by our
program is usually better than the ones obtained by ES-
PRESSO.

The next two sections describe the properties used to
develop the computer method for generating the Rade-
macher-Walsh spectra for completely and incompletely
specified Boolean functions (Section V) and for systems
of completely and incompletely specified Boolean func-
tions (Section VI).

V. AN ARRAY METHOD FOR THE CALCULATION OF
SPECTRUM OF A BOOLEAN FUNCTION

An algorithm already exists for calculating spectral
coefficients for completely specified Boolean functions di-
rectly from a sum-of-products Boolean expression [23],
[35]. When the implicants are not mutually disjoint, this
algorithm requires an additional correction to calculate the
exact values of spectral coefficients for minterms of Bool-
ean function F that are included more than once in some
implicants. By using a representation of a Boolean func-
tion in the form of an array of disjoint cubes one can apply
the existing algorithm without having to perform correc-
tion operations because for an array of disjoint cubes as
input data the exact values of spectral coefficients can be
calculated immediately. Here the extension of the algo-
rithm to incompletely specified Boolean function is pro-
posed.

In what follows the properties of the existing algorithm
are rewritten in notation corresponding to our represen-
tation of Boolean functions with n variables in the form
of arrays of disjoint cubes. This is the first time all the
properties describing incompletely specified Boolean
functions have been presented.

Definition 1: The cube of degree m is a cube that has m
literals that can be either in affirmation or negation (i.e..
m is equal to the sum of the number of zeros and ones in
the description of a cube). Let symbol p denote the num-
ber of X’s in the cube and let n denote the number of
variables of a Boolean function. Then, n = m + p .

Example 4: Consider the cube 1x00. It is a cube of
degree 3 since three of the literals describing this cube are
either in affirmation (XJ or negation (x3 and x4). The cube
does not depend on literal x2.

Dejinition 2: The partial spectral coeficient of an ON-

or Dc-cube with degree m of a Boolean function F is equal
to the value of the spectral coefficient that corresponds to
the contribution of this cube to the full n-space spectrum
of the Boolean function F. The number of partial spectral
coefficients npsc describing the Boolean function F is
equal to the number of ON- and Dc-cubes describing this
function.

Example 5: Consider Table I1 as representing the array
method of calculating spectral coefficients. The consid-
ered array of disjoint cubes is the result of Example 3.

FALKOWSKI et a l . . CALCULATION OF RADEMACHER-WALSH SPECTRUM

TABLE I1

1215

XlXXON 0 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0
XOllON 12 0 -4 4 4 0 0 0 4 4 -4 0 0 0 -4 0
IOXOON 12 4 -4 0 -4 4 0 4 0 -4 0 0 4 0 0 0
OOOODC 7 - 1 - 1 - I - 1 - I - 1 -1 - 1 - 1 -1 - 1 - 1 - 1 - I - 1

-9 3 7 3 - I 3 - I 3 3 - I -5 - I 3 - 1 -5 - I

Each row in this table shows the partial spectral coeffi-
cients of either ON- or De-cubes of a Boolean function.
The function in the example has four partial spectra, which
is equal to the number of disjoint ON- and Dc-cubes de-
scribing this function (npsc = 4).

Suppose arrays of disjoint ON- and Dc-cubes that fully
define Boolean function F are given. Then each cube of
degree m can be treated as a minterm within its particular
reduced m-space of function F. Let us recall that the spec-
trum of each true minterm is given by so = 2" - 2, and
all remaining 2" - I coefficients are equal to + 2 (Prop-
erty 3.15). Similarly, the spectrum of each don't care
minterm is given by sDco = 2" - 1, and all the remaining

1 coefficients are equal to f I (Property 3.17). 2"- I -

The symbols S D c / denote spectral coefficients correspond-
ing to Dc-cubes (when I = 0, the symbol s,,-, denotes a
direct current spectral coefficient corresponding to a DC-

cube).
Cubes of degree m have the following properties.

5.1) The contribution of an ON-cube of degree m to the
full n-space spectrum of function F (where n is
the number of variables in the function F) is re-
lated as follows:

so in full n-space = 2" - 2 x 2l' (25)
and

sI in full n-space = sI in m-space X 2p (26)
where I # 0.

5.2) The contribution of a De-cube of degree m to the
full n-space spectrum of function F is related as
follows :

(27) sDco in full n-space = 2" ~ ' - 2 p

and

sDCl in full n-space = SDC/ in m-space x 2"

where I # 0. (28)

whereI # 0.

Notice that when the above formulas are applied to
minterms (i.e., for m = n , and p = 0) they reduce to
Properties 3.15 and 3.17. The contribution of a De-cube
of degree m is equal to one half of the contribution of an
ON-cube that has the same degree m. Moreover, the con-
tribution of ON- or De-cubes of degree m to the full
n-space spectrum of function F can be expressed for so as
the absolute value of the sum of all negative spectral coef-
ficients corresponding to these cubes.

Equations (26) and (28) determine the absolute values
of those partial spectral coefficients sI that are not equal
to zero for a given cube. Properties 5.3-5.5 determine the
signs of the partial spectral coefficients, and whether some
of them are equal to zero.

Example 6: Consider Table I1 again. The value of par-
tial spectral coefficient so corresponding to the ON-cube
10x0 (n = 4, p = 1) is equal to 24 - 2 x 2' = 12
according to (25). The absolute values of those partial
spectral coefficients sI that are not equal to zero are cal-
culated according to (26) and are equal to 2 x 2 ' = 4.

The value of partial spectral coefficient so correspond-
ing to the Dc-cube 0000 (n = 4, p = 0) is equal to 23 -
2' = 7 according to (27). The absolute values of those
partial spectral coefficients sI that are not equal to zero are
calculated according to (28) and are equal to 1 X 2' = 1.

The following properties determine which partial spec-
tral coefficients have values zero for an ON- or Dc-cube of
the degree m.

5.3) If in a given cube the x, variable of a Boolean
function is denoted by the symbol "X," then all
of the partial spectral coefficients sI whose in-
dexes I contain the subindex i are equal to 0.

5.4) If in a given cube each of the variables of a Bool-
ean function x,, x,, x I , etc., from the complete set
of all variables of the function is denoted by sym-
bol "X," then every partial spectral coefficient sI
whose index I contains the subindexes i, j , k , etc.,
is equal to 0.

5 . 5) For an ON- or Dc-cube of the degree m the number
of nonzero partial spectral coefficients is equal to
2"-", except for p = n - 1 when there is only
one nonzero partial spectral coefficient.

Example 7: Consider Table I1 again. The variable x3 is
denoted by symbol X in the cube 1OX 0. Then, by Prop-
erty 5.3, the values of all partial spectral coefficients with
subindex 3 are equal to zero. Therefore, s3 = ~ 1 3 = ~ 2 3

= s34 = sIz3 = s134 = s234 = s1234 = 0. For this cube, by
Property 5.5, the number of partial spectral coefficients
different from zero is equal to 24 - = 8.

The cube XlXX has three variables denoted by the X
symbols: xl, x3, and x4. Therefore, by Property 5 . 4 and
Property 5 .5 , only the partial spectral coefficient s2 is dif-
ferent from zero.

The following properties describe the signs of each par-
tial spectral coefficient s/, where I # 0, and are valid for
ON- and De-cubes of any degree:

1216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 1 1 , NO. IO, OCTOBER 1992

5.6) If in a given cube the x, variable of a Boolean
function is in affirmation, then the sign of the cor-
responding first-order coefficient is positive;
otherwise for a variable that is in negation, the
sign of the corresponding first-order coefficient is
negative. If in a given cube the x, variable of a
Boolean function is in affirmation, then the sign
of the corresponding first-order coefficient is po-
sitive; otherwise for a variable that is in negation,
the sign of the corresponding first-order coeffi-
cient is negative.

5.7) The signs of all even-order coefficients are given
by multiplying the signs of the related first-order
coefficients by - 1.

5.8) The signs of all odd-order coefficients are given
by multiplying the signs of the related first-order
coefficients.

Example 8: Consider Table I1 again. In the ON-cube
1OX 0 the variable xI is in affirmation, while the variables
x2 and x4 are in negation. Therefore, by Property 5.4 the
sign of the partial spectral coefficient sI is positive and the
signs of partial spectral coefficients s2 and s4 are negative.

The signs of second-order coefficients are determined
by Property 5.7. The sign of the even-order partial spec-
tral coefficient sI2 of cube 1OX 0 is positive, since the sign
is determined by the product of the related first-order coef-
ficients, sI and s2, times - 1 , i.e., (-1) X 1 X (-1) =
1.

The signs of the third-order coefficients are determined
by Property 5.8. The signs of the partial spectral coeffi-
cient ~ 1 2 4 of the same cube is positive since it is deter-
mined according to Property 5.8 as the product of the re-
lated first-order coefficients, sl , s2, and s4 and the result
is 1 x (-1) X (-1) = 1 .

The algorithm is as follows:
Algorithm 2: Calculation of spectral coeflcients for

completely and incompletely specijied Boolean Jicnctions.

5 .

x 2", where w is the number of disjoint cubes in
the array of Dc-cubes.
For an incompletely specified Boolean function the
value of the DC spectral coefficient so is equal to the
sum of all of the partial spectral coefficients corre-
sponding to all of the disjoint ON- and Dc-disjoint
cubes describing the function, plus the correction
factor - (k - 1) x 2" - w X 2"-l, wherekis the
number of disjoint ON-cubes, and w is the number
of disjoint Dc-cubes.

The correction factor - (k - 1) X 2" compensates for
the fact that the cubes over the complete n-space have
been added k times during the calculation of the k partial
spectral coefficients. A similar explanation applies to
Dc-cubes as well.

Of course, the algorithm can calculate each coefficient
separately or in parallel. If some of the 2" spectral coef-
ficients are not needed for a particular application, then a
reduced number of operations can be performed.

Example 9: An example of the calculation of the S spec-
trum for the four-variable incompletely specified Boolean
function is shown in Table 11. The function in this ex-
ample is the same as the one used in Examples 1 , 2, and
3. Fig. 3 showed the stages of the execution of the algo-
rithm generating disjoint cube representation for the same
function. Fig. 3(f) showed the input data for the algo-
rithm for this section. The array of disjoint cubes repre-
senting the function is repeated from Fig. 3(f) as the first
column in Table 11. The values and signs of all the partial
spectral coefficients for this function are determined by
Properties 5.1-5.8. The results of the application of these
properties are shown for two cubes.

The spectral coefficients of the first ON-cube in Table I1
(cube 1OX 0 of degree m = 3) are as follows:

1) within its own m-space, treated as a single minterm;

~4 = -2, ~ 1 2 = 2, 313 = 0, = 2 1. For each ON- and Dc-cube of degree m, calculate the
value and sign of the contribution of this cube to the

described previously.
The values of all spectral coefficients sI, except so,

full n-space spectrum according to the properties $23 0, $24 = -2, $34 = 0, SI23 = 0

SI24 2, SI34 = 0, s234 = 0, SI234 = 0.
are equal to the sum of all of the contributions to
the spectral coefficients from all 0 ~ - and Dc-disjoint
cubes from an array of cubes.

2) within the full n-space of Boolean function F (par-
tial spectral coefficients);

so = 12, SI = 4, s 2 = -4, s 4 = -4

~ 1 2 = 4, ~ 1 4 = 4, ~ 2 4 = -4, s i24 = 4.

3. For a completely specified Boolean function the
value of the dc spectral coefficient so is equal to the

sponding to all of the disjoint ON-cubes describing
the function, plus the correction factor - (k - 1) x
2", when k is the number of disjoint cubes in the
array of ON-cubes.

4. For an incompletely specified Boolean function the
value of the dc spectral coefficient so is equal to the

sponding to all of the disjoint Dc-cubes describing

sum of all of the partial spectral coefficients corre-

On the other hand, the spectral coefficients of the Dc-cube
in Table 11 (cube 0000 Of degree m = 4, i.e., Single min-
term) are as follows:

1) within its own m-space, treated as a single minterm;

sum of all of the partial spectral coefficients corre-

the function, plus the correction factor -(w - 1)

so = 7, SI = -1, s 2 = - 1 , s 3 = -1

~4 = - 1 , ~ 1 2 = -1 , s i 3 = -1, ~ 1 4 = -1

FALKOWSKI et al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM 1217

- x l $ ~ 3 $ 4 -
‘XlXX 01

X X I l ON

l X l X ON

*1X00ON

m D c -
(b)

(d)

lOlX ON
loo0 ON

XlXX ON
XOll ON

1010 ON

loo0 ON

XlXX ON
‘XOI 1 ON

‘101X ON

loo0 ON

mDc

XIXXON

XOll ON

10x0 ON

poooDC-

Fig. 3 . Stages of the execution of the algorithm to generate a disjoint cube
representation. (a) Input array. (b) Cube [4] #, cube [I] . (c) Cube 121 #,
cube [I] . (dj Cube 131 #, cube [I] . (e) Cube [3] #, cube 121. (0 Merge.

$23 = -1, $4 = -1, s3q = -1, SI23 = -1,

SI24 = -1, SI34 = - 1 , $234 = -1,

s1234 = - 1

2) within the full n-space of Boolean function F (par-
tial spectral coefficients): the same as within its own
m-space since it is a single minterm.

In order to obtain the values of all of the spectral coef-
ficients of the whole function, except so, the columns of
partial spectral coefficients corresponding to all cubes de-
scribing the function are added (step 2 of the algorithm).
The value of so is obtained by the addition of all partial
spectral coefficients with the correction factor (step 5 of
the algorithm). Since the considered function is incom-
pletely specified and not all the minterms are don’t cares,
the steps 3 and 4 are not performed.

The resulting spectrum is shown in the bottom row of
Table I1 and, as can be easily checked, is exactly the same
as the one obtained by using the standard trivial functions
in Example 1 and by matrix multiplication in Example 2.

VI. SPECTRAL COEFFICIENTS CALCULATION FOR
SYSTEMS OF BOOLEAN FUNCTIONS

The algorithms from Sections I1 and V can be modified
easily to calculate Walsh spectra of systems of Boolean
functions. Because the method from Section I1 (Kamaugh
maps) is limited to six variables, only the extension of the
Algorithm 2 is presented.

The calculation of a Walsh spectrum for a system of
completely specified Boolean functions was presented in
[25] for the R coding. There, the calculation of the R
spectrum of a system of incompletely specified Boolean
functions is considered, with the following restriction.

Restriction 1 : When a system of incompletely specified
Boolean functions has don’t care minterms, then all of the
functions of the system have the same don’t care min-
terms (i.e., the same cells of Kamaugh maps are not spec-
ified in every function of the system).

The method presented in [2 5] , however, has all the
drawbacks of the classical approach of spectral methods
since it uses matrix calculation methods.

In this section the representation of systems of Boolean
functions with the above restriction on a system of incom-
pletely specified Boolean functions is presented for the
first time for S coding. Since the method with the restric-
tion is of little practical use, the representation of systems
of incompletely specified Boolean functions that can have
any don’t care minterms is introduced. When applied to
a system of Boolean functions, the method still has all the
advantages described in the previous section.

Let us assume that the functions in the system are in
the order: F [l] , F[2], F [3] , * * , F [b] , where b is the
number of the functions in the system and the function
F[b] is on the rightmost position in the system. Then, for
the system of completely specified Boolean functions and
for the system of incompletely specified Boolean func-
tions, with Restriction 1, the following properties hold:

6.1) The contribution of the spectrum of the function
F [i] , i = 1, 2, , b to the total spectrum of a
system of Boolean functions SToT is equal to the
spectrum SLrl of the function F[i] calculated by
Algorithm 2, which in tum has to be modified by

6.2) The total spectrum of a system of Boolean func-
tions STOT is equal to the sum of all the modified
spectra of all the Boolean functions in the system.

The contribution of the spectrum of the ‘‘i th” function
F[i] to the total spectrum of a system of b Boolean func-
tions is denoted in (29) by SXL1, and the spectrum of the
“ith” function calculated by Algorithm 1 is denoted by

*

(29).

S I , , , .

s&, = 2” - x s ,[,, .
When the more general and practical case of a system

of incompletely specified Boolean functions having arbi-
trary don’t care minterms is considered, the system has to
be represented by two spectra-one corresponding to the
don’t care minterms of the system, the second corre-
sponding to the true minterms. The need for two separate
spectra for a system of arbitrary incompletely specified
Boolean functions arises from the properties of the
Rademacher-Walsh matrix T . If Properties 6.1 and 6.2
were applied to don’t care and true minterms of an arbi-
trary system of incompletely specified Boolean functions,

1218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11. NO. 10, OCTOBER 1992

TABLE 111

s2 s3 s4 s12 s13 s 2 3 s24 s34 SI23 s124 S I 3 4 s 2 3 4 SI234

SI21 -10 2 6 2 -2 2 - 2 2 2 - 2 -6 -2 2 -2 -6 -2
SI11 6 2 -2 -2 2 2 -6 6 -2 2 10 2 -2 -2 2 -2

12 4 -4 -4 4 4 -12 12 -4 4 20 4 -4 -4 4 -4
ST,,,, 2 6 2 -2 2 6 -14 14 -2 2 14 2 -2 -6 -2 -6
GI

TABLE IV

SO s2 s3 s4 SI2 SI4 s 2 3 s 2 4 s 3 4 S I 2 3 SI24 S I 3 4 s234 SI234
~~ ~

SI21 7 - 1 - 1 - 1 - 1 -1 -1 -1 -1 -1 -1 -1 - 1 - 1 - 1 - 1

s;] 12 0 4 4 4 0 0 0 - 4 - 4 - 4 0 0 0 4 0
S,Il 6 0 2 2 2 0 0 0 - 2 - 2 - 2 0 0 0 2 0

ST,,,, 19 -1 3 3 3 - 1 - 1 - 1 -5 -5 -5 - 1 -1 - 1 3 - 1

then the original system of functions would not be re-
trieved when the inverse transform is applied. For ex-
ample, the contribution of the don’t care minterm for the
function F[b - 11 to the total spectrum of the system of
Boolean functions would be, in a case of using both Prop-
erties 6.1 and 6.2, the same as the contribution of the true
minterm of the function F[b] . Therefore, Properties 6.1

00
o1
11

(a) (b) (C)

and 6.2 can be applied to an arbitrary system-of incom-
pletely specified Boolean functions only after represent-
ing each of the functions in this system by two arrays of
cubes: one containing only don’t cares minterms, the other
containing only true minterms. The total spectrum has to
be calculated for each of these arrays separately. Then,

”% 01 11 10

0 0 - 0 1 0

0 1 1 1 1 1

1 1 1 1 1 1 xlFzm 1 0 1 0 1 1 (4

x’J80 01 11 10
*1?(2

0 0 0 0 1 0

0 1 1 1 1 1

1 1 1 1 1 1 m 1 0 1 0 1 1

..,qW,
0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0 H+H
(f)

the system of incompletely specified Boolean fUnctions
should be processed by the following algorithm.

Algorithm 3: Spectral coeficient calculation for a sys-
tem ofarbitrary incompletely spec$ed Booleanfunctions:

Fig. 4. Incompletely specified Boolean functions F [l] and F [2].

F [1 1) and Fig. 4(d) (function F[2]) . The sets of owmin-

Represent each function in the system of Boolean
functions by arrays of disjoint ON- and Dc-cubes ac-
cording to Algorithm 1 .
Calculate the spectrum of an array of ON-cubes for
each separate function F[i] according to Algorithm
2.
Calculate the total spectrum ST,To, of the system
by using Properties 6.1 and 6.2.
Calculate the spectrum of an array of Dc-cubes of
each separate function F [i] according to Algorithm
2.
Calculate the total spectrum SToTDc of the system
by using Properties 6.1 and 6.2.

Example 10: An example of the calculation of spectra
SToToN and SToT DC of a system of two incompletely spec-
ified Boolean functions (b = 2) having four variables is
shown in Tables I11 and IV. The function F[2] in this
example is the same as the one used in Examples 1, 2 , 3,
and 9. The function F[1] is taken from [13]. Both func-
tions have no restriction in the choice of don’t care min-
terms, therefore Algorithm 3 has to be performed. The
original functions are presented in Fig. 4(a) (function

terms that describe ON-cubes is presented in Fig. 4(b) and
Fig. 4(e). The sets of dc-minterms are shown in Fig. 4(c)
and Fig. 4(f). The corresponding arrays of disjoint ON-
and Dc-cubes are generated by Algorithm 1 (step 1) . The
execution of the second step of Algorithm 3 for owcubes
is shown in the first two rows of Table 111. The modified
value of the spectrum of function F[1] is shown in the
third row of Table I11 (step 3). Since for the function F[2]
the modified value of spectrum is equal to the original one
then this value is not repeated in the table. The total spec-
trum SToToN of this system of functions is the sum of rows
one and three and is shown in the bottom row of Table
111.

The execution of the fourth step of Algorithm 3 is
shown in the first two rows of the Table IV. The modified
value of the spectrum of function F[1] is shown in the
third row of Table IV (step 5). Since for the function F[2]
the modified value of spectrum is equal to the original
one, this value is not repeated in the table. The total spec-
trum SToTDc of this system of functions is the sum of rows
one and three and is shown in the bottom row of Table
IV .

A system of completely specified Boolean functions or
incompletely specified Boolean functions with Restriction

FALKOWSKI er U / . : CALCULATlON OF RADEMACHER-WALSH SPECTRUM 1219

1 can be represented by one spectrum. For this, Algo-
rithm 3 can be simplified to Algorithm 4.

Algorithm 4: Spectral coeficients calculation for a sys-
tem of an incompletely specijied Boolean junctions (with
Restriction 1) or a system of completely specijied Boolean
&fictions.

1) Represent each function in the system of Boolean
functions by arrays of disjoint ON- and Dc-cubes ac-
cording to Algorithm 1 .

2) Calculate the spectrum of each separate function
F [i] according to Algorithm 2.

3) Calculate the total spectrum ST,, of the system by
using Properties 6.1 and 6.2.

VII. IMPLEMENTATION OF THE ALGORITHM FOR THE

CALCULATION OF THE WALSH TRANSFORM

The main problem of the implementation of the algo-
rithm for the Walsh transform is the memory requirement
for storing the whole spectrum. For an n-variable Boolean
function the spectrum S has 2" coefficients. Up to now,
all other algorithms known to the authors have to keep the
complete 2" values of the spectral coefficients in the main
computer memory. Thus, only Boolean functions with up
to 18-20 literals could be processed [54]. Therefore, we
have designed several algorithms for the generation of the
spectral coefficients that do not keep all the coefficients in
the computer memory at the same time. Since the trade-
off exists between the execution speed and the area of the
required memory, the concept of the transfer of control
among the algorithms has been introduced. The user's op-
tions and the cooperation among the algorithms are shown
in Fig. 5 . The dashed arrows denote the options that can
be selected by the user, while the continuous arrows de-
note the transfer of the control among the algorithms.

First, the user can choose options from one of three
generations: of the Whole Spectrum, of Certain Orders of
Coefficients (recall the definition of the order from Prop-
erty 3.4), or of Some Spectral Coefficient. When the op-
tion of Some Spectral Coefficient is chosen, the coeffi-
cients are generated directly from the cubes. In the other
cases, the user has to choose whether the orders of coef-
ficients should be generated according to Algorithm A 1
or A2. Then the program tries to allocate the necessary
memory space for the required number of spectral coeffi-
cients nc according to the chosen algorithm. The value of
nc is calculated by the formulas shown in Fig. 5 , where
n denotes the number of input variables of a Boolean
function, and o the current order of coefficients. When the
memory allocation fails then the successive algorithm
having smaller memory requirements is automatically
chosen (transition from Algorithm A1 through A2 till A2
or from Algorithm A2 to A3). When the coefficients of
the next order are going to be generated the transition from
Algorithm A3 to A2 is always possible and always tried
by the program. The transition from Algorithm A2 to A1
is tried only if the Previous Order option has been chosen.

Whole Specmm
Cemn Order

Prcvious Order
First Order

Fin1 Order Single Cwff previous Order

I I

only I f previous order is chosen

Fig. 5 . Mutual relationships among the algorithms, the possible transi-
tions and required memory size for each algorithm.

A . Algorithm A I : To Generate Indexes from the
Previous Order

Algorithm A1 is optimized for the case when there are
many cubes having many DC literals. This algorithm has
to store in the memory two adjacent orders of spectral
coefficients and the corresponding indexes due to the gen-
eration of the current order from the previous order.

The main part of Algorithm A1 is the generation of the
indexes for the next order of spectral coefficients, since
coefficients are generated in the Rademacher ordering.
This part of the algorithm takes only such indexes of the
previous orders for which the MSB (Most Significant Bit)
is equal to 0, shift them to the left, and adds one. Next
the part of the new order just generated is shifted again to
the left. with the above restriction still valid. Thus, the
next block is created. The procedure continues until the
last index is generated. The details of the implementation
of this procedure are described below.

Procedure: Generation of the indexes from the previous
order:

1. do for indexes of the whole previous order
if (MSB of index is 0)
then: shift index to the left and add 1.
else: go to next index.

2. do for each new generated block
if (MSB of index is 0)
then: shift index to the left.
else: go to next index.

An example of this procedure is shown in Fig. 6. It is
assumed, that the cubes have 5 literals and therefore the
length of required indexes is also 5. The indexes of the
third-order coefficients are generated from the second or-
der. The circled areas mark the indexes having the MSB's
equal to 0 on which the operations described by arrows
are executed. Since is equal to (:), then the number
of indexes of the second and third orders is equal to 10.

1220

SeMnd order :

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

0 0 1 0 1

I 11000 I

shift 1 bit left
udaddl.

lhird order :

0 1 0 1 1

1 0 0 1 1

0 1 1 0 1 -la 10101 I 1 1 0 0 1 I
0 1 1 1 0

1 0 1 1 0 E 3 1 1 0 1 0

I 1 1 1 0 0

Fig. 6. Generation of third-order indexes of coefficients from the second
order.

In the next part of Algorithm A l , the values of the
spectral coefficients are generated by comparing the in-
dexes to the cubes. To speed up the comparison (i.e.,
checking if the index of the spectral coefficient coincides
with the cube), the notation of the currently processed
cube is changed. The data about the cube is stored in two
long variables: valuex and value0. The idea of the new
notation is to make it the same as the notation for the
indexes. In the variable valuex, 1s are stored only at the
positions where the cube has X’s; otherwise the pattern is
filled with 0’s. In the variable value0, 0’s are stored at
the positions where the cube has Os, otherwise the pattern
is filled with 1s. If the intersection between the index of
the spectral coefficient and the variable valuex is not
empty, the value of the spectral coefficient must be zero.
In the other case, the number of 1’s in the intersection of
the index of the spectral coefficient and the complement
of the variable value0 determines the sign of the value of
the spectral coefficient.

Example 11: In Fig. 7, the valuex and the value0 are
shown for a certain cube. Because the intersection of val-
uex and the index is empty, the intersection between the
index and the complement of value0 has to be performed.
Since the result of the second intersection has an odd
number of Is and the fifth order is odd, the sign of this
coefficient (sI4) has to be minus.

B. Algorithm A2: To Generate Indexes from the First
Order

Algorithm A2 is faster for the case when the cubes in
the array have a small number of dc literals. It is a recur-
sive algorithm to generate the indexes and values of the
spectral coefficients of one order. The number of levels
of recursions of the procedure is equal to the number of
the current order. Each level of recursion changes one
subindex (see the definition of a subindex in Property 3.4)
of the index.

Example 12: This example demonstrates how the in-
dexes of the third order for cubes with five literals are
being generated. The indexes of the third order are deter-

&: ml index:

valud): 0 1 1 I 1 bn 11101010101
Fig. 7. Generation of the values of spectral coefficients.

mined by all permutations of three out of the five indexes
from the first order (Fig. 8).

Let us assume that the three variables i [l] , i [2] , and
i [3] hold the three subindexes of an index I of the third
order spectral coefficient for some cube (e.g., s i24 -,
i [l] := 1, i [2] := 2, i [3] := 4). The numbers 1 , 2 , and
3 of i [] indicate the level of the recursive procedure. Be-
cause the value of the spectral coefficient is the same as
the values in the first order, only its sign has to be deter-
mined. It is calculated by multiplying the sign of the cur-
rent spectral coefficient with the signs of the spectral coef-
ficients of the first order, which are determined by the
variables i[1 3 , i [2] , or i [3] . When the recursive procedure
reaches the third level or executes the loop in the third
level, a new spectral coefficient (its index and value) is
stored. When the procedure is entered for the first time,
the subindex i [l] is set to 1 , and the sign that has been
determined by the order is multiplied by the sign of siIll.
The variable indexl is the index of the spectral coefficient
si[]]. Because it is not yet in the third level, the procedure
is called again. Then the subindex of the next level, which
is always greater by 1 than the subindex of the previous
level, is generated. This happens only after changing the
level of the procedure. Thus, i [2] is equal to 2 . The sign
is multiplied by the sign of si[2l, and the index of si,21 is
added to the indexl. Then, in the next level, i [3] =
i [2] + 1 is set. The sign is multiplied by the sign of siI3],
and the index of si[3l is added to indexl. Now, being in
the third level, the first spectral coefficient of the third
order is stored. The index of this spectral coefficient is
equal to indexl, and its value is equal to the absolute value
of any spectral coefficient from the first order multiplied
by the variable sign. After that, the index of the spectral
coefficient of the first order that has just been used is sub-
tracted from the indexl, and the sign is multiplied by the
coefficient’s sign. Since i [3] is not yet 5 , it is incremented
and the loop is done again. When i [3] = 5 , this level is
finished and procedure is back in level two. Then i [2] is
incremented and the procedure is called again. The exe-
cution of the recursive procedure continues until all three
subindices i [I] , i [2] , and i [3] have their highest possible
values. All stages of this procedure are shown in Table
V.

C. Algorithm A3: To Generate Order Step by Step
Algorithm A3 is called when the memory allocation for

Algorithm A2 fails. Algorithm A3 needs only enough
memory space for one single spectral coefficient to gen-

FALKOWSKI et al . ' CALCULATION OF RADEMACHER-WALSH SPECTRUM 1221

TABLE V I
GENERATION OF THE FIRST-ORDER A N D DC S P E C T R A L COE,PFICIFNTS

0 0 1 0 0 S" s, SZ S, s4

0 1 0 0 0
10000 XOI I ON 12 0 12 4 4

Fig. 8. Indexes of the first-order coefficients. 0000 DC 31 3 I 3 - 1

x 1xx ON 0 0 16 0 0

10x0 ON 24 4 8 4 0

TABLE V
G F N F R A T I O ~ OF THF INDFWFS OF T H F

P R O C E D L R ~
THIRD O R D E R B Y THF RFCLRVVF

[[I 1 1 I21 1 I31

I 2 3
4
5

3 4
5

4 5
4
5

3

4 5
4 5

2

3

erate one complete order of spectral coefficients. This al-
gorithm is similar to Algorithm A2. One difference is that
no memory is allocated before calling the procedure to
generate the index and the value for each spectral coeffi-
cient. This procedure is almost the same as the procedure
for Algorithm A2. The second difference is that if one
index is obtained, the value of the spectral coefficient for
the whole array of cubes is immediately generated. This
spectral coefficient is stored immediately on the hard disk,
and the next spectral coefficients are calculated.

D. Algorithm A4: To Generate Certain Spectral
Coeficients

In order to generate only certain spectral coefficients
out of the whole spectrum, it is not necessary to create
the indexes. Therefore Algorithm A4 does not use the long
variables used in previously described algorithms to store
the indexes. Since the implementation of the disjoint al-
gorithm has also not been limited to a particular size of
cubes, it is possible to generate separately spectral coef-
ficients for cubes with an arbitrary number of literals. The
literals necessary according to the given index are used
directly in calculating the spectral coefficient in order to
determine the sign of the value of this coefficient. The
value itself is calculated according to the number of X s
in the cube (denoted by the symbol p in Section V). For
an array of cubes, it is simply done for each cube in tum,
and the values are added to get the final value of the spec-
tral coefficient.

VIII. EXECUTION OF WALSH TRANSFORM PROGRAM:
A COMPLETE EXAMPLE

The array of disjoint cubes generated in Example 3 and
used also as an example for Algorithm 2 (see Fig. 3) is
the input data for the execution of the Walsh transform's
program.

-9 3 I 3 - 1

TABLE VI1
GENERATION OF T H E SECOND-ORDER SPECTRAL COEFFICIENTS

XlXX ON 0 0 0 0 0 0
4 4 -4 0 0 XOll ON 0

10x0 ON 4 0 4 4 0 -4
0000 DC 3 - I 3 3 - 1 -5

3 - I 3 3 - 1 -5

It is not shown how the orders of spectral coefficients
are generated because it has already been explained in
Section VI1 (Fig. 5). However, it should be stressed that
in Table I1 the spectrum for each cube is shown sepa-
rately, while using either Algorithm AI or A2 immedi-
ately adds the values of the spectral coefficients of a cur-
rently processed cube to the already calculated values
corresponding to the previous cubes. By using Algorithm
A1 or A2 only one complete order of the spectral coeffi-
cients can be created at a time. In the beginning, the coef-
ficients of the first order as well as the DC coefficient (so)
are generated, as shown in Table VI. After that, the next
consecutive order is generated, as shown in Table VII.
The same is done for the last two orders. The complete
spectrum is shown in Table VIII.

IX. MEMORY A N D TIME REQUIREMENTS FOR WALSH
TRANSFORM PROGRAM

Table IX shows only the generation of the whole spec-
trum for up to 20 literals in each cube. It could be possible
to do this for up to the program maximum, i.e., 32 liter-
als. But even with only 20 literals one needs 3 Mbyte to
store the complete spectrum on a hard disk. This problem
can be partially overcome by using compression algo-
rithms to store the spectrum, but it is inherent to the spec-
tral methods that the number of coefficients grows expo-
nentially.

To compare the processing time dependent on different
arrays of cubes for the Sequent SYMMETRY 27 com-
puter, Table IX is shown below.

The meaning of the abbreviations in Table IX is as fol-
lows (all values are in seconds):

first indexes are generated from the first order
(Algorithm A2),

previous indexes are generated from the previous or-
der (Algorithm Al) ,

U elapsed user time,
Y elapsed system time.

1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. IO, OCTOBER 1992

TABLE VI11
COMPLETE RADEMACHER-WALSH s SPECTRUM OF FOUR-VARIABLE BOOLEAN FUNCTION

s2 s3 s4 s13 s14 s23 s34 s123 S I 2 4 SI34 &34 s1234
~

-16 3 7 3 - 1 3 - 1 3 3 - 1 -5 - 1 3 - 1 -5 - 1

TABLE IX
EXECUTION TIMES

SYMMETRY 27

Literals Type Previous First

16
16
18
16
18
20
20
18
20

xx
1x
xx
1 1
1x
xx
1x
1 1
1 1

6 . 3 ~ 0 .7s
8 . 9 ~ 0 . 9 s

2 7 . 1 ~ 3.1s
7 9 . 1 ~ 6 .0s
3 5 . 1 ~ 3.8s

111.511 21.3s
137.811 26.0s
339.5u 33.9s

1458. lu 69.9s

9.9u
2 1 . 7 ~
37.4u
46.511

106. lu
1 4 8 . 2 ~
4 3 5 . 2 ~
182.711
1 3 2 . 2 ~

1.8s
3.8s
2.8s
7.8s
4 .5s

32.4s
110.2s
12.4s

144.0s

The first column of the table shows the number of lit-
erals per cube. Each array consists of ten cubes of the
same type, where the type is determined in the second
column of the table (XX-cube contains many Dc-literals,
1X-cube contains some Dc-literals, 1 1-cube contains no
Dc-literals). In order to obtain time data, a set of such
examples has been tested. The time values are sorted ac-
cording to their length.

Table IX shows one reason why different algorithms
have been implemented for the generation of the whole
spectrum. It has been illustrated that any no single algo-
rithm, other than the one generating single coefficients,
can give a solution for all cases while the combination of
algorithms always gives the solution (the usage of the
“worst case” single coefficient algorithm for every data
would be inefficient).

The following conclusions can be derived from the ob-
tained data.

One can observe that the calculation of cubes with
many X s is much faster than with a small number of
X S .

The algorithm that generates the spectral coefficients
out of the previous order is up to three times faster
for cubes having many Xs, while the algorithm to
generate the spectral coefficients out of the first order
is up to two times faster for generating cubes that
have few Xs.
By comparing the obtained results with the ones
given in [51] (where the calculation of the spectrum
for the function represented in the form of the truth
table and of 18 literals took 382 s on VAX 11/780),
one can observe that for the given cases our program
is several times faster. A timinghynthesis compari-
son with SPECSYS is not possible since the detailed
SPECSYS data have not been published. The SPEC-
SYS program has not been made available to the au-
thors.

Our preprocessing algorithm to generate disjoint
cubes takes only insignificant time (less than 1 s) for
all tested cases. Therefore, the time presented in Ta-
ble IX is the total processing time, which includes
the time for the preprocessing. By contrast, the pre-
processor for the algorithm of [51], ‘[54] to create
truth tables of Boolean functions takes a substantial
amount of computer memory, and no time data has
been published on it.

A. Memory Analysis
The memory requirement to calculate spectra is the

most important factor. Because of that requirement, the
existing algorithms according to Fast Transforms (Fast
Algorithms) could compute only the spectrum for func-
tions with up to 20 literals. The notation in this section is
according to [56].

The basic memory is the same for the introduced Al-
gorithms A1 , A2, and A3 for the calculation of the Walsh
spectrum, and has to store the array of cubes, the program
itself, and the necessary number of coefficients.

The maximal memory requirement to store the array of
cubes is given by the number of ON- or ON/DC minterms
which specify the function. Usually, the function is rep-
resented by cubes that are larger than minterms. Hence,
cu I 2‘, where cu is the number of cubes and 1 denotes
the number of literals. It was shown in [3] that the number
of cubes cu is much smaller than 2l for practical functions.
In the implementation, eight literals are stored in one in-
teger variable. Hence, the following memory is necessary
to hold the array of cubes:

(2 bytes 1 I 8

4 bytes

6 bytes

8 I 1 I 16

16 I 1 I 24
cu x 1

\S bytes 24 I 1 I 32.

The program itself uses about 50 kbytes of computer
memory. Fig. 9(a) compares the number of spectral coef-
ficients (nc) that have to be kept in the computer memory
to generate a complete spectrum for three different algo-
rithms (Al , A2, A3) and for the Fast Algorithms. The
formulas describing nc that have to be kept in the com-
puter memory are shown in Fig. 5 . In the case of Fast
Algorithms, nc = 2l is needed (Fig. 9(a)). To store the
value of one spectral coefficient 4 bytes are used because
each value is stored in a long variable.

If there is not enough memory left during an execution
of the program, the Algorithm A3 is used. This means
that only the memory for one single spectral coefficient is
necessary. Thus, the program is only limited by the mem-

FALKOWSKI et al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM 1223

nc

TABLE X

10 const 1 1 const

1 0 . 3 ~ 0.000 2929 0 . 7 ~ 0.000 3418
2 0.su 0.000 2441 I . l u 0.000 2686

4 S I .2u 0.000 2344 2.su 0.000 2441
10 2 . 3 ~ 0.000 2246 4.9u 0.000 2393
so 1 I .su 0.000 2246 2 3 . 3 ~ 0.000 2275 2

nc
A

1 2 3 4 5 1
cient directly from the cube representation without
reference to its contribution to the current spectral coef-
ficient calculated. Thus, the time increases according to
the number of literals (I) in the function as well as the

(b)

number of cubes (c): 1 0 i :I;;;;;*
2

1 2 3 4 5 1 1 2 3 4 5 1

(C) (d)
Fig. 9. Memory requirements (nc X 4 bytes). (a) Existing algorithms. (b)
Algorithm A I . (c) Algorithm A2. (d) Algorithm A3. I : number of literals;
nc: number of coefficients.

necessary to store the array of cubes and the program it-
self. The memory requirements m (1) are given by

(30) m (Z) = U (50 kbytes + (2' - 1) x 8 bytes)

g(Z, c) = const x 2' x c (33)
where g (I , c) gives the time (in seconds) depending on
the number of literals and cubes, and const is the neces-
sary time to calculate the value of one spectral coefficient
for a cube consisting of one literal. Hence, the function
g (I , c) gives an upper bound for the actual processing time
f (L c):

f (L c) = o (g (L c)) (34)

To evaluate the constant const, the time values g (I , c)
shown in Table X have been used.

The first column in the table indicates the number of
disjoint cubes c, and the first row the number of literals I
for which the spectrum has been calculated. In the second
and third columns, the value of const is given. The ob-
tained value is 0.000 2246 < const < 0.000 3418, where
for a small number of cubes the calculation of the index
of the spectral coefficient itself has a larger contribution
to const. Then, the approximate value for const = 2- 1 2 .

Thus, the upper bound time for the implemented algo-
rithm is:

g(Z, c) = 2'-12 x c. (35)

The advantage of the Algorithm A1 and A2 in the pro-
cessing time is shown in Fig. 10.

For the graphic in Fig. 10, the better time of either Al-
gorithm A2 or A1 has been used. The processing time for
the different kinds of cubes can be given as

m(l) = U 50 kbytes + (2' - l) x 8 bytes

fn(L c) = 81 (f i x (L c)) = e*(fll(L c)) (36)

where the subscript o f f denotes the type of cubes and f
was defined in (34).

Because the basic part of Algorithms A l , A2, and A3
is similar and the algorithms are performed for each type
of cubes, their relative processing times are distinguished
only by a constant. Thus, function 9 depends only on the
number of Dc-literals in the cubes. This is caused by the
fact that this number determines how many operations the
algorithms must perform.

X . CONCLUSION A N D FUTURE WORK
The essential relationships between classical and spec-

tral methods used in the design of digital circuits have
been stated. Based on these relations, new algorithms for

(
+ [(n : l) + (n ; : 1)] x 4 b y t e . j

(32)

where 50 kbytes is the memory required for the program
and (2' - 1) means that the function is represented by all
but one minterm. Formula (31) applies for even n , (32)
for odd n .

B. Time Analysis
To estimate the execution time for the implementation

of the Walsh transformation, Algorithm A3, which rep-
resents the upper bound, has been used. This is a straight-
forward algorithm that calculates every spectral coeffi-

1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11 , NO. 10, OCTOBER 1992

upper bound determined
by algorithm A3 I

/
12 14 16 18 20 literals

0 typexx Ls type1x v t y p e l l
Fig. 10. Time comparison of Algorithm A3 versus A2 and A l .

the generation of spectral coefficients for both S and R
spectra for completely as well as incompletely specified
Boolean functions have been shown. The graphical
method for the calculation of spectral coefficients directly
from a Kamaugh map is a powerful and efficient tool for
functions with the number of variables less than or equal
to six. Alternative formulas for the calculation of sI and
r, spectral coefficients have also been presented. Such de-
tailed interpretations of R and S spectra of Boolean func-
tions are important not only from the point of view of
analysis and synthesis of digital systems, but also for the
generation of tests and design for testability.

A new, efficient algorithm and its implementation for
the generation of spectral coefficients have been de-
scribed. The computer method for performing this algo-
rithm has been implemented in the DIADES automation
system developed at Portland State University. The
SPECSY S (for SPECtral Synthesis System) developed at
Drexel University on VAX 11/780 uses the Fast Walsh
Transform for the calculation of the spectrum and can only
process Boolean functions having up to 20 input variables
[51], [54]. The DIADES program has no limit on the
number of input variables of Boolean functions and it ap-
plies the methods described in this article for the genera-
tion of spectral coefficients of Boolean functions.

The authors of SPECSYS program [54] have encoun-
tered the disadvantages listed below while using Fast al-
gorithms for calculating Walsh spectra. By implementing
the approach described in this paper, the DIADES system
successfully overcomes most of these disadvantages.

The first disadvantage of SPECSYS, one which causes
the use of excessive computer memory, is that the com-
putation of the Walsh spectrum requires the representa-
tion of the Boolean function in the form of a truth table

composed of minterms. In DIADES, by contrast, the
spectrum is generated directly from the reduced represen-
tation of Boolean functions (arrays of disjoint cubes) [2],
[8], [46]. Since the number of such cubes can be consid-
erably smaller than the number of minterms, the memory
requirements can be reduced significantly. The advan-
tages of this kind of representation, especially the fact
that for practical functions the number of disjoint cubes
is much smaller than the number of minterms, result from
[3]. It is also evident from Table I that the number of
disjoint cubes of the presented functions is much smaller
than the number of their minterms.

The second disadvantage of SPECSYS is that all spec-
tral coefficients must be calculated at once. In our ap-
proach, the entire spectrum, if required, can be computed
incrementally for groups of coefficients. Therefore our
computer method is very efficient for the calculation of
only the few selected spectral coefficients, which is all
that is needed in many synthesis methods [4], [lo], [21]-
1261, [311-[351, 13819 [481, [491, [531, [551.

The third disadvantage of SPECSYS is that it can use
only completely specified Boolean functions. DIADES
operates on systems of both completely and incompletely
specified Boolean functions. The other advantages of the
algorithms implemented in DIADES have been described
in the article. The only drawback of the DIADES ap-
proach is the exponential growth of hard disk storage re-
quirements with the increase in the number of coeffi-
cients. This is inherent to the nature of the problem. In
SPECSYS the storage requirements are even worse, since
it uses only internal memory. The implementation of the
described algorithm allows the calculation of the spec-
trum for completely and incompletely specified Boolean
functions having up to 32 variables. Since our system can
calculate coefficients either by groups or separately, in the
worst case it requires only enough memory to hold the
first order spectral coefficients. The n I 32 constraint re-
fers to the generation of either a complete order or the
whole spectrum. It should be noticed, however, that even
for the cases when n is limited, it can be increased when
a list structure that describes the indexes (see Property
3.5) is created. With such a list, the spectrum of a
Boolean function having an arbitrary number of variables
can be calculated, the only limitation being the memory
available on the hard disk. When the coefficients are cal-
culated separately, even with the current implementation,
there is no limit on n since the coefficients can be stored
in groups on the hard disk. This is, however, traded off
for the increased processing time. When the whole spec-
trum is not required, the algorithm can calculate chosen
spectral coefficients for Boolean functions of an arbitrary
number of variables. The results presented in the article
show that our system is currently the fastest and most
flexible spectral synthesis system designed.

Computer algorithms similar to the one presented in this
article have already been developed for the newly intro-
duced Generalized Arithmetic and Adding transforms
[1 11, Walsh-type transforms of completely and incom-

FALKOWSKI er al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM 1225

pletely specified multiple-valued input binary functions
[12], and the Reed-Muller transform [17]. The decom-
position and linearization methods for the spectra of sys-
tems of incompletely specified Boolean functions with
Restriction 1 are presented in 1251. A suggested goal for
future research is the development of new decomposition
and linearization methods for systems of arbitrary Bool-
ean functions. One possible approach to this problem is
to apply the known methods of [25] to STOTON and STOTDc

in turn. More investigations are needed in this area.
The fundamental formulas presented in Section I1 are

very useful when used for the investigation of new trans-
forms, relations among various transforms, and the rela-
tionships between classical logic analysis and synthesis
methods and spectral methods, especially when one at-
tempts to explain the meaning of new concepts using well-
established notions. Understanding these principles gives
us the working tool to translate in both directions the no-
tions of classical and spectral theories, design of new
hardware realizations for various transforms (including
also those that are different from Walsh type), testing pro-
cedures, and synthesis methods.

The interpretations and algorithms, analogous to those
presented in Section 11, for only sI and rI spectral coeffi-
cients can be derived in a similar way for the weighted
sum of the spectral coefficients as well as for the autocor-
relation function of the Boolean function [34], [48], [49].
Both these parameters of Boolean functions have been
found very useful in testing. For example, the testing of
programmable logic arrays by the weighted sum of spec-
tral coefficients provides 100% coverage of all single
stuck-at faults and very high coverage of multiple-faults
1481 *

The research summarized here will have an impact of
the application of Boolean and multiple-valued input logic
not only in the synthesis, analysis, and testing of digital
circuits but in areas of pattern recognition and signal pro-
cessing as well. The goal of future research is to develop
new decomposition methods for systems of incompletely
specified Boolean functions based on the representation
of the Rademacher-Walsh spectrum presented. The prop-
erties of such decompositions make them very suitable for
design using FPGA’s 1.541. A major advantage of the ap-
proach to Walsh-spectrum calculation presented here is its
convenience for computer implementation and its ability
to yield solutions to problems of very high dimensions.

ACKNOWLEDGMENT

The authors wish to especially thank the anonymous
referees for numerous helpful comments.

REFERENCES

[I] K. G. Beauchamp, Applications of Walsh and Relared Funcrions.
New York: Academic, 1984.

121 R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangio-
vanni-Vincentelli, Logic Minimization Algorithmsfor VLSI Synrhesis.
Hingham, MA: Kluwer Academic, 1985.

131 M. J. Ciesielski. S. Yang, and M. A. Perkowski, “Minimization of
multiple-valued logic based on graph coloring,” Tech. Rep. TR-CSE-
90.13, Dep. Elect. Comp. Eng., Univ. of Massachusetts. Amherst,
Sept. 1990. (Earlier version of this paper appeared as: “Multiple-
valued minimization based on graph coloring,” in Proc. IEEE I n r .
Con$ on Computer Design: VLSI in Computers L Processors, pp.
262-265, 1989.)

141 T. Damarla and M. G. Karpovsky, “Reed-Muller spectral techniques
for fault detection,” IEEE Trans. Compur.. vol. 38. pp. 788-797,
June 1989.

[5] P. Davio, J . P. Deschamps, and A. Thayse, Discrete and Swirchirig
Functions.

[6] R. C. Debnath and A. K. Karmakar. “Method for finding Rade-
macher-Walsh spectral coefficients of Boolean functions,” Int. J .
Electron.. vol. 60, pp. 245-250, Feb. 1986.

[7] E. Detjens, “FPGA devices require FPGA-specific synthesis tools,”
Conipurer Design, p. 124, Nov. 1990.

[8] D. L. Dietmayer. Logic Design of Digital Systems. Boston, MA:
Allyn and Bacon, 1978.

[9] C. R. Edwards, “The application ot’ the Rademacher-Walsh trans-
form to Boolean function classification and threshold logic synthe-
sis,” IEEE Trans. Comput., vol. C-24. pp. 48-62, Jan. 1975.

[I O] E. Eris and J. C. Muzio. “Spectral testing of circuit realizations based
on linearizations,” Proc. IEE Comput. L Digital Tech., vol. 133.
pp. 73-78, 1986.

[1 I] B. J. Falkowski and M. A. Perkowski. “One more method for the
calculation of Hadamard-Walsh spectrum for completely and incom-
pletely specified Boolean functions,’’ Int . J . Electron.. vol. 69, no.

[I21 -, “Algorithms for the calculation of Hadamard-Walsh spectrum
for completely and incompletely specified Boolean functions,” in
Proc. 91h IEEE Int. Phocwix Cont on Computers and Communicu-
r ims , Scottsdale, AZ. pp. 868-869, Mar. 1990.

[131 -, “Essential relations between classical and spectral approaches
to analysis, synthesis, and testing of completely and incompletely
specified Boolean functions,” in Proc. 23rd IEEE Inr. Symp. on Cir-
cuils and Systerns, New Orleans, LA, pp. 1656-1659, May 1990.

1141 -, “A family of all essential radix-2 additionisubtrdction multi-
polarity transforms: algorithms and interpretations in Boolean do-
main.” in Proc. 23rd IEEE In / . Symp. on Circuirs and Systems, New
Orleans, LA, pp. 2913-2916, May 1990.

[151 -, “Algorithm and architecture for Gray code ordered fast Walsh
transform,” in Proc. 23rd IEEE In t . Symp. on Circuits and Sysrems,
New Orleans, LA, pp. 1596-1599. May 1990.

[161 -, “Walsh type transforms for completely and incompletely spec-
ified multiple-valued input binary functions,” in Proc. 20th IEEE Int.
Symp. on Multiple-valued Logic, Charlotte, NC, pp. 75-82, May
1990.

[I71 -, “On the calculation of generalized Reed-Muller canonical
expressions from disjoint cube representation of Boolean functions.”
in Proc. 33rd Midwest Symp. on Circuits and Systems, Calgary, Al-
berta, pp. 1131-1134, Aug. 1990.

[I81 B. J . Falkowski. I . Schifer. and M. A. Perkowski, “A fast computer
algorithm for the generation of dis.joint cubes for completely and in-
completely specified Boolean functions,” in Proc. 33rd M i d w . s r
Syrnp. on Circuirs and Sysrerns. Calgary, Alta., Canada. pp. 1 1 19-
1122, Aug. 1990.

191 M. Helliwell and M. A. Perkowski, ”A fast algorithm to minimize
multi-output mixed-polarity generalized Reed-Muller forms,” in
Proc. 25th ACMIIEEE Design Automation Conf., Anaheim, CA, pp.
427-432, Jun. 1988.

[20] D. Green, Modern Logic Design. Wokingham, MA: Addison-Wes-
ley, 1986.

1211 T. Hsiao and S . C. Seth, “An analysis of the use of Rademacher-
Walsh spectrum in compact testing,” IEEE Trans. C o n p i t . , vol.
C-33, pp. 934-938, Oct. 1984.

[22] S . L. Hurst, The Logical Processing of’Digital Signals. New York:
Crane-Russak. 1978.

1231 S . L. Hurst, D. M. Miller. and J . C. Muzio, Spectral Techniquc,s in
Digiral Logic.

1241 S. L. Hurst, “Use of linearization and spectral techniques in input
and output compaction testing of digital networks,” in Proc. IEE
Compuf. L Digital Tech., vol. 136. pp. 48-56. Jan. 1989.

1251 M. G. Karpovsky, Finite Orthogonml Series in Design of Digitul D e
vices. New York: Wiley, 1976.

[26] M. G. Karpovsky, ed., Specrrul Techniques and Fuult Detection.
Orlando, FL, Academic. 1985.

New York: George and McGraw-Hill, 1978.

5, pp. 595-602. NOV. 1990.

London, U.K.: Academic, 1985.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 10, OCTOBER 1992

B. W. Kemighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.
H. Landman, “Logic synthesis at Sun,” IEEE Conference Paper,

R. Lechner, “Harmonic analysis of switching functions,” in Recent
Developments in Switching Theory. A. Mukhopadhyay, Ed., New
York: Academic, 1971.
A. M. Lloyd, “Spectral addition techniques for the synthesis of mul-
tivariable logic networks,” Proc. IEE Comput. & Digital Tech., vol.

A. M. Lloyd, “Design of multiplexer universal-logic-module net-
works using spectral techniques,” Proc. IEE Compur. & Digital
Tech., vol. 127, pp. 31-36, 1980.
P. K. Lui and J. C. Muzio, “Spectral signature testing of multiple
stuck-at faults in irredundant combinational networks,” IEEE Trans.
Comput., vol. C-35, pp. 1088-1092, Dec. 1986.
D. M. Miller and J. C. Muzio, “Spectral fault signatures for single
stuck-at faults in combinational networks, ” IEEE Trans. Comput.,

D. M. Miller, ed., Developments in Integrated Circuit Testing.
London, UK: Academic, 1987.
J . C. Muzio and S. L. Hurst, “The computation of complete and
reduced sets of orthogonal spectral coefficients for logic design and
pattern recognition purposes,” Comput. & Elect. Eng., vol. 5, pp.

J. C. Muzio, “Composite spectra and the analysis of switching cir-
cuits,” IEEE Trans. Comput., vol. C-29, pp. 750-753, 1980.
I . C. Muzio, D. M. Miller, and S. L. Hurst, “Number of spectral
coefficients necessary to identify a class of Boolean functions,” Elec-
tron. Lett., vol. 25, pp. 577-578, 1982.
I . C. Muzio and D. M. Miller, “Spectral fault signatures for inter-
nally unate combinational networks,” IEEE Trans. Compur., vol.

L. Nguyen, M. Perkowski, and N. Goldstein, “PALMINI-fast Bool-

CH2686-4/89/0000/0469, 1989.

125, pp. 152-164, 1978.

vol. C-33, pp. 765-768, Aug. 1984.

231-249, 1978.

C-32, pp. 1058-1062, 1983.

ean minimizer for personal computers,” in Proc. 24th ACM/IEEE
Design Automation Conference, pp. 615-621, 1987.

[40] M. A. Perkowski, M. Driscoll, J. Liu, D. Smith, J. Brown, L. Yang,
A. Shamsapour, M. Helliwell, B. Falkowski, and A. Sarabi, “Inte-
gration of logic synthesis and high-level synthesis into the Diades
design automation system,” in Proc. 22nd IEEE Int. Symp. on Cir-
cuits & Systems, Portland, OR, pp. 748-751, 1989.

[41] M. Perkowski, M. Helliwell, and P. Wu, “Minimization of multiple-
valued input multi-output mixed-radix exclusive sums of products for
incompletely specified Boolean functions,” in Proc. 19th Int. Symp.
on Multiple-Valued Logic, pp. 256-263, 1989.

[42] M. A. Perkowski, P. Dysko, and B. J. Falkowski, “Two learning
methods for a tree-search combinatorial optimizer,” in Proc. 9th IEEE
Int. Phoenix Conf. on Computers & Communications, Scottsdale, AZ,
pp. 606-613, Mar. 1990.

[43] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Commun. ACM, vol. 44, pp. 668-676, June 1990.

[44] S. M. Reddy, “Easily testable realizations for logic functions,” IEEE
Trans. Comput., vol. C-21, pp. 1183-1188, Nov. 1972.

[45] B. R. K. Reddy and A. L. Pai, “Reed-Muller transform image cod-
ing,” Computer Vision, Graphics, and Image Processing, vol. 42,

[46] J. P. Roth, Computer Logic, Testing and Verification. Potomac,
MD: Computer Science Press, 1980.

[47] J. M. Sanchez, J. Ballesteros, and A. Vaquero, “Study of the com-
plexity of an algorithm to derive the complement of a binary func-
tion,” Inc. J . Electron., vol. 66, pp. 245-250, 1989.

[48] M. Serra and J. C. Muzio, “Testing Programmable Logic Arrays by
sum of syndromes,” IEEE Trans. Comput., vol. C-36, pp. 1097-
1101, Sept. 1987.

[49] M. Serra and J. C. Muzio, “Space compaction for multiple-output
circuits,” IEEE Trans. Computer-Aided Design, vol. 7, pp. 1105-
11 13, Oct. 1988.

[50] V. H. Toknien, “Disjoint decomposability of multi-valued functions
by spectral means,” in Proc. IEEE Int. Symp. on Multiple-Valued

[51] E. A. Trachtenberg and D. Varma, “A design automation system for
spectral logic synthesis,” in Proc. Inc. Workshop on Logic Synthesis,
Research Triangle Park, NC, May 12-15, 1987.

pp. 48-61, 1988.

Logic, pp. 88-93, 1980.

[52] E. A. Trachtenberg, “Designing standard computer components us-
ing spectral techniques,” in Proc. IEEE Int. ConJ on Comp. Design:
VLSI in Computers & Processors, pp. 630-633, 1987.

[53] D. Varma and E. A. Trachtenberg, “A fast algorithm for the optimal
state assignment of large finite state machines,” in Proc. IEEE Inc.
Conf. on Computer-Aided Design, Santa Clara, CA, pp. 152-155,
1988.

[54] -, “Design automation tools for efficient implementation of logic
functions by decomposition,” IEEE Trans. Computer-Aided Design,

[55] -, “On the estimation of logic complexity for design automation
applications,” in Proc. IEEE Int. Con$ on Computer Design: VLSI
in Computers & Processors, pp. 368-371, Cambridge, MA, Sept.

Englewood Cliffs, NJ:

vol. 8, pp. 901-916, Aug. 1989.

17-19, 1990.
[56] H. S. Wilf, Algorithms and Complexity.

Prentice-Hall, 1986.

Bogdan J. Falkowski (S’88-M’90) received the
M.S.E.E. degree from Technical University War-
saw, Poland, and the Ph.D. degree from Portland,
OR, State University.

His industrial experience includes research and
development positions at several companies from
1978 to 1986. He then joined the Electrical and
Computer Engineering Department at Portland
State University. In 1992, he became a senior lec-
turer in the School of Electrical and Electronic
Engineering, Nanyang Technological University,

Singapore. His research interests include VLSI systems and design, switch-
ing circuits, testing, design of algorithms, design automation, digital sig-
nal, and image processing. He specializes in the design of digital circuits
with the use of spectral methods and has published 15 articles in this area.

Dr. Falkowski is a member of Eta Kappa Nu and Pi Beta Upsilon.

Ingo Schafer received the M.S. degree in electri-
cal engineering from Portland State University,
OR, in 1990. He is currently working toward the
Ph.D. degree.

His research interests include logic synthesis,
signal and image processing, and harmonic anal-
ysis OF switching functions.

Marek A. Perkowski (M’84) was born in War-
saw, Poland, on October 6, 1946. He received the
M.S. degree in electronics (automatic control) in
1970, and the Ph.D. degree in automatics (digital
systems) in 1980, from Technical University of
Warsaw.

He was an Assistant Professor at Technical
University of Warsaw from 1980 to 1981, a Vis-
iting Assistant Professor at the University of Min-
nesota from 1981 to 1983 and, since 1983, an As-
sociate Professor of Electrical and Computer

Engineering at Portland State University.
He had summer professor positions with GTE Labs, Intel Scientific

Computers, and Sharp Microelectronics Technology, and is a consultant to
Cypress Semiconductor Corp. He was a co-author of three books, five book
chapters, and over 100 technical articles in design automation, computer
architecture, Artificial Intelligence, Image Processing, and robotics. His
recent research interests include designing Finite State Machines in Field
Programmable Gate Arrays, and building a computer system for ovulation
prediction.

Dr. Perkowski is a founding member of Polish Informatics Society.

