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Effective Computer Methods for the Calculation of 
Rademacher-Walsh Spectrum for Completely and 

Incompletely Specified Boolean Functions 
Bogdan J. Falkowski, Member, JEEE, Ingo Schafer, and Marek A. Perkowski, Member, JEEE 

Abstract-A theory has  been developed to calculate the Ra-  
demacher-Walsh t ransform f rom a cube a r r a y  specification of 
incompletely specified Boolean functions. T h e  importance of 
representing Boolean functions a s  a r r a y s  of disjoint ON- a n d  
Ix-cubes has  been pointed out ,  a n d  a n  efficient new algori thm 
to generate  disjoint cubes f rom nondisjoint ones has  been de- 
signed. The  t r ans fo rm algori thm makes use of the  propert ies  
of an  a r r a y  of disjoint cubes and  allows the  determinat ion of 
the spectral coefficients in a n  independent way. The  programs 
for  both algorithms use advantages of C language to speed u p  
the execution. The  comparison of different versions of the  al- 
gorithm has been carr ied out .  T h e  presented algorithm a n d  its 
implementation is the fastest a n d  most comprehensive program 
(having many options) known t o  us for  the calculation of Ra-  
demacher-Walsh t ransform.  I t  successfully overcomes all 
drawbacks  in the  calculation of the t r ans fo rm f rom the  design 
automation system based on spectral  methods-the SPECSYS 
system f rom Drexel University tha t  uses Fast Walsh Trans -  
form.  

Index Terms-Algorithms, Rademacher-Walsh  t ransform,  
Spectral coefficients, Logic design, C u b e  calculus, Ar ray  of dis- 
joint  cubes, Sum-of-products expression, Completely and  in- 
completely specified Boolean functions, S t anda rd  trivial  func- 
tions, Or thogonal  functions. 

I. INTRODUCTION 
N DIGITAL logic design, spectral techniques have been I used for more than 30 years. They have been applied to 

Boolean function classification [9], 1221, 1231, [36], 1371, 
disjoint decomposition 1231, [50]-[52], [54], parallel and 
serial linear decomposition [lo], 1221-1251, [51], [52], 
1541, spectral translation synthesis (extraction of linear 
pre- and post-filters) 1101, [24]-1261, [28], 15 11, 1521, 
[54], multiplexer synthesis 1231, [3 13, prime implicant 
extraction by spectral summation 1231, [26], 1281, 1291, 
threshold logic synthesis [9], 1221, [25], logic complexity 
[25], [55] and state assignment 1251, 1531. Spectral meth- 
ods for testing of logical networks by verification of the 
coefficients in the spectrum have been developed [lo], 
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1211, 1231, 1241, [261, [321-[351, 1381, 1481, 1491. It 
should be stressed that an important problem of finding 
the complement of a Boolean function that has high com- 
plexity in the Boolean domain [2], [47] can be solved very 
easily in the spectral domain because complementing the 
Boolean function corresponds to changing the sign of 
every spectral coefficient [22], [23]. Tautology of a Bool- 
ean function can be verified by calculating a certain coef- 
ficient (DC coefficient). The problem of constructing op- 
timal data compression schemes by spectral techniques has 
also been considered. The latter approach is very useful 
for compressing test responses of logical networks and 
memories 1241, [26], [48], (491. The renewed interest in 
applications of spectral methods in logic synthesis is 
caused by their excellent design for testability properties 
and the possibility of performing the decomposition with 
gates other than the ones used in most classical ap- 
proaches. Another area of application is signal process- 
ing, especially image processing and pattern analysis [ 13, 
1261, [35], 1451. Spectral techniques have also been used 
for data transmission, especially in the theory of error- 
correcting codes and for digital filtering 1261. 

Two design automation systems have used spectral 
methods as the tool for designing digital circuits 1401, 
[51], 1521, [54], 1551. Computation of the spectrum is a 
complex operation that requires, in the general case, n2" 
operations of additions/subtractions when the Fast Walsh 
Transform [ l ]  is used and the Boolean function has IZ in- 
put variables. In order to store the calculated spectrum, 
2" memory locations are required [ l ] ,  1231. The SPEC- 
SYS (for SPECtral Synthesis System) developed at Drexel 
University on VAX 11/780 uses the Fast Walsh Trans- 
form [I ]  for the calculation of the spectrum and can pro- 
cess Boolean functions having a maximum of 20 input 
variables [5 I], [54]. The DIADES design automation sys- 
tem developed at Portland State University [40] does not 
have any limit on the number of input variables of Bool- 
ean functions that can be processed and uses the methods 
described in this article for the generation of spectral coef- 
ficients of Boolean functions. 

Logic synthesis for recently developed field-pro- 
grammable gates arrays (FPGA's), gate arrays, and PLD's 
creates new requirements for design automation systems 
because of fundamental architectural differences with re- 
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spect to existing technologies. A high demand exists for 
the methods that produce circuit realizations with EXOR 
gates [7], [28]. “A four-input XOR (in Xilinx 2000 Logic 
Cell Arrays) uses the same space and is as fast as a four- 
input AND gate. - - * Logic design for Xilinx devices is 
therefore limited by fan-in-not by logic complexity as in 
PLD’s” quoted from [7]. “Any system which flattens 
functions into 2-level AND-OR form, or which factors based 
on the “unate paradigm” (as do MIS-11, BOLD, and Syn- 
opsys), is going to have problems with strongly non-unate 
functions like parity, addition, or multiplication. Since 
these sorts of functions occur frequently in real designs, 
synthesis tools need reasonable ways of handling them” 
quoted from [28]. 

The DIADES design automation system methodology 
is oriented towards detecting the linear (EXOR) part of a 
Boolean function. It uses, among others, spectral methods 
to detect EXOR parts of a Boolean function. Since the 
DIADES system uses spectral methods together with the 
programs based on the “unate paradigm,” it can easily 
handle not only functions close to strongly unate but 
strongly non-unate ones as well. The decomposition of 
Boolean functions with both pre- and post-linear parts by 
spectral means leads to highly testable circuit realizations 
that can be efficiently implemented in several technol- 
ogies (LHSSOI from Signetics, 2000/3000 Logic Cell Ar- 
rays from Xilinx, and some EPLD’s with EXOR gates). 
Only spectral methods currently allow for this kind of de- 
composition [25], [54]. 

In this paper, the main emphasis is placed on the effi- 
cient computer calculation of the Rademacher-Walsh 
spectrum of Boolean functions since this particular order- 
ing of Walsh transforms is frequently used for logic de- 
sign [l], [6], [9], [lo], [22]-[26]. The ordering of Walsh 
transforms describes the sequence in which Walsh func- 
tions are placed in the transform matrix. There are two 
Rademacher-Walsh spectra of Boolean functions, and 
these are known in the literature under the names of R and 
S spectra [6], [9], [11]-[13], [22]-[26]. In the following 
material, these spectra are referred to by symbols R and 
S. The particular coefficients from these spectra are re- 
ferred to as ri and s[, where symbol I is called an index 
and is used to denote any spectral coefficient from a given 
spectrum. Both spectra are formed as the product of a 2” 
X 2” Rademacher-Walsh transform matrix Tand a 2” vec- 
tor representation of a Boolean function F (vector repre- 
sentation of a truth table) [25], [29]. The truth vector for 
spectrum R is coded by its original values: 0 for false min- 
terms (minterms that haye logical values 0 ) ,  1 for true 
minterms (minterms that have logical values I), and 0.5 
for don’t care minterms (minterms for which the Boolean 
function can have an arbitrary logical values 0 or 1). In 
the case of S spectrum the true minterms are denoted by 
- 1, false minterms by + 1, and don’t care minterms by 
0. 

This paper shows two new merhods for the calculation 
of the Rademacher-Walsh spectrum of incompletely 
specified Boolean functions. Both these methods can cal- 

culate a Walsh spectrum of any ordering since the algo- 
rithms are independent of the ordering of the spectral coef- 
ficients. Since a direct linear relationship exists between 
the R and S spectra described in the next section, then this 
article uses mainly the S spectrum. The first method, 
which allows calculation of the spectrum directly from a 
Karnaugh map, is introduced here for better understand- 
ing of the meaning of spectral coefficients in classical logic 
terms. The second method has been implemented in the 
DIADES automation system [40]. 

This paper resolves many important issues conceming 
the efficient application of spectral methods in computer- 
aided design of digital circuits. The main obstacle in these 
applications was, up to now, memory requirements for 
computer systems. By using the algorithms presented in 
this article this obstacle has been overcome. Moreover, 
the methods presented in this article can be regarded as 
representative of a whole family of methods, and the ap- 
proach presented can be easily adapted to other trans- 
forms used in digital logic design. For example, the ad- 
aptation of the first method for Adding and Arithmetic 
Transforms was described in [ 141, while the adaptation of 
the second method for Reed-Muller Transform was pre- 
sented in 1171. Both methods are also universal for mul- 
tiple-valued binary functions and the extension of the j r s t  
method for such functions was presented in [16]. 

The advantages of the approach presented were pos- 
sible due to new insight and the formulation of spectral 
techniques. By investigating the links between spectral 
techniques and classical logic design methods, this inter- 
esting area of research is presented in a simple manner. 
The real meaning of spectral coefficients in classical logic 
terms (such as minterms and cubes) is shown. An algo- 
rithm is presented to ease the calculation of spectral coef- 
ficients for completely and incompletely specified Bool- 
ean functions by manipulations directly on Kamaugh 
maps. All the mathematical relationships between the 
number of true, false, and don’t care minterms and spec- 
tral coefficients, as well as between the size of disjoint 
cubes and spectral coefficients, are stated. 

One of the drawbacks of spectral techniques is that 
practically all the existing algorithms for calculating the 
spectral coefficients start from a Boolean function, rep- 
resented either as a list of true minterms (alternatively- 
a list of false minterms) [22], [23], [25], [26], [51], [52], 
[54] or as an already minimized sum-of-products Boolean 
expression (SOPE) [23], 1351. The algorithm presented 
overcomes this weakness by representing a completely 
specified Boolean function as a set of disjoint cubes that 
completely covers this function. A disjoint cube represen- 
tation of a Boolean function (called “a disjoint cover” 
and generated from a minimized SOPE) was used to cal- 
culate the “autocorrelation” of a Boolean function in 
[54]. By using a nonunique disjoint-cube representation 
of a Boolean function, each spectral coefficient can be cal- 
culated separately or all the coefficients can be calculated 
in parallel. These advantages are absent in the existing 
methods. The possibility of calculating only some coef- 



FALKOWSKI et al. : CALCULATION OF RADEMACHER-WALSH SPECTRUM I209 

ficients is very important since there are many spectral 
methods in digital logic design for which the values of 
only a few selected coefficients are needed. Some exam- 
ples of such cases in which the entire spectrum need not 
be computed are: Walsh and Reed-Muller spectral tech- 
niques for fault detection [4], [ lo], [2 11, [23], [24], [26], 
[32]-[34], [38], [48], [49]; spectral translation techniques 
for extracting core functions [22], [23], [29], [30]; de- 
signing of multiplexer-based universal-logic modules 
[3 11; prime implicants extraction [26], [29]; estimation of 
logic complexity [25], [53], [55]; and approximate im- 
plementation of logical functions [35]. 

Most of the current methods in the spectral domain deal 
only with completely specified Boolean functions. On the 
other hand, all the algorithms introduced here are valid 
not only for completely specified Boolean functions but 
also for functions with don’t cares, since don’t care min- 
terms can be represented in the form of disjoint cubes as 
well. 

In order to use Boolean functions that are represented 
as arrays of nondisjoint cubes, a fast algorithm to generate 
disjoint cubes is presented. The use of the disjoint cube 
representation of Boolean functions has been found ad- 
vantageous in many algorithms used in digital logic de- 

The theory of calculation of the spectral coefficients for 
incompletely specified Boolean functions is new for both 
of the methods introduced. The second method also al- 
lows for the calculation of spectra of a system ofBoolean 
functions. When the system of incompletely specified 
Boolean functions is processed, there is a restriction in 
[25] that all the functions in the system are assumed to be 
undefined at exactly the same points (minterms of a Kar- 
naugh map). Optimal completion of don’t care minterms 
for such a system of Boolean functions from the point of 
view of a minimal number of spectral coefficients differ- 
ent from 0 (and thereby obtaining simpler implementation 
of such a system of functions) was presented in [25]. 
However, this is a severe restriction. The second method 
can process not only such functions but any system of 
completely and incompletely specified Boolean functions. 
Each function in the system of functions processed by the 
second method can have don’t care minterms anywhere in 
the function domain. 

A short description of previously known properties of 
the classical Rademacher-Walsh transform as applied to 
Boolean functions should make this article self-sufficient. 
All properties regarding incompletely specified Boolean 
functions are new. The formal proofs of these new prop- 
erties by mathematical induction are trivial and therefore 
omitted. A number of examples are given that should help 
to introduce these ideas to people working in the areas of 
test generation and logic design automation. The use of 
complicated mathematical formulas, so typical in articles 
on the subject, is minimized in this presentation. This is 
important since, unfortunately, up to now the unfamiliar- 
ity with the mathematical side of the spectral approach 
seems to have been too great a hurdle to overcome for 

sign ~21,  [31, 181, ~121,  ~ 9 1 ,  1391, [411. 

finding a fruitful place for practical CAD applications of 
these ideas. 

11. LINKS BETWEEN SPECTRAL TECHNIQUES AND 

CLASSICAL LOGIC DESIGN 
A method of calculating Chow parameters, which are 

used in the classification of linear logical functions, was 
shown in [ 181. The method was stated only for completely 
specified Boolean functions. It was based on the compu- 
tation of the number of agreements minus the number of 
disagreements between the values in the truth table of a 
Boolean function in S coding (the minterms of the func- 
tion are coded according to the S coding) and the values 
of each successive row of the Rademacher-Walsh matrix 
T.  A minterm in S coding and an element in the row of a 
transform matrix agree with each other when they have 
the same value (either 1 or - 1); otherwise they disagree. 
Due to the relationships between the Chow parameters and 
Rademacher-Walsh spectral coefficients [ I  81, [ 191, and 
mutual relationships between both S and R spectra stated 
for completely specified Boolean functions in [23], the 
same method can be applied for finding spectral coeffi- 
cients of only completely specified Boolean functions. 
However, the agreementldisagreement method, which is 
suitable for hand calculations, takes into the consideration 
all 2“ combinations of values of n variables of a Boolean 
function. 

A similar method for hand calculation of the spectral 
coefficients was proposed in [6]. The advantage of this 
approach is that only one half of all the combinations of 
n variables of a Boolean function has to be considered. 
Thus, the speed of this proposed technique is at last twice 
the speed of the agreement/disagreement method. How- 
ever, this method was presented only for completely spec- 
ified Boolean functions and only for the S spectrum (which 
was erroneously denoted by symbol R in [6]). Due to mu- 
tual relationships between both spectra, this method can 
be easily extended for the calculation of the R spectrum. 

In this paper, all important relationships between spec- 
tral coefficients from both spectra and classical logic terms 
are stated. Moreover, for the first time these relationships 
are presented not only for completely specified Boolean 
functions but for incompletely specified Boolean func- 
tions as well. The latter problem has been solved by the 
authors for both S and R spectra. It has also been con- 
firmed that the relationships that bind both these spectra 
together (see (4) and ( 5 ) )  are still valid for the spectra 
calculated for incompletely specified Boolean functions. 
By expressing spectral coefficients through different for- 
mulas (this has never been done thoroughly even for com- 
pletely specified Boolean functions, and (IO)-( 13) and 
(15) are new for such functions) one is able to calculate 
the spectral coefficients from different available data that 
makes the methods more flexible. 

Let us show more clearly the meaning of rl and sI spec- 
tral coefficients in classical logic terms. Moreover, let us 
also expand our considerations for incompletely specified 
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Fig. 1 .  Standard trivial functions for a four-variable incompletely speci- 
fied Boolean function. 

Boolean functions. A standard trivial function denoted by 
a symbol uI describes some area on a Kamaugh map that 
has an influence on the value of a spectral coefficient sI. 
The formal definition of a standard trivial function [22] is 
given in Property 3.6. All but one standard trivial func- 
tion for a four variable Boolean function are shown as the 
circled areas in Fig. 1. The standard trivial function cor- 
responding to the first spectral coefficient so is the whole 
Kamaugh map and is denoted by symbol h. Since for this 
spectral coefficient the corresponding row in the trans- 
form matrix T has all elements equal to 1 (there are no 
changes of value in the row), this coefficient is called a 
direct current coeficient [23]. The symbol I used in the 
description of spectral coefficients and standard trivial 
functions is called an index, and the same symbol is used 
for all the coefficients. The index is composed of subin- 
dexes; each spectral coefficient has different subindexes. 
The subindexes of a given spectral coefficient describe the 
variables of the Boolean function that indicate the area of 
the standard trivial function corresponding to this spectral 
coefficient. For example, the standard trivial function de- 
scribed by x1 8 x2 8 x3 8 x4 corresponds to spectral 
coefficient s1,2,3,4 and the general symbol of such a coef- 
ficient in sI. 

The following symbols will be used in the equations. 
Let ul be the number of true minterms of a Boolean func- 
tion F in the area for which both the function F and the 
standard trivial function uI have the logical value 1 ; let bl 
be the number of false minterms of the Boolean function 
F i n  the area for which the function F has the logical value 
0 and the standard trivial function uI has the logical value 

1; let cI be the number of true minterms of the Boolean 
function F in the area for which the function F has the 
logical value 1 and the standard trivial function uI has the 
logical value 0; let dl be the number of false minterms of 
the Boolean function F in the area for which both the 
function F and the standard trivial function uI have the 
logical values 0; let eI be the number of don't care min- 
terms of the Boolean function F in the area for which the 
standard trivial function uI has the logical value 1 ; and let 
fi be the number of don't care minterms of Boolean func- 
tion F in the area for which the standard trivial function 
uI has the logical value 0. 

Then, for completely specified Boolean functions hav- 
ing n variables, the following formulas hold for all but 
the so and ro spectral coefficient (when I # 0) [22]: 

(1) 
and [22] 

(2) 
For the so and ro spectral coefficients [22]: 

(3) 

al + bl + cl + dl = 2" 

ai + bl = cl + dl = 2"-'. 

UO + bo = 2" 

as co and do are both zero. 

lows [23]: 
The relationships between spectra R and S are as fol- 

ro = (2" - so> (4) 

(5) 

and [23] 

when I f 0. 
Accordingly, for incompletely specified Boolean func- 

tions having n variables, the following formulas hold for 
all but the so and ro spectral coefficient (when I # 0): 

(6) 

(7) 

(8) 

1 rl = - sl 

al + bl + c1 + dl + el + fi = 2" 

al + bl + el = cl + dl + f i  = 2"-' 

a. + bo + eo = 2" 

and 

For the so and ro spectral coefficients: 

as eo, do, andfo are all zero. 
Subsequently, (1)-(8) are used, where necessary, in or- 

der to derive different alternative expressions for spectral 
coefficients and the final formulas are presented. 

The so spectral coefficient for completely specified 
Boolean functions can be defined in the following alter- 
native ways [22]: 

(9) 

(10) 

(11) 
The sI spectral coefficients (when I # 0) for completely 

specified Boolean functions can be calculated according 

so = 2" - 2a, 

SO = 2bo - 2" 

SO = bo - uO. 

or 

or [22] 
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to any of the following formulas: 

or 

s, = 2" - 2(b, + c,) (13) 

or [22] 

s, = 2(a, - c,) (14) 

or 

SI = 2(d, - b,) 

or [22] 

SI = (a1 + d,) - (b, + c,). (16) 
Similarly, for completely specified Boolean functions 

having n variables, the ro spectral coefficient can be de- 
fined in three ways from (9) to (11)  by using (4). The r, 
spectral coefficients (when I # 0) for completely speci- 
fied Boolean functions having n variables can be defined 
in five ways from (12) to (16) by using the relationship of 
( 5 ) .  

Let us now expand our considerations for incompletely 
specified Boolean functions having n variables. Then, the 
so spectral coefficient can be defined in the following al- 
ternative ways: 

(17) so = 2" - 2ao - eo 

At this point, it is interesting to note the following 
properties of the above equations. First, (4) and ( 5 )  are 
valid for spectra calculated for both completely and in- 
completely specified Boolean functions. Secondly, (1 1) 
and (19) for the calculation of the direct current (so) and 
the corresponding formulas for the calculation of the ro 
coefficient are exactly the same for both completely and 
incompletely specified Boolean functions. The same phe- 
nomenon occurs in (16) and (24) and in the corresponding 
formulas for the calculation of r, (when I # 0) spectral 
coefficients. A number of don't care minterms e, and fi 
are eliminated from these formulas. Of course, this does 
not mean that the spectral coefficients for an incompletely 
specified Boolean function do not depend on the number 
of don't care minterms. They do, but this dependence is 
included in (6)-(8). 

Example 1 :  As a numerical example, consider a four- 
variable incompletely specified Boolean function for 
which all standard trivial functions and values of all cor- 
responding a,, d,, and f r  are shown in Fig. I .  According 
to (17) and (20), the s, spectral coefficients for this func- 
tion are as follows: 

SO = 16 - 24 - 1 = -9, S I  = 18 + 1 - 16 = 3 

~ 2 = 2 2 + 1 - 1 6 = 7 ,  ~ 3 = 1 8 + 1  - 1 6 ~ 3  

~4 14 + 1 - 16 = -1,  ~ 1 2  = 18 + 1 - 16 = 3 

= 14 + 1 - 16 = -1 ,  si4 = 18 + 1 - 16 3 

(18) S23 = 18 + 1 - 16 = 3, 

s~~ = 10 + 1 - 16 = -5 ,  

~ 1 2 3  = 14 + 1 - 16 = -1,  

S24 14 + 1 - 16 = -1  so = 2bo + eo - 2" 

or 

so = bo - a0 (19) si24 = 18 + 1 - 16 = 3 

The s, spectral coefficients (when I # 0) for incom- 
pletely specified Boolean functions can be calculated ac- 
cording to the following formulas: 

s~~~ = 14 + 1 - 16 = - I ,  ~ 2 3 4  = 10 + I - 16 = -5 ,  

s~~~~ = 14 + 1 - 16 = -1. 

s, = 2(a, + dl) + e, + f r  - 2" 

s, = 2" - 2(b, + c,) - (e, + A )  

sl = 2(a, - cl) + e ,  -fi 

sl = 2(d1 - bl) + f r  - e, 

SI = (a/ + d,) - (b, + ~ 1 ) .  

(20) 

(21) 

(22) 

(23) 

(24) 

Similarly, for incompletely specified Boolean functions 
having n variables, the ro spectral coefficient can be de- 
fined in three ways from (17) to (19) by using (4). The r, 
spectral coefficients (when I # 0) for completely speci- 
fied Boolean functions having n variables can be defined 
in five ways from (20) to (24) by using the relationship of 
(5 ) .  

or 

or 

or 

or 

As can be seen from the above example, the$rst method 
can generate spectral coefficients in any ordering of Walsh 
functions or only some subset of them. 

The relations that have been determined in this section 
allow the derivation of many properties of spectral coef- 
ficients that are important in their applications to the anal- 
ysis and synthesis of logical circuits. The next section de- 
scribes the classical approach to the calculation of spectra 
of Boolean functions. For illustration, instead of Fast 
Walsh Transform, the matrix multiplication method is 
presented. The advantages of introduced algorithm over 
Fast Transforms are shown. All essential terms and prop- 
erties of the Rademacher-Walsh S and R spectra are in- 
cluded. 

111. BASIC PROPERTIES OF RADEMACHER-WALSH 
SPECTRUM 

The Rademacher-Walsh spectra S and R of an n-variable 
Boolean function are alternative canonical representations 
of the Boolean function. Other related canonical descrip- 
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tions of Boolean functions are the Adding and Arithmetic 
forms [ 141 and the Reed-Muller from [4], [ 171, [20]. The 
latter form, however, is a canonical representation of only 
completely specified Boolean functions. 

The Rademacher-Walsh spectrum S is formed as the 
product of a 2" X 2" Rademacher-Walsh matrix T and a 
2" vector representation M of a Boolean function F. When 
the Boolean function is represented as a truth table of all 
minterms, M will be either the ( + 1, - 1 ) vector repre- 
sentation of the truth table for a completely specified Bool- 
ean function, or the ( + 1, 0, - 1 ) vector representation 
of the truth table for an incompletely specified Boolean 
function [l], [22], [23], [25], [26], [34]. In the coding 
scheme the conventional (0, 1, - ) values (false, true and 
don't care minterms) correspond to ( + 1, -1, 0)  cod- 
ings, respectively (" -" stands for "don't care"). This 
type of coding of the truth vector is called the S coding, 
and the coded truth vector is denoted by M. The values 
of the minterms in the original truth vector and the coded 
vector M are ordered according to the straight binary code 
(SBC) of variables describing these minterms. For ex- 
ample, the first entry in the vector is the logical value of 
the minterm that is described by all negated variables of 
a Boolean function (minterm 0), the second entry in the 
truth vector is the logical value of the second minterm that 
is described by all negated variables except xI (minterm 
1, the least significant bit of SBC = I) ,  etc. The Rade- 
macher-Walsh matrix T represents the Walsh functions in 
Rademacher ordering. The rules for recursive generation 
of such matrices are described in [25]. 

The Rademacher-Walsh spectrum R results from an- 
other coding of the truth table of a Boolean function in 
which the conventional (0, 1, -) values correspond to 
(0, 1, 0.5). This Rademacher-Walsh spectrum is called 
the R spectrum, and this type of coding is called the R 
coding. The relationships between the spectral coeffi- 
cients of the S and R spectra were given in the previous 
section. 

Besides the matrix method presented here, recursive al- 
gorithms, data flow-graph methods, and parallel calcula- 
tions similar to the Fast Fourier Transform have also been 
used to calculate the Rademacher-Walsh and other related 
transforms [l], [23], [26], [54]. All the methods men- 
tioned reduce the necessary number of calculations from 
n X n to n X log2 n, but still require an excessive com- 
puter memory. They also have some undesirable proper- 
ties, discussed mainly in Section X, that are overcome by 
using the second spectrum calculation method introduced 
here. 

The principal properties of the coefficients of the S 
spectrum for completely specified Boolean functions for 
the four well-known Walsh-type transform matrices are 
shown below according to [I], [9], [221, [231, [251, [261. 
TheProperties3.7, 3.9, 3.10, 3.13, and 3.17arenew. 

3.1) The transform matrix of each ordering of the 
Walsh functions is complete and orthogonal; 
therefore, there is no information lost in the S 

3.2) 

3.3) 

3.4) 

3.5) 

3.6) 

3.7) 

3.8) 

and R spectra concerning the minterms of the 
Boolean function F. 
Only the Hadamard-Walsh matrix describing the 
Hadamard-Walsh transform has the recursive 
Kronecker product structure. Other possible 
variants of the Walsh transforms, described by 
the corresponding matrices, are known in the lit- 
erature as the Walsh-Kaczmarz, Rademacher- 
Walsh, and Walsh-Paley transforms. 
Only the Rade,macher-Walsh matrix is not sym- 
metric; all other variants of Walsh matrices are 
symmetric, so that, disregarding a scaling fac- 
tor, the same matrix can be used for both the 
forward and inverse transform operations. 
Each spectral coefficient sI or rI is described by 
its order, subindexes and magnitude. The order 
of the spectral coefficient is equal to the number 
of subindexes, and the subindexes are the sub- 
scripts of all variables of a standard trivial func- 
tion corresponding to the coefficient. The mag- 
nitude of a spectral coefficient is its value. In the 
sequel, i, j, and k denote subindexes, and the 
order is denoted by 0. 
When the classical matrix multiplication method 
is used to generate the spectral coefficients for 
different Walsh transforms (different T matrices 
represent different Walsh functions with differ- 
ent orderings), the only difference in the result 
is the ordering of the spectral coefficients. The 
coded vector M corresponding to the original 
truth vector of a Boolean function is the same for 
all orderings of Walsh functions. The values of 
the coefficients sI and rf with the same subindices 
are the same for every ordering of Walsh trans- 
forms. 
Each spectral coefficient (either sI or rI) gives a 
correlation value between the Boolean function 
F and a standard trivial function uI correspond- 
ing to the coefficient. The standard trivialfunc- 
tions for the spectral coefficients are, respec- 
tively: for the dc coefficients (direct current 
coefficients) so or ro, the universe of the Boolean 
function F denoted by uo; for the first order coef- 
ficients sI or r,(Z = i ,  i # 0), the variable x, of 
the Boolean function F denoted by U,; for the 
second order coefficients sI or rI(Z = 0, i # 0 , j  
# 0, i # j ), the Exclusive-OR function between 
variables xi and x, of the Boolean function F de- 
noted by uV ; for the third-order coefficients sI or 
rI(Z = ijk, i # 0, j # 0, k # 0, i # j ,  i # k , j  
# k) ,  the Exclusive-OR function between vari- 
ables x,, xl,  and x k  of the Boolean function F de- 
noted by Uyk, etc. 
The number of spectral coefficients of zth order 
is equal to Ci = (g), where n is the number of 
variables of a Boolean function. 
For a completely specified Boolean function the 
maximal value of any individual spectral coeffi- 
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cient sI is +2" and the minimal value is -2". 
These values occur when the Boolean function F 
is equal to either a standard trivial function u1 
(sign +) for the maximal value or to its comple- 
ment (sign -) for the minimal one. In either 
case, all the remaining spectral coefficients have 
zero values because of the orthogonality of the 
transform matrix T.  

3.9) The maximal value of any spectral coefficient r, 
except r, is + 2" - and will result when the Bool- 
ean function F is equal to complement of a 
standard trivial function U / .  The minimal value 
is -2n-I and will result when F is equal to a 
standard trivial function uI. In either case, all the 
remaining spectral coefficients have zero values 
because of orthogonality of the transform matrix 
T. 

3.10) For an incompletely specified Boolean function 
the maximal value of any individual spectral 
coefficient s1 is +2" - I and the minimal one is 
-2" + 1.  These occur when the Boolean func- 
tion F is equal to either a standard trivial func- 
tion for the maximal value of s1 or to its comple- 
ment for the minimal value, in all but one 
minterm. 

3.1 1 )  The maximal value of the ro spectral coefficient 
is +2" and will result when the Boolean function 
F is a tautology. The minimal value is -2" and 
will result when F is equal to the complement of 
the tautology. The tautology is the logical func- 
tion for which all the minterms are true. 

3.12) When, for more than half of the spectral coeffi- 
cients of any completely specified Boolean func- 
tion F ,  the majority of the minterms have the 
same logical values as the minterms of standard 
trivial functions, the sum of all of the coeffi- 
cients of the S spectrum has a maximum value 
equal to +2". When, for more than half of the 
spectral coefficients, the majority of minterms of 
F have the complemented logical values to the 
minterms of standard trivial functions, the sum 
of all of the coefficients of the S spectrum has a 
minimal value equal to -2". 

3.13) For any incompletely specified Boolean function 
the sum of all the coefficients of the S spectrum 
has a maximal value of +2" - 1 and a minimal 
value of -2" + 1 .  The maximal or minimal 
value happens when the Boolean function has 
exactly one don't care minterm and all the spec- 
tral coefficients follow the rule found in Property 
3.12. 

3.14) With the exception of uo, every standard trivial 
function uI corresponding to an n variable Bool- 
ean function F has the same number of true and 
false minterms. That number is equal to 2"- I .  

3.15) For each true minterm the coefficients from the 
spectrum S are so = 2" - 2, and all remaining 
2" - I spectral coefficients sI are equal to f 2 .  

so 
sq 

s3 
s2 

s 1  

S N  

'24 

'23 
'14 

'13 

s12 

s234 

S I 3 4  

'124 

'123 

$1234 

T 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1 - 1  - I  - 1  - 1  - 1  - 1  - 1  -1  

1 1 1 1 - 1  - 1  - 1  - 1  1 1 1 1 - 1  - 1  - 1  - 1  

1 1 - 1  - 1  1 1 - 1  -1 1 1 - 1  - 1  1 1 - 1  - 1  

1 - 1  1 - 1  1 - 1  1 -1 1 -1 1 - 1  1 - 1  1 - 1  

1 1 1 1 - 1  -1  - 1  -1 - 1  -1 - 1  - 1  1 1 1 1 

1 1 -1 - 1  1 1 - 1  - 1  - 1  - 1  1 1 - 1  - 1  1 1 

1 1 -1 - 1  - 1  - 1  1 1 1 1 - 1  - 1  - 1  -1  1 1 

1 - 1  1 - 1  1 - 1  1 - 1  - 1  1 - 1  1 - 1  1 - 1  1 

1 -1 1 - 1  - 1  1 - 1  1 1 - I  1 - 1  - 1  1 - 1  1 

I -1 -1 1 1 - 1  - 1  1 1 - 1  -1 1 1 - 1  - 1  1 

I 1 -1 - 1  - 1  - 1  1 1 -1 - 1  1 1 1 1 - 1  - 1  

1 - I  1 - 1  - 1  1 - 1  1 - I  1 - 1  1 1 - 1  1 - 1  

1 - 1  -1 1 1 - 1  - 1  1 - 1  1 1 - 1  - 1  1 1 - 1  

1 - 1  - 1  1 - 1  1 1 -1 1 - 1  - 1  1 - 1  1 1 - 1  

1 -1 - 1  1 - 1  1 1 - 1  -1 1 1 - 1  1 - 1  - 1  1 
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Fig. 2 .  Calculation of Rademacher-Walsh S spectrum 

The method for choosing the signs of spectral 
coefficients is defined in Section V (Properties 

3.16) The spectrum S of each false minterm is given 

3.17) For each don't care minterm the coefficients from 
- 1 ,  and all re- the spectrum S are s () = 2" - i 

maining 2" - 1 spectral coefficients sI are equal 
to + 1 .  The method for choosing the signs of 
spectral coefficients is defined in Section V 
(Properties 5.6-5.8) .  

5.6-5.8). 

by SI = 0. 

ExampEe 2: An example of the calculation of Rade- 
macher-Walsh spectrum S of a four-variable incompletely 
specified Boolean function is shown in Fig. 2. The matrix 
T describes the discrete Walsh functions in Rademacher 
ordering. The coding truth vector M represents the values 
of minterms of a Boolean function in the S coding. In this 
example, the function from Fig. 1 is used. One can notice 
easily that the first entry in the vector M has value 0 since 
it corresponds to the logical value don't care of the min- 
term described by all variables negated on Kamaugh maps 
from Fig. 1. Since the Boolean function has only one don't 
care minterm, all other entries in the vector M are either 
+ 1 or - 1. The obtained spectrum is exactly the same as 
the one obtained by the$rst method. 

The second new method of calculating spectral coeffi- 
cients of Boolean functions described in this article needs 
the representation of Boolean functions in the form of ar- 
rays of disjoint cubes. The method gives the correct val- 
ues of spectral coefficients independently from the shape 
and size of disjoint cubes in the array of cubes as long as 
all the minterms of the function are covered only once by 
a cube. The next section describes the algorithm that gen- 
erates this kind of representation of Boolean functions. 

IV. ALGORITHM TO GENERATE DISJOINT CUBES 
The calculation time for the Rademacher-Walsh spec- 

trum increases linearly with the number of disjoint cubes. 
Thus, the determination of a quasi-minimal number of 
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TABLE I 

BENCHMARK FUNCTIONS 
COMPARISON OF THE NUMBER OP DISJOINT CUBES FOR THE MCNC 

Input output ESPRESSO Our 
Variables Variables -Ddisjoint Program 

b12 15 9 654 51 
clip 9 5 185 162 
inc I 9 34 34 
misexl 8 7 32 15 
misex2 25 18 29 28 
rd53 5 3 32 31 
rd73 I 3 141 127 
sa02 10 4 151 98  
5xpl I 10 106 70 
9sym 9 1 189 166 

cubes in the disjoint cube representation of a Boolean 
function is crucial for the effective calculation of its spec- 
trum. 

Several algorithms for the generation of arrays of dis- 
joint ON- and Dc-cubes (if any) or an array of disjoint OFF- 
cubes were described and used in PALMINI [39], UMINI 
[3], EXORCISM [19], EXORCISM-MV [41], and ES- 
PRESSO [2]. Here the algorithm and its implementation 
as described in [17] and [18] are improved. The random 
ordering of the cubes is replaced by an array of cubes in 
which the cubes are sorted according to their size. The 
sorting can be performed in a short computation time by 
using a skip list [43] to determine the relative sizes of 
cubes. Thus, the new algorithm (Algorithm 1) compares 
the largest cube with all others, starting from the smallest 
one. In the next step, the second largest cube is taken and 
compared to all smaller ones, etc. As a last step of the 
algorithm, the cubes are merged, where possible, to ob- 
tain a smaller total number of disjoint cubes. When the 
new algorithm is applied to a system of Boolean func- 
tions, it always tries to minimize the total number of dis- 
joint cubes describing the functions in the system. 

Example 3: The new algorithm is applied to the func- 
tion for Example 1 and [18]. The steps of the execution 
are illustrated in Fig. 3. 

A ‘*’ in the array of cubes indicates that the disjoint 
sharp operation (#,) [7], [46] has to be performed between 
those two cubes. If the two chosen cubes in Fig. 3(d) are 
in a different order, the result cannot be merged to a 
smaller number of cubes. In order to find the optimal so- 
lution in every case, a branching for each sharp operation 
would be necessary, but is not implemented in our algo- 
rithm. 

In Table I the new algorithm is compared to the option 
-Ddisjoint of ESPRESSO [2]. The functions shown in Ta- 
ble I have been taken from the MCNC benchmarks. The 
functions have been minimized by ESPRESSO before cal- 
culating their disjoint representation. The execution time 
for our algorithm was always less than one second, while 
ESPRESSO took up to 300 s (b12). 

The second and third columns of Table I give the num- 
ber of input/output variables of the MCNC benchmark 
functions, listed in the first column. The fourth column 

gives the number of disjoint cubes obtained by ES- 
PRESSO using the -Ddisjoint option. The right column 
shows the number of disjoint cubes obtained by our al- 
gorithm. The number of disjoint cubes obtained by our 
program is usually better than the ones obtained by ES- 
PRESSO. 

The next two sections describe the properties used to 
develop the computer method for generating the Rade- 
macher-Walsh spectra for completely and incompletely 
specified Boolean functions (Section V) and for systems 
of completely and incompletely specified Boolean func- 
tions (Section VI). 

V. AN ARRAY METHOD FOR THE CALCULATION OF 
SPECTRUM OF A BOOLEAN FUNCTION 

An algorithm already exists for calculating spectral 
coefficients for completely specified Boolean functions di- 
rectly from a sum-of-products Boolean expression [23], 
[35]. When the implicants are not mutually disjoint, this 
algorithm requires an additional correction to calculate the 
exact values of spectral coefficients for minterms of Bool- 
ean function F that are included more than once in some 
implicants. By using a representation of a Boolean func- 
tion in the form of an array of disjoint cubes one can apply 
the existing algorithm without having to perform correc- 
tion operations because for an array of disjoint cubes as 
input data the exact values of spectral coefficients can be 
calculated immediately. Here the extension of the algo- 
rithm to incompletely specified Boolean function is pro- 
posed. 

In what follows the properties of the existing algorithm 
are rewritten in notation corresponding to our represen- 
tation of Boolean functions with n variables in the form 
of arrays of disjoint cubes. This is the first time all the 
properties describing incompletely specified Boolean 
functions have been presented. 

Definition 1: The cube of degree m is a cube that has m 
literals that can be either in affirmation or negation (i.e.. 
m is equal to the sum of the number of zeros and ones in 
the description of a cube). Let symbol p denote the num- 
ber of X’s in the cube and let n denote the number of 
variables of a Boolean function. Then, n = m + p .  

Example 4: Consider the cube 1x00. It is a cube of 
degree 3 since three of the literals describing this cube are 
either in affirmation (XJ or negation (x3 and x4). The cube 
does not depend on literal x2.  

Dejinition 2: The partial spectral coeficient of an ON- 

or Dc-cube with degree m of a Boolean function F is equal 
to the value of the spectral coefficient that corresponds to 
the contribution of this cube to the full n-space spectrum 
of the Boolean function F.  The number of partial spectral 
coefficients npsc describing the Boolean function F is 
equal to the number of ON- and Dc-cubes describing this 
function. 

Example 5: Consider Table I1 as representing the array 
method of calculating spectral coefficients. The consid- 
ered array of disjoint cubes is the result of Example 3. 
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TABLE I1 
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XlXXON 0 0 1 6  0 0 0 0 0 0 0 0 0 0 0 0 0 
XOllON 12 0 -4 4 4 0 0 0 4 4 -4 0 0 0 -4 0 
IOXOON 12 4 -4 0 -4 4 0 4 0 -4 0 0 4 0 0 0 
OOOODC 7 - 1  - 1  - I  - 1  - I  - 1  -1  - 1  - 1  -1 - 1  - 1  - 1  - I  - 1  

-9 3 7 3 - I  3 - I  3 3 - I  -5  - I  3 - 1  -5  - I  

Each row in this table shows the partial spectral coeffi- 
cients of either ON- or De-cubes of a Boolean function. 
The function in the example has four partial spectra, which 
is equal to the number of disjoint ON- and Dc-cubes de- 
scribing this function (npsc = 4). 

Suppose arrays of disjoint ON- and Dc-cubes that fully 
define Boolean function F are given. Then each cube of 
degree m can be treated as a minterm within its particular 
reduced m-space of function F.  Let us recall that the spec- 
trum of each true minterm is given by so = 2" - 2,  and 
all remaining 2" - I coefficients are equal to + 2  (Prop- 
erty 3.15). Similarly, the spectrum of each don't care 
minterm is given by sDco = 2" - 1, and all the remaining 

1 coefficients are equal to f I (Property 3.17). 2"- I - 

The symbols S D c /  denote spectral coefficients correspond- 
ing to Dc-cubes (when I = 0, the symbol s,,-, denotes a 
direct current spectral coefficient corresponding to a DC- 

cube). 
Cubes of degree m have the following properties. 

5.1) The contribution of an ON-cube of degree m to the 
full n-space spectrum of function F (where n is 
the number of variables in the function F )  is re- 
lated as follows: 

so in full n-space = 2" - 2 x 2l' (25) 
and 

sI in full n-space = sI in m-space X 2p (26) 
where I # 0. 

5.2) The contribution of a De-cube of degree m to the 
full n-space spectrum of function F is related as 
follows : 

(27) sDco in full n-space = 2" ~ ' - 2 p  

and 

sDCl in full n-space = SDC/ in m-space x 2" 

where I # 0. (28) 

whereI # 0. 

Notice that when the above formulas are applied to 
minterms (i.e., for m = n ,  and p = 0) they reduce to 
Properties 3.15 and 3.17. The contribution of a De-cube 
of degree m is equal to one half of the contribution of an 
ON-cube that has the same degree m. Moreover, the con- 
tribution of ON- or De-cubes of degree m to the full 
n-space spectrum of function F can be expressed for so as 
the absolute value of the sum of all negative spectral coef- 
ficients corresponding to these cubes. 

Equations (26) and (28) determine the absolute values 
of those partial spectral coefficients sI that are not equal 
to zero for a given cube. Properties 5.3-5.5 determine the 
signs of the partial spectral coefficients, and whether some 
of them are equal to zero. 

Example 6: Consider Table I1 again. The value of par- 
tial spectral coefficient so corresponding to the ON-cube 
10x0 (n = 4, p = 1) is equal to 24 - 2 x 2'  = 12 
according to (25). The absolute values of those partial 
spectral coefficients sI that are not equal to zero are cal- 
culated according to (26) and are equal to 2 x 2 '  = 4. 

The value of partial spectral coefficient so correspond- 
ing to the Dc-cube 0000 ( n  = 4, p = 0) is equal to 23 - 
2' = 7 according to (27). The absolute values of those 
partial spectral coefficients sI that are not equal to zero are 
calculated according to (28) and are equal to 1 X 2' = 1. 

The following properties determine which partial spec- 
tral coefficients have values zero for an ON- or Dc-cube of 
the degree m. 

5.3) If in a given cube the x, variable of a Boolean 
function is denoted by the symbol "X," then all 
of the partial spectral coefficients sI whose in- 
dexes I contain the subindex i are equal to 0. 

5.4) If in a given cube each of the variables of a Bool- 
ean function x,, x,, x I ,  etc., from the complete set 
of all variables of the function is denoted by sym- 
bol "X," then every partial spectral coefficient sI 
whose index I contains the subindexes i, j ,  k ,  etc., 
is equal to 0. 

5 . 5 )  For an ON- or Dc-cube of the degree m the number 
of nonzero partial spectral coefficients is equal to 
2"-", except for p = n - 1 when there is only 
one nonzero partial spectral coefficient. 

Example 7: Consider Table I1 again. The variable x3 is 
denoted by symbol X in the cube 1OX 0. Then, by Prop- 
erty 5.3, the values of all partial spectral coefficients with 
subindex 3 are equal to zero. Therefore, s3 = ~ 1 3  = ~ 2 3  

= s34 = sIz3 = s134 = s234 = s1234 = 0. For this cube, by 
Property 5.5, the number of partial spectral coefficients 
different from zero is equal to 24 - = 8.  

The cube XlXX has three variables denoted by the X 
symbols: xl, x3, and x4. Therefore, by Property 5 . 4  and 
Property 5 .5 ,  only the partial spectral coefficient s2 is dif- 
ferent from zero. 

The following properties describe the signs of each par- 
tial spectral coefficient s/, where I # 0, and are valid for 
ON- and De-cubes of any degree: 
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5.6) If in a given cube the x, variable of a Boolean 
function is in affirmation, then the sign of the cor- 
responding first-order coefficient is positive; 
otherwise for a variable that is in negation, the 
sign of the corresponding first-order coefficient is 
negative. If in a given cube the x, variable of a 
Boolean function is in affirmation, then the sign 
of the corresponding first-order coefficient is po- 
sitive; otherwise for a variable that is in negation, 
the sign of the corresponding first-order coeffi- 
cient is negative. 

5.7) The signs of all even-order coefficients are given 
by multiplying the signs of the related first-order 
coefficients by - 1. 

5.8) The signs of all odd-order coefficients are given 
by multiplying the signs of the related first-order 
coefficients. 

Example 8: Consider Table I1 again. In the ON-cube 
1OX 0 the variable xI is in affirmation, while the variables 
x2 and x4 are in negation. Therefore, by Property 5.4 the 
sign of the partial spectral coefficient sI is positive and the 
signs of partial spectral coefficients s2 and s4 are negative. 

The signs of second-order coefficients are determined 
by Property 5.7. The sign of the even-order partial spec- 
tral coefficient sI2 of cube 1OX 0 is positive, since the sign 
is determined by the product of the related first-order coef- 
ficients, sI and s2, times - 1 ,  i.e., (-1) X 1 X (-1) = 
1. 

The signs of the third-order coefficients are determined 
by Property 5.8. The signs of the partial spectral coeffi- 
cient ~ 1 2 4  of the same cube is positive since it is deter- 
mined according to Property 5.8 as the product of the re- 
lated first-order coefficients, sl ,  s2, and s4 and the result 
is 1 x (-1) X (-1) = 1 .  

The algorithm is as follows: 
Algorithm 2: Calculation of spectral coeflcients for 

completely and incompletely specijied Boolean Jicnctions. 

5 .  

x 2", where w is the number of disjoint cubes in 
the array of Dc-cubes. 
For an incompletely specified Boolean function the 
value of the DC spectral coefficient so is equal to the 
sum of all of the partial spectral coefficients corre- 
sponding to all of the disjoint ON- and Dc-disjoint 
cubes describing the function, plus the correction 
factor - ( k  - 1) x 2" - w X 2"-l,  wherekis the 
number of disjoint ON-cubes, and w is the number 
of disjoint Dc-cubes. 

The correction factor - ( k  - 1) X 2" compensates for 
the fact that the cubes over the complete n-space have 
been added k times during the calculation of the k partial 
spectral coefficients. A similar explanation applies to 
Dc-cubes as well. 

Of course, the algorithm can calculate each coefficient 
separately or in parallel. If some of the 2" spectral coef- 
ficients are not needed for a particular application, then a 
reduced number of operations can be performed. 

Example 9: An example of the calculation of the S spec- 
trum for the four-variable incompletely specified Boolean 
function is shown in Table 11. The function in this ex- 
ample is the same as the one used in Examples 1 , 2,  and 
3. Fig. 3 showed the stages of the execution of the algo- 
rithm generating disjoint cube representation for the same 
function. Fig. 3(f) showed the input data for the algo- 
rithm for this section. The array of disjoint cubes repre- 
senting the function is repeated from Fig. 3(f) as the first 
column in Table 11. The values and signs of all the partial 
spectral coefficients for this function are determined by 
Properties 5.1-5.8. The results of the application of these 
properties are shown for two cubes. 

The spectral coefficients of the first ON-cube in Table I1 
(cube 1OX 0 of degree m = 3) are as follows: 

1) within its own m-space, treated as a single minterm; 

~4 = -2, ~ 1 2  = 2, 313 = 0, = 2 1. For each ON- and Dc-cube of degree m, calculate the 
value and sign of the contribution of this cube to the 

described previously. 
The values of all spectral coefficients sI,  except so, 

full n-space spectrum according to the properties $23 0, $24 = -2, $34 = 0, SI23 = 0 

SI24 2, SI34 = 0, s234 = 0, SI234 = 0. 
are equal to the sum of all of the contributions to 
the spectral coefficients from all 0 ~ -  and Dc-disjoint 
cubes from an array of cubes. 

2) within the full n-space of Boolean function F (par- 
tial spectral coefficients); 

so = 12, SI = 4, s 2  = -4, s 4  = -4 

~ 1 2  = 4, ~ 1 4  = 4, ~ 2 4  = -4, s i24  = 4. 

3. For a completely specified Boolean function the 
value of the dc spectral coefficient so is equal to the 

sponding to all of the disjoint ON-cubes describing 
the function, plus the correction factor - (k  - 1) x 
2", when k is the number of disjoint cubes in the 
array of ON-cubes. 

4. For an incompletely specified Boolean function the 
value of the dc spectral coefficient so is equal to the 

sponding to all of the disjoint Dc-cubes describing 

sum of all of the partial spectral coefficients corre- 

On the other hand, the spectral coefficients of the Dc-cube 
in Table 11 (cube 0000 Of degree m = 4, i.e., Single min- 
term) are as follows: 

1) within its own m-space, treated as a single minterm; 

sum of all of the partial spectral coefficients corre- 

the function, plus the correction factor -(w - 1) 

so = 7, SI = -1, s 2  = - 1 ,  s 3  = -1 

~4 = - 1 ,  ~ 1 2  = -1 ,  s i 3  = -1, ~ 1 4  = -1  
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- x l $ ~ 3 $ 4  - 
‘XlXX 01 

X X I l  ON 

l X l X  ON 

*1X00ON 

m D c  - 
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XlXX ON 
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loo0 ON 

XlXX ON 
‘XOI 1 ON 
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mDc 

XIXXON 
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10x0 ON 
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Fig. 3 .  Stages of the execution of the algorithm to generate a disjoint cube 
representation. (a) Input array. (b) Cube [4] #, cube [ I ] .  (c) Cube 121 #, 
cube [ I ] .  (dj Cube 131 #, cube [ I ] .  ( e )  Cube [3] #, cube 121. (0 Merge. 

$23 = -1, $4 = -1, s3q = -1,  SI23 = -1, 

SI24 = -1, SI34 = - 1 ,  $234 = -1, 

s1234 = - 1  

2) within the full n-space of Boolean function F (par- 
tial spectral coefficients): the same as within its own 
m-space since it is a single minterm. 

In order to obtain the values of all of the spectral coef- 
ficients of the whole function, except so, the columns of 
partial spectral coefficients corresponding to all cubes de- 
scribing the function are added (step 2 of the algorithm). 
The value of so is obtained by the addition of all partial 
spectral coefficients with the correction factor (step 5 of 
the algorithm). Since the considered function is incom- 
pletely specified and not all the minterms are don’t cares, 
the steps 3 and 4 are not performed. 

The resulting spectrum is shown in the bottom row of 
Table I1 and, as can be easily checked, is exactly the same 
as the one obtained by using the standard trivial functions 
in Example 1 and by matrix multiplication in Example 2.  

VI. SPECTRAL COEFFICIENTS CALCULATION FOR 
SYSTEMS OF BOOLEAN FUNCTIONS 

The algorithms from Sections I1 and V can be modified 
easily to calculate Walsh spectra of systems of Boolean 
functions. Because the method from Section I1 (Kamaugh 
maps) is limited to six variables, only the extension of the 
Algorithm 2 is presented. 

The calculation of a Walsh spectrum for a system of 
completely specified Boolean functions was presented in 
[25] for the R coding. There, the calculation of the R 
spectrum of a system of incompletely specified Boolean 
functions is considered, with the following restriction. 

Restriction 1 : When a system of incompletely specified 
Boolean functions has don’t care minterms, then all of the 
functions of the system have the same don’t care min- 
terms (i.e., the same cells of Kamaugh maps are not spec- 
ified in every function of the system). 

The method presented in [ 2 5 ] ,  however, has all the 
drawbacks of the classical approach of spectral methods 
since it uses matrix calculation methods. 

In this section the representation of systems of Boolean 
functions with the above restriction on a system of incom- 
pletely specified Boolean functions is presented for the 
first time for S coding. Since the method with the restric- 
tion is of little practical use, the representation of systems 
of incompletely specified Boolean functions that can have 
any don’t care minterms is introduced. When applied to 
a system of Boolean functions, the method still has all the 
advantages described in the previous section. 

Let us assume that the functions in the system are in 
the order: F [ l ] ,  F[2], F [ 3 ] ,  * * , F [ b ] ,  where b is the 
number of the functions in the system and the function 
F[b]  is on the rightmost position in the system. Then, for 
the system of completely specified Boolean functions and 
for the system of incompletely specified Boolean func- 
tions, with Restriction 1, the following properties hold: 

6.1) The contribution of the spectrum of the function 
F [ i ] ,  i = 1, 2, , b to the total spectrum of a 
system of Boolean functions SToT is equal to the 
spectrum SLrl of the function F[ i ]  calculated by 
Algorithm 2, which in tum has to be modified by 

6.2) The total spectrum of a system of Boolean func- 
tions STOT is equal to the sum of all the modified 
spectra of all the Boolean functions in the system. 

The contribution of the spectrum of the ‘‘i th” function 
F[ i ]  to the total spectrum of a system of b Boolean func- 
tions is denoted in (29) by SXL1,  and the spectrum of the 
“ith” function calculated by Algorithm 1 is denoted by 

* 

(29). 

S I , , , .  

s&, = 2” - x s ,[,, . 
When the more general and practical case of a system 

of incompletely specified Boolean functions having arbi- 
trary don’t care minterms is considered, the system has to 
be represented by two spectra-one corresponding to the 
don’t care minterms of the system, the second corre- 
sponding to the true minterms. The need for two separate 
spectra for a system of arbitrary incompletely specified 
Boolean functions arises from the properties of the 
Rademacher-Walsh matrix T .  If Properties 6.1 and 6.2 
were applied to don’t care and true minterms of an arbi- 
trary system of incompletely specified Boolean functions, 
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TABLE 111 

s2 s3 s4 s12 s13 s 2 3  s24 s34 SI23 s124 S I 3 4  s 2 3 4  SI234 

SI21 -10 2 6 2 -2 2 - 2  2 2 - 2  -6 -2 2 -2 -6 -2 
SI11 6 2 -2 -2 2 2 -6 6 -2 2 10 2 -2 -2 2 -2 

12 4 -4 -4 4 4 -12 12 -4 4 20 4 -4 -4 4 -4 
ST,,,, 2 6 2 -2 2 6 -14 14 -2 2 14 2 -2 -6  -2 -6 
GI 

TABLE IV 

SO s2 s3 s4 SI2 SI4 s 2 3  s 2 4  s 3 4  S I 2 3  SI24 S I 3 4  s234 SI234 
~~ ~ 

SI21 7 - 1  - 1  - 1  - 1  -1 -1 -1 -1 -1 -1 -1 - 1  - 1  - 1  - 1  

s;] 12 0 4 4 4 0 0 0 - 4 - 4 - 4  0 0 0 4 0 
S,Il 6 0 2 2 2 0 0 0 - 2 - 2 - 2  0 0 0 2 0 

ST,,,, 19 -1 3 3 3 - 1  - 1  - 1  -5 -5 -5  - 1  -1 - 1  3 - 1  

then the original system of functions would not be re- 
trieved when the inverse transform is applied. For ex- 
ample, the contribution of the don’t care minterm for the 
function F[b  - 11 to the total spectrum of the system of 
Boolean functions would be, in a case of using both Prop- 
erties 6.1 and 6.2, the same as the contribution of the true 
minterm of the function F[b]  . Therefore, Properties 6.1 

00 
o1 
11 

(a) (b) (C) 

and 6.2 can be applied to an arbitrary system-of incom- 
pletely specified Boolean functions only after represent- 
ing each of the functions in this system by two arrays of 
cubes: one containing only don’t cares minterms, the other 
containing only true minterms. The total spectrum has to 
be calculated for each of these arrays separately. Then, 

”% 01 11 10 

0 0 - 0 1 0  

0 1 1 1 1 1  

1 1 1 1 1 1  xlFzm 1 0 1 0 1 1  ( 4  

x’J80 01 11 10 
*1?(2 

0 0 0  0 1  0 

0 1 1 1 1 1  

1 1 1 1 1 1  m 1 0 1 0 1 1  

..,qW, 
0 1 0 0 0 0  

1 1 0 0 0 0  

1 0 0 0 0 0  H+H 
( f )  

the system of incompletely specified Boolean fUnctions 
should be processed by the following algorithm. 

Algorithm 3: Spectral coeficient calculation for a sys- 
tem ofarbitrary incompletely spec$ed Booleanfunctions: 

Fig. 4. Incompletely specified Boolean functions F [l]  and F [2]. 

F [  1 1 )  and Fig. 4(d) (function F[2] ) .  The sets of owmin- 

Represent each function in the system of Boolean 
functions by arrays of disjoint ON- and Dc-cubes ac- 
cording to Algorithm 1 .  
Calculate the spectrum of an array of ON-cubes for 
each separate function F[i] according to Algorithm 
2. 
Calculate the total spectrum ST,To, of the system 
by using Properties 6.1 and 6.2. 
Calculate the spectrum of an array of Dc-cubes of 
each separate function F [ i ]  according to Algorithm 
2.  
Calculate the total spectrum SToTDc of the system 
by using Properties 6.1 and 6.2. 

Example 10: An example of the calculation of spectra 
SToToN and SToT DC of a system of two incompletely spec- 
ified Boolean functions (b = 2) having four variables is 
shown in Tables I11 and IV. The function F[2] in this 
example is the same as the one used in Examples 1, 2 ,  3, 
and 9. The function F[1] is taken from [13]. Both func- 
tions have no restriction in the choice of don’t care min- 
terms, therefore Algorithm 3 has to be performed. The 
original functions are presented in Fig. 4(a) (function 

terms that describe ON-cubes is presented in Fig. 4(b) and 
Fig. 4(e). The sets of dc-minterms are shown in Fig. 4(c) 
and Fig. 4(f). The corresponding arrays of disjoint ON- 
and Dc-cubes are generated by Algorithm 1 (step 1) .  The 
execution of the second step of Algorithm 3 for owcubes 
is shown in the first two rows of Table 111. The modified 
value of the spectrum of function F[1]  is shown in the 
third row of Table I11 (step 3). Since for the function F[2] 
the modified value of spectrum is equal to the original one 
then this value is not repeated in the table. The total spec- 
trum SToToN of this system of functions is the sum of rows 
one and three and is shown in the bottom row of Table 
111. 

The execution of the fourth step of Algorithm 3 is 
shown in the first two rows of the Table IV. The modified 
value of the spectrum of function F[1] is shown in the 
third row of Table IV (step 5). Since for the function F[2] 
the modified value of spectrum is equal to the original 
one, this value is not repeated in the table. The total spec- 
trum SToTDc of this system of functions is the sum of rows 
one and three and is shown in the bottom row of Table 
IV . 

A system of completely specified Boolean functions or 
incompletely specified Boolean functions with Restriction 
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1 can be represented by one spectrum. For this, Algo- 
rithm 3 can be simplified to Algorithm 4. 

Algorithm 4: Spectral coeficients calculation for a sys- 
tem of an incompletely specijied Boolean junctions (with 
Restriction 1) or a system of completely specijied Boolean 
&fictions. 

1) Represent each function in the system of Boolean 
functions by arrays of disjoint ON- and Dc-cubes ac- 
cording to Algorithm 1 .  

2) Calculate the spectrum of each separate function 
F [ i ]  according to Algorithm 2. 

3) Calculate the total spectrum ST,, of the system by 
using Properties 6.1 and 6.2. 

VII. IMPLEMENTATION OF THE ALGORITHM FOR THE 

CALCULATION OF THE WALSH TRANSFORM 

The main problem of the implementation of the algo- 
rithm for the Walsh transform is the memory requirement 
for storing the whole spectrum. For an n-variable Boolean 
function the spectrum S has 2" coefficients. Up to now, 
all other algorithms known to the authors have to keep the 
complete 2" values of the spectral coefficients in the main 
computer memory. Thus, only Boolean functions with up 
to 18-20 literals could be processed [54]. Therefore, we 
have designed several algorithms for the generation of the 
spectral coefficients that do not keep all the coefficients in 
the computer memory at the same time. Since the trade- 
off exists between the execution speed and the area of the 
required memory, the concept of the transfer of control 
among the algorithms has been introduced. The user's op- 
tions and the cooperation among the algorithms are shown 
in Fig. 5 .  The dashed arrows denote the options that can 
be selected by the user, while the continuous arrows de- 
note the transfer of the control among the algorithms. 

First, the user can choose options from one of three 
generations: of the Whole Spectrum, of Certain Orders of 
Coefficients (recall the definition of the order from Prop- 
erty 3.4), or of Some Spectral Coefficient. When the op- 
tion of Some Spectral Coefficient is chosen, the coeffi- 
cients are generated directly from the cubes. In the other 
cases, the user has to choose whether the orders of coef- 
ficients should be generated according to Algorithm A 1 
or A2. Then the program tries to allocate the necessary 
memory space for the required number of spectral coeffi- 
cients nc according to the chosen algorithm. The value of 
nc is calculated by the formulas shown in Fig. 5 ,  where 
n denotes the number of input variables of a Boolean 
function, and o the current order of coefficients. When the 
memory allocation fails then the successive algorithm 
having smaller memory requirements is automatically 
chosen (transition from Algorithm A1 through A2 till A2 
or from Algorithm A2 to A3). When the coefficients of 
the next order are going to be generated the transition from 
Algorithm A3 to A2 is always possible and always tried 
by the program. The transition from Algorithm A2 to A1 
is tried only if the Previous Order option has been chosen. 

Whole Specmm 
Cemn Order 

Prcvious Order 
First Order 

Fin1 Order Single Cwff previous Order 

I I 

only I f  previous order is chosen 

Fig. 5 .  Mutual relationships among the algorithms, the possible transi- 
tions and required memory size for each algorithm. 

A .  Algorithm A I :  To Generate Indexes from the 
Previous Order 

Algorithm A1 is optimized for the case when there are 
many cubes having many DC literals. This algorithm has 
to store in the memory two adjacent orders of spectral 
coefficients and the corresponding indexes due to the gen- 
eration of the current order from the previous order. 

The main part of Algorithm A1 is the generation of the 
indexes for the next order of spectral coefficients, since 
coefficients are generated in the Rademacher ordering. 
This part of the algorithm takes only such indexes of the 
previous orders for which the MSB (Most Significant Bit) 
is equal to 0, shift them to the left, and adds one. Next 
the part of the new order just generated is shifted again to 
the left. with the above restriction still valid. Thus, the 
next block is created. The procedure continues until the 
last index is generated. The details of the implementation 
of this procedure are described below. 

Procedure: Generation of the indexes from the previous 
order: 

1. do for indexes of the whole previous order 
if (MSB of index is 0) 
then: shift index to the left and add 1. 
else: go to next index. 

2. do for each new generated block 
if (MSB of index is 0) 
then: shift index to the left. 
else: go to next index. 

An example of this procedure is shown in Fig. 6. It is 
assumed, that the cubes have 5 literals and therefore the 
length of required indexes is also 5. The indexes of the 
third-order coefficients are generated from the second or- 
der. The circled areas mark the indexes having the MSB's 
equal to 0 on which the operations described by arrows 
are executed. Since is equal to (:), then the number 
of indexes of the second and third orders is equal to 10. 
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0 0 1 0 1  

I 11000 I 

shift 1 bit left 
udaddl.  

lhird order : 

0 1 0 1 1  

1 0 0 1 1  

0 1 1 0 1  -la 10101  I 1 1 0 0 1  I 
0 1 1 1 0  

1 0 1 1 0  E 3  1 1 0 1 0  

I 1 1 1 0 0  

Fig. 6. Generation of third-order indexes of coefficients from the second 
order. 

In the next part of Algorithm A l ,  the values of the 
spectral coefficients are generated by comparing the in- 
dexes to the cubes. To speed up the comparison (i.e., 
checking if the index of the spectral coefficient coincides 
with the cube), the notation of the currently processed 
cube is changed. The data about the cube is stored in two 
long variables: valuex and value0. The idea of the new 
notation is to make it the same as the notation for the 
indexes. In the variable valuex, 1s are stored only at the 
positions where the cube has X’s; otherwise the pattern is 
filled with 0’s. In the variable value0, 0’s are stored at 
the positions where the cube has Os, otherwise the pattern 
is filled with 1s. If the intersection between the index of 
the spectral coefficient and the variable valuex is not 
empty, the value of the spectral coefficient must be zero. 
In the other case, the number of 1’s in the intersection of 
the index of the spectral coefficient and the complement 
of the variable value0 determines the sign of the value of 
the spectral coefficient. 

Example 11: In Fig. 7, the valuex and the value0 are 
shown for a certain cube. Because the intersection of val- 
uex and the index is empty, the intersection between the 
index and the complement of value0 has to be performed. 
Since the result of the second intersection has an odd 
number of Is and the fifth order is odd, the sign of this 
coefficient (sI4) has to be minus. 

B. Algorithm A2: To Generate Indexes from the First 
Order 

Algorithm A2 is faster for the case when the cubes in 
the array have a small number of dc literals. It is a recur- 
sive algorithm to generate the indexes and values of the 
spectral coefficients of one order. The number of levels 
of recursions of the procedure is equal to the number of 
the current order. Each level of recursion changes one 
subindex (see the definition of a subindex in Property 3.4) 
of the index. 

Example 12: This example demonstrates how the in- 
dexes of the third order for cubes with five literals are 
being generated. The indexes of the third order are deter- 

&: ml index: 

valud): 0 1 1 I 1 bn 11101010101 
Fig. 7.  Generation of the values of spectral coefficients. 

mined by all permutations of three out of the five indexes 
from the first order (Fig. 8). 

Let us assume that the three variables i [ l ] ,  i [ 2 ] ,  and 
i [3 ]  hold the three subindexes of an index I of the third 
order spectral coefficient for some cube (e.g., s i24  -, 
i [ l ]  := 1, i [ 2 ]  := 2, i [ 3 ]  := 4). The numbers 1 ,  2 ,  and 
3 of i [ ]  indicate the level of the recursive procedure. Be- 
cause the value of the spectral coefficient is the same as 
the values in the first order, only its sign has to be deter- 
mined. It is calculated by multiplying the sign of the cur- 
rent spectral coefficient with the signs of the spectral coef- 
ficients of the first order, which are determined by the 
variables i[ 1 3 ,  i [ 2 ] ,  or i [ 3 ] .  When the recursive procedure 
reaches the third level or executes the loop in the third 
level, a new spectral coefficient (its index and value) is 
stored. When the procedure is entered for the first time, 
the subindex i [ l ]  is set to 1 ,  and the sign that has been 
determined by the order is multiplied by the sign of siIll. 
The variable indexl is the index of the spectral coefficient 
si[]]. Because it is not yet in the third level, the procedure 
is called again. Then the subindex of the next level, which 
is always greater by 1 than the subindex of the previous 
level, is generated. This happens only after changing the 
level of the procedure. Thus, i [2] is equal to 2 .  The sign 
is multiplied by the sign of si[2l, and the index of si,21 is 
added to the indexl. Then, in the next level, i [ 3 ]  = 
i [2] + 1 is set. The sign is multiplied by the sign of siI3], 
and the index of si[3l is added to indexl. Now, being in 
the third level, the first spectral coefficient of the third 
order is stored. The index of this spectral coefficient is 
equal to indexl, and its value is equal to the absolute value 
of any spectral coefficient from the first order multiplied 
by the variable sign. After that, the index of the spectral 
coefficient of the first order that has just been used is sub- 
tracted from the indexl, and the sign is multiplied by the 
coefficient’s sign. Since i [3 ]  is not yet 5 ,  it is incremented 
and the loop is done again. When i [ 3 ]  = 5 ,  this level is 
finished and procedure is back in level two. Then i [ 2 ]  is 
incremented and the procedure is called again. The exe- 
cution of the recursive procedure continues until all three 
subindices i [ I ] ,  i [ 2 ] ,  and i [3] have their highest possible 
values. All stages of this procedure are shown in Table 
V. 

C. Algorithm A3: To Generate Order Step by Step 
Algorithm A3 is called when the memory allocation for 

Algorithm A2 fails. Algorithm A3 needs only enough 
memory space for one single spectral coefficient to gen- 



FALKOWSKI et al .  ' CALCULATION OF RADEMACHER-WALSH SPECTRUM 1221 

TABLE V I  
GENERATION OF THE FIRST-ORDER A N D  DC S P E C T R A L  COE,PFICIFNTS 

0 0 1 0 0  S" s, SZ S, s4 

0 1 0 0 0  
10000  XOI I ON 12 0 12 4 4 

Fig. 8. Indexes of the first-order coefficients. 0000 DC 31 3 I 3 - 1  

x 1xx ON 0 0 16 0 0 

10x0 ON 24 4 8 4 0 

TABLE V 
G F N F R A T I O ~  OF THF INDFWFS OF T H F  

P R O C E D L R ~  
THIRD O R D E R  B Y  THF RFCLRVVF 

[ [ I 1  1 I21 1 I31 

I 2 3 
4 
5 

3 4 
5 

4 5 
4 
5 

3 

4 5 
4 5 

2 

3 

erate one complete order of spectral coefficients. This al- 
gorithm is similar to Algorithm A2. One difference is that 
no memory is allocated before calling the procedure to 
generate the index and the value for each spectral coeffi- 
cient. This procedure is almost the same as the procedure 
for Algorithm A2. The second difference is that if one 
index is obtained, the value of the spectral coefficient for 
the whole array of cubes is immediately generated. This 
spectral coefficient is stored immediately on the hard disk, 
and the next spectral coefficients are calculated. 

D. Algorithm A4:  To Generate Certain Spectral 
Coeficients 

In order to generate only certain spectral coefficients 
out of the whole spectrum, it is not necessary to create 
the indexes. Therefore Algorithm A4 does not use the long 
variables used in previously described algorithms to store 
the indexes. Since the implementation of the disjoint al- 
gorithm has also not been limited to a particular size of 
cubes, it is possible to generate separately spectral coef- 
ficients for cubes with an arbitrary number of literals. The 
literals necessary according to the given index are used 
directly in calculating the spectral coefficient in order to 
determine the sign of the value of this coefficient. The 
value itself is calculated according to the number of X s  
in the cube (denoted by the symbol p in Section V). For 
an array of cubes, it is simply done for each cube in tum, 
and the values are added to get the final value of the spec- 
tral coefficient. 

VIII. EXECUTION OF WALSH TRANSFORM PROGRAM: 
A COMPLETE EXAMPLE 

The array of disjoint cubes generated in Example 3 and 
used also as an example for Algorithm 2 (see Fig. 3) is 
the input data for the execution of the Walsh transform's 
program. 

-9 3 I 3 - 1  

TABLE VI1 
GENERATION OF T H E  SECOND-ORDER SPECTRAL COEFFICIENTS 

XlXX ON 0 0 0 0 0 0  
4 4 -4 0 0  XOll ON 0 

10x0  ON 4 0 4  4 0 -4 
0000 DC 3 - I  3 3 - 1  -5 

3 - I  3 3 - 1  -5 

It is not shown how the orders of spectral coefficients 
are generated because it has already been explained in 
Section VI1 (Fig. 5). However, it should be stressed that 
in Table I1 the spectrum for each cube is shown sepa- 
rately, while using either Algorithm AI or A2 immedi- 
ately adds the values of the spectral coefficients of a cur- 
rently processed cube to the already calculated values 
corresponding to the previous cubes. By using Algorithm 
A1 or A2 only one complete order of the spectral coeffi- 
cients can be created at a time. In the beginning, the coef- 
ficients of the first order as well as the DC coefficient (so) 
are generated, as shown in Table VI. After that, the next 
consecutive order is generated, as shown in Table VII. 
The same is done for the last two orders. The complete 
spectrum is shown in Table VIII. 

IX. MEMORY A N D  TIME REQUIREMENTS FOR WALSH 
TRANSFORM PROGRAM 

Table IX shows only the generation of the whole spec- 
trum for up to 20 literals in each cube. It could be possible 
to do this for up to the program maximum, i.e., 32 liter- 
als. But even with only 20 literals one needs 3 Mbyte to 
store the complete spectrum on a hard disk. This problem 
can be partially overcome by using compression algo- 
rithms to store the spectrum, but it is inherent to the spec- 
tral methods that the number of coefficients grows expo- 
nentially. 

To compare the processing time dependent on different 
arrays of cubes for the Sequent SYMMETRY 27 com- 
puter, Table IX is shown below. 

The meaning of the abbreviations in Table IX is as fol- 
lows (all values are in  seconds): 

first indexes are generated from the first order 
(Algorithm A2), 

previous indexes are generated from the previous or- 
der (Algorithm Al ) ,  

U elapsed user time, 
Y elapsed system time. 
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TABLE VI11 
COMPLETE RADEMACHER-WALSH s SPECTRUM OF FOUR-VARIABLE BOOLEAN FUNCTION 

s2 s3 s4 s13 s14 s23 s34 s123 S I 2 4  SI34 &34 s1234 
~ 

-16 3 7 3 - 1  3 - 1  3 3 - 1  -5 - 1  3 - 1  -5  - 1  

TABLE IX 
EXECUTION TIMES 

SYMMETRY 27 

Literals Type Previous First 

16 
16 
18 
16 
18 
20 
20 
18 
20 

xx 
1x 
xx 
1 1  
1x 
xx 
1x 
1 1  
1 1  

6 . 3 ~  0 .7s  
8 . 9 ~  0 . 9 s  

2 7 . 1 ~  3.1s 
7 9 . 1 ~  6 .0s  
3 5 . 1 ~  3.8s 

111.511 21.3s 
137.811 26.0s 
339.5u 33.9s 

1458. lu  69.9s 

9.9u 
2 1 . 7 ~  
37.4u 
46.511 

106. lu  
1 4 8 . 2 ~  
4 3 5 . 2 ~  
182.711 
1 3 2 . 2 ~  

1.8s 
3.8s 
2.8s 
7.8s 
4 .5s  

32.4s 
110.2s 
12.4s 

144.0s 

The first column of the table shows the number of lit- 
erals per cube. Each array consists of ten cubes of the 
same type, where the type is determined in the second 
column of the table (XX-cube contains many Dc-literals, 
1X-cube contains some Dc-literals, 1 1-cube contains no 
Dc-literals). In order to obtain time data, a set of such 
examples has been tested. The time values are sorted ac- 
cording to their length. 

Table IX shows one reason why different algorithms 
have been implemented for the generation of the whole 
spectrum. It has been illustrated that any no single algo- 
rithm, other than the one generating single coefficients, 
can give a solution for all cases while the combination of 
algorithms always gives the solution (the usage of the 
“worst case” single coefficient algorithm for every data 
would be inefficient). 

The following conclusions can be derived from the ob- 
tained data. 

One can observe that the calculation of cubes with 
many X s  is much faster than with a small number of 
X S .  

The algorithm that generates the spectral coefficients 
out of the previous order is up to three times faster 
for cubes having many Xs,  while the algorithm to 
generate the spectral coefficients out of the first order 
is up to two times faster for generating cubes that 
have few Xs. 
By comparing the obtained results with the ones 
given in [51] (where the calculation of the spectrum 
for the function represented in the form of the truth 
table and of 18 literals took 382 s on VAX 11/780), 
one can observe that for the given cases our program 
is several times faster. A timinghynthesis compari- 
son with SPECSYS is not possible since the detailed 
SPECSYS data have not been published. The SPEC- 
SYS program has not been made available to the au- 
thors. 

Our preprocessing algorithm to generate disjoint 
cubes takes only insignificant time (less than 1 s) for 
all tested cases. Therefore, the time presented in Ta- 
ble IX is the total processing time, which includes 
the time for the preprocessing. By contrast, the pre- 
processor for the algorithm of [51], ‘[54] to create 
truth tables of Boolean functions takes a substantial 
amount of computer memory, and no time data has 
been published on it. 

A. Memory Analysis 
The memory requirement to calculate spectra is the 

most important factor. Because of that requirement, the 
existing algorithms according to Fast Transforms (Fast 
Algorithms) could compute only the spectrum for func- 
tions with up to 20 literals. The notation in this section is 
according to [56]. 

The basic memory is the same for the introduced Al- 
gorithms A1 , A2, and A3 for the calculation of the Walsh 
spectrum, and has to store the array of cubes, the program 
itself, and the necessary number of coefficients. 

The maximal memory requirement to store the array of 
cubes is given by the number of ON- or ON/DC minterms 
which specify the function. Usually, the function is rep- 
resented by cubes that are larger than minterms. Hence, 
cu I 2‘, where cu is the number of cubes and 1 denotes 
the number of literals. It was shown in [3] that the number 
of cubes cu is much smaller than 2l for practical functions. 
In the implementation, eight literals are stored in one in- 
teger variable. Hence, the following memory is necessary 
to hold the array of cubes: 

(2 bytes 1 I 8 

4 bytes 

6 bytes 

8 I 1 I 16 

16 I 1 I 24 
cu x 1 

\S bytes 24 I 1 I 32. 

The program itself uses about 50 kbytes of computer 
memory. Fig. 9(a) compares the number of spectral coef- 
ficients (nc) that have to be kept in the computer memory 
to generate a complete spectrum for three different algo- 
rithms (Al ,  A2, A3) and for the Fast Algorithms. The 
formulas describing nc that have to be kept in the com- 
puter memory are shown in Fig. 5 .  In the case of Fast 
Algorithms, nc = 2l is needed (Fig. 9(a)). To store the 
value of one spectral coefficient 4 bytes are used because 
each value is stored in a long variable. 

If there is not enough memory left during an execution 
of the program, the Algorithm A3 is used. This means 
that only the memory for one single spectral coefficient is 
necessary. Thus, the program is only limited by the mem- 
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nc 

TABLE X 

10 const 1 1  const 

1 0 . 3 ~  0.000 2929 0 . 7 ~  0.000 3418 
2 0.su 0.000 2441 I . l u  0.000 2686 

4 S I .2u 0.000 2344 2.su 0.000 2441 
10 2 . 3 ~  0.000 2246 4.9u 0.000 2393 
so 1 I .su 0.000 2246 2 3 . 3 ~  0.000 2275 2 

nc 
A 

1 2 3 4 5 1  
cient directly from the cube representation without 
reference to its contribution to the current spectral coef- 
ficient calculated. Thus, the time increases according to 
the number of literals ( I )  in the function as well as the 

(b) 

number of cubes (c):  1 0 i  :I;;;;;* 
2 

1 2 3 4 5 1  1 2 3 4 5 1  

(C) (d) 
Fig. 9. Memory requirements (nc X 4 bytes). (a) Existing algorithms. (b) 
Algorithm A I .  (c) Algorithm A2.  (d) Algorithm A3. I :  number of literals; 
nc: number of coefficients. 

necessary to store the array of cubes and the program it- 
self. The memory requirements m (1) are given by 

(30) m ( Z )  = U (50 kbytes + (2' - 1) x 8 bytes) 

g(Z, c) = const x 2' x c (33) 
where g ( I ,  c) gives the time (in seconds) depending on 
the number of literals and cubes, and const is the neces- 
sary time to calculate the value of one spectral coefficient 
for a cube consisting of one literal. Hence, the function 
g ( I ,  c) gives an upper bound for the actual processing time 
f ( L  c):  

f ( L  c) = o ( g ( L  c))  (34) 

To evaluate the constant const, the time values g ( I ,  c) 
shown in Table X have been used. 

The first column in the table indicates the number of 
disjoint cubes c, and the first row the number of literals I 
for which the spectrum has been calculated. In the second 
and third columns, the value of const is given. The ob- 
tained value is 0.000 2246 < const < 0.000 3418, where 
for a small number of cubes the calculation of the index 
of the spectral coefficient itself has a larger contribution 
to const. Then, the approximate value for const = 2- 1 2 .  

Thus, the upper bound time for the implemented algo- 
rithm is: 

g(Z, c) = 2'-12 x c. (35) 

The advantage of the Algorithm A1 and A2 in the pro- 
cessing time is shown in Fig. 10. 

For the graphic in Fig. 10, the better time of either Al- 
gorithm A2 or A1 has been used. The processing time for 
the different kinds of cubes can be given as 

m(l) = U 50 kbytes + (2' - l )  x 8 bytes 

fn(L c) = 81 ( f i x ( L  c))  = e*(fll(L c)) (36) 

where the subscript o f f  denotes the type of cubes and f 
was defined in (34). 

Because the basic part of Algorithms A l ,  A2, and A3 
is similar and the algorithms are performed for each type 
of cubes, their relative processing times are distinguished 
only by a constant. Thus, function 9 depends only on the 
number of Dc-literals in the cubes. This is caused by the 
fact that this number determines how many operations the 
algorithms must perform. 

X .  CONCLUSION A N D  FUTURE WORK 
The essential relationships between classical and spec- 

tral methods used in the design of digital circuits have 
been stated. Based on these relations, new algorithms for 

( 
+ [ ( n : l ) + ( n ; :  1)]  x 4 b y t e . j  

(32) 

where 50 kbytes is the memory required for the program 
and (2' - 1 )  means that the function is represented by all 
but one minterm. Formula (31) applies for even n ,  (32) 
for odd n .  

B. Time Analysis 
To estimate the execution time for the implementation 

of the Walsh transformation, Algorithm A3, which rep- 
resents the upper bound, has been used. This is a straight- 
forward algorithm that calculates every spectral coeffi- 
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upper bound determined 
by algorithm A3 I 

/ 
12 14 16 18 20 literals 

0 typexx Ls type1x v t y p e l l  
Fig. 10. Time comparison of Algorithm A3 versus A2 and A l .  

the generation of spectral coefficients for both S and R 
spectra for completely as well as incompletely specified 
Boolean functions have been shown. The graphical 
method for the calculation of spectral coefficients directly 
from a Kamaugh map is a powerful and efficient tool for 
functions with the number of variables less than or equal 
to six. Alternative formulas for the calculation of sI and 
r, spectral coefficients have also been presented. Such de- 
tailed interpretations of R and S spectra of Boolean func- 
tions are important not only from the point of view of 
analysis and synthesis of digital systems, but also for the 
generation of tests and design for testability. 

A new, efficient algorithm and its implementation for 
the generation of spectral coefficients have been de- 
scribed. The computer method for performing this algo- 
rithm has been implemented in the DIADES automation 
system developed at Portland State University. The 
SPECSY S (for SPECtral Synthesis System) developed at 
Drexel University on VAX 11/780 uses the Fast Walsh 
Transform for the calculation of the spectrum and can only 
process Boolean functions having up to 20 input variables 
[51], [54]. The DIADES program has no limit on the 
number of input variables of Boolean functions and it ap- 
plies the methods described in this article for the genera- 
tion of spectral coefficients of Boolean functions. 

The authors of SPECSYS program [54] have encoun- 
tered the disadvantages listed below while using Fast al- 
gorithms for calculating Walsh spectra. By implementing 
the approach described in this paper, the DIADES system 
successfully overcomes most of these disadvantages. 

The first disadvantage of SPECSYS, one which causes 
the use of excessive computer memory, is that the com- 
putation of the Walsh spectrum requires the representa- 
tion of the Boolean function in the form of a truth table 

composed of minterms. In DIADES, by contrast, the 
spectrum is generated directly from the reduced represen- 
tation of Boolean functions (arrays of disjoint cubes) [2], 
[8], [46]. Since the number of such cubes can be consid- 
erably smaller than the number of minterms, the memory 
requirements can be reduced significantly. The advan- 
tages of this kind of representation, especially the fact 
that for practical functions the number of disjoint cubes 
is much smaller than the number of minterms, result from 
[3]. It is also evident from Table I that the number of 
disjoint cubes of the presented functions is much smaller 
than the number of their minterms. 

The second disadvantage of SPECSYS is that all spec- 
tral coefficients must be calculated at once. In our ap- 
proach, the entire spectrum, if required, can be computed 
incrementally for groups of coefficients. Therefore our 
computer method is very efficient for the calculation of 
only the few selected spectral coefficients, which is all 
that is needed in many synthesis methods [4], [lo], [21]- 
1261, [311-[351, 13819 [481, [491, [531, [551. 

The third disadvantage of SPECSYS is that it can use 
only completely specified Boolean functions. DIADES 
operates on systems of both completely and incompletely 
specified Boolean functions. The other advantages of the 
algorithms implemented in DIADES have been described 
in the article. The only drawback of the DIADES ap- 
proach is the exponential growth of hard disk storage re- 
quirements with the increase in the number of coeffi- 
cients. This is inherent to the nature of the problem. In 
SPECSYS the storage requirements are even worse, since 
it uses only internal memory. The implementation of the 
described algorithm allows the calculation of the spec- 
trum for completely and incompletely specified Boolean 
functions having up to 32 variables. Since our system can 
calculate coefficients either by groups or separately, in the 
worst case it requires only enough memory to hold the 
first order spectral coefficients. The n I 32 constraint re- 
fers to the generation of either a complete order or the 
whole spectrum. It should be noticed, however, that even 
for the cases when n is limited, it can be increased when 
a list structure that describes the indexes (see Property 
3.5) is created. With such a list, the spectrum of a 
Boolean function having an arbitrary number of variables 
can be calculated, the only limitation being the memory 
available on the hard disk. When the coefficients are cal- 
culated separately, even with the current implementation, 
there is no limit on n since the coefficients can be stored 
in groups on the hard disk. This is, however, traded off 
for the increased processing time. When the whole spec- 
trum is not required, the algorithm can calculate chosen 
spectral coefficients for Boolean functions of an arbitrary 
number of variables. The results presented in the article 
show that our system is currently the fastest and most 
flexible spectral synthesis system designed. 

Computer algorithms similar to the one presented in this 
article have already been developed for the newly intro- 
duced Generalized Arithmetic and Adding transforms 
[ 1 11, Walsh-type transforms of completely and incom- 
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pletely specified multiple-valued input binary functions 
[12], and the Reed-Muller transform [17]. The decom- 
position and linearization methods for the spectra of sys- 
tems of incompletely specified Boolean functions with 
Restriction 1 are presented in 1251. A suggested goal for 
future research is the development of new decomposition 
and linearization methods for systems of arbitrary Bool- 
ean functions. One possible approach to this problem is 
to apply the known methods of [25] to STOTON and STOTDc 

in turn. More investigations are needed in this area. 
The fundamental formulas presented in Section I1 are 

very useful when used for the investigation of new trans- 
forms, relations among various transforms, and the rela- 
tionships between classical logic analysis and synthesis 
methods and spectral methods, especially when one at- 
tempts to explain the meaning of new concepts using well- 
established notions. Understanding these principles gives 
us the working tool to translate in both directions the no- 
tions of classical and spectral theories, design of new 
hardware realizations for various transforms (including 
also those that are different from Walsh type), testing pro- 
cedures, and synthesis methods. 

The interpretations and algorithms, analogous to those 
presented in Section 11, for only sI and rI spectral coeffi- 
cients can be derived in a similar way for the weighted 
sum of the spectral coefficients as well as for the autocor- 
relation function of the Boolean function [34], [48], [49]. 
Both these parameters of Boolean functions have been 
found very useful in testing. For example, the testing of 
programmable logic arrays by the weighted sum of spec- 
tral coefficients provides 100% coverage of all single 
stuck-at faults and very high coverage of multiple-faults 
1481 * 

The research summarized here will have an impact of 
the application of Boolean and multiple-valued input logic 
not only in the synthesis, analysis, and testing of digital 
circuits but in areas of pattern recognition and signal pro- 
cessing as well. The goal of future research is to develop 
new decomposition methods for systems of incompletely 
specified Boolean functions based on the representation 
of the Rademacher-Walsh spectrum presented. The prop- 
erties of such decompositions make them very suitable for 
design using FPGA’s 1.541. A major advantage of the ap- 
proach to Walsh-spectrum calculation presented here is its 
convenience for computer implementation and its ability 
to yield solutions to problems of very high dimensions. 
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