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ABSTRACT

A Concurrent Finite State Machine (CFSM) is a network of Finite
State Machines, each FSM from the network has an arbitrary number of
symbolic input and output ports that communicate to other FSMs and to
the outside world. Such machines include, in particular, FSMs with
counters, stacks, subroutine registers, encoders and decoders. Program
AE, Assignment Expert, is described, which finds the encodings of input
ports, output ports and internal states of the FSMs. It finds the solution to
the constrained problem of simultaneous input/output/internal-state
assignment of CFSMs. It is a two-pass method: a very fast modified qua-
dratic assignment algorithm for graph embedding is first iterated several
times, using diffcrent quality functions and realization-related cost func-
tions. Next, the knowledge-based, rule-implemented, optimizing transfor-
mations are executed. To improve the results, the technology-related cost
of the logic mapping is used in the optimization loop. This technique is
particularly useful to implement Jarge concurrent state machines realized
using several instances of new types of Programmable Logic Devices
(PLDs).

1. THE CONCURRENT FINITE STATE MACHINES

A Concurrent Finite State Machine (CFSM) is a network of Finite State Machines
(FSMs) that communicaie through their input and output signals. Outputs of some
machines are inputs to another ones, input signals can be also shared among the FSMS.
The DIADES system {57,581 describes a digital circuit, usually a controiler, as a CFSM.
A CFSM is realized with one or more PLD devices. There is a need to create design
methodologics for efficicnt realization of such machines.

The general abstract model for a single FSM M; from the CFSM network is one
having an arbitrary number of symbolic input ports: IP, , ..., IP,, and symbolic output
ports: OP ..., OP,, . The component machine of a CFSM can be a Mealy or (more
often) Moore type. The component Mealy FSM is defined as follows:
M;=<IPy,..IP,,IS\', .., IS, , DI}, A;, OP\, ..., OP,,, 0S|, ..., 08}, DO;, &, \; >,
where:

- P, ..., IP, are symbolic input ports,
- ISF = {11 I e I¥)), s=1,.,k0, s the set of the symbolic input values (sym-
bols) of port IP;, j=1,..n.
- DI; is the set of (dircct) logic input signals (binary),
- A; is the sct of symbols of states,
- DO; is the set of (dircet) logic output signals,
- 0§} =(0Y,.. 0% ,A..,O"l], s=l,...,g7, is the scts of the symbolic output values
of port OP;, j=1,.m.
- 8 =18y x .. xS, x L(DI;yx A; --> A; is the transition function,
- L(DI)is a togic function on sct of variables Df;,
- A =18y %L xS, XLDL) X A ~> LIDO) X ... 0, X ... x 08, xDO;
is the output function,
L(DO;) is a logic function on sct of variables DO".
The assignment problem for a component machine M; is to find a code code(S;) (a
binary sequence) for cach ol the symbols §; from the sets: A;, I8, j=1,..,n;,and OS‘j,
J=1,...m;. (cach symbol in cach port needs to be encoded). Assigning codes to sym-
bols from A, is called the siate assignment. Assigning codes to symbols from IS/},
J=1....m;, is called the input port assignment (input assignment). Assigning codes to
symbols from QS ‘i, i=1,..my, is called the owtput port assignment (output assignment).
In general, assigning a code code Lo any symbol § will be called assignment or encoding
of this symbol. Sometimes some of the codes are given already in the initial specification
of the machine (for instance, this happens in classical machines where inputs and outputs
are initially cncoded). Therelore, the direct input and output signals have been intro-
duced to our modecl.
The CFSM is delined as a network of component FSMs:
CFSM =<{M;, i= LR >,
where:

{M;)} is a set of component FSMs,

- R=0QPx[P, x. xIP, (where OP=uU OP*,i= l,.,m)) is the relation of con-
necting the output ports (o input ports (one output port can be connected to any
number of input ports).

Let us observe, that in this model a classical FSM M = <X, A, Y, 8§, A> with one input

set X and one oulput set Y, realized using D type flip-flops, becomes a machine with two

input ports: /Py, /P, two output ports: OP;, OP 5, and the following contraints:

A=]§, =08, (loop [rom output t0 input), Y = 0S5, X = IS5,

IPy and OP are called the feedback pair of ports. Let us observe that the output port

from this pair can be dircctly used as an input port by some component machine other

than M (essentially, this happens quite often in concurrent state machines that realize, for
instance, the Peuri Nets).

Let us obscrve that since the component machines from the network are interre-
lated through the ports - the assignments of their ports are also related. For instance, if

the port OP, of machinc 44 is connected to the port IP 4 of machine M4 then finding a
set of codes for symbols (rom 0S?, will mean using these codes also for /S74. Let us
also observe that if all input and output ports of a component machine M; (other than the
feedback ports) become encoded as the result of assignments in all the component
machines that sharc ports with A, then the assignment problem of M; becomes a classi-
cal state assignment problem of encoding only the internal states of M;. Let us finally
observe that cach machine of CFSM can be in particular case a purely combinational
logic. This makes the above model very general, it includes many practical realizations of
conwrollers, discussed in literature and listed in the next section.

2. REALIZATION OF CFSMS IN PLD. THE ASSIGNMENT PROBLEM.

A Fan-In OR Constrained Logic Realization is one, like in a PAL or a EPLD,
where therc is a Hmited (an-in for the OR level of logic, but practically unlimited fan-in
for the AND level.

The following constraints must be taken into account when designing state
machines using PALs or EPLDs ((rom now, we will use a generic term PLD to all such
devices).

1. Most ol the conunercial registered PLDs implement only the D-type flip-flops.

This type is still the most popular among the high speed PLDs.

2. For the 20 and 24 pin PLDs, Lhere are at most eight registered outputs. Hence, this
will limit how large the FSM can be.

3. Each D-inpul of the above cight registered outputs has at most eight products in the
sum term. This constraint severely restricts the design as well.

4. The number of inpuis is limited to 21 and is found sufficient for most of the
machines designed in practice at the board level.

5. Evenif in the ncwest PLDs the numbers and types of flip-flops, inputs and outputs
are larger, the basic design contraints and cost functions remain of the same nature.
Becausc of these restrictions, only a small and medium size FSM can be designed

using a single instance of a PLD. This is, however, not a problem for two reasons:

1. From our personal cxpericnce, the component FSMs of less than 15 inputs and 8
states are frequently encountered in the board level design.

2. Larger machines can be decomposed to such machines using the methods recendy
developed {2,25,57,74,751.

In addition, each component machine has normally more than one output signal. Tt
is then obvious that the oulpul pins arc scarce resources in the PLD-based FSM design.
As the consequence, the outputs of the machine are normally encoded as the state vari-
ables 1o save the 1/0 pins for some extra functions (either input ot output). This design
style is especially practical for realizing CFSMs.

With this design style, the designer knows often in advance the minimum number
of the flip-flops that are o be uscd [or each component FSM, and all that is necessary is a
method to assign binary codes to the state variables, such that the excitation functions
described by the Boolcan cquations will fit into the device.

At the moment, there are several programs available for the state asssignment of
classical FSMs. The well-known Kiss [17,19,21,22], Mustang [24], and NOVA [70] are
in the public domain. Stash (INTEL) (13}, Capuccino (IBM) [20,23] and Mustard
(AT&T) [72,73] arc proprictuy. However, often, the tools that we are familiar with
(Kiss, Mustang, Nova, Stash), do not take sufficiendy the fan-in constraints, that exist not
only for the PLDs but also for other design styles, such as the multi-level logic.

It has been shown that there are several advantages of realizing the excitation logic
of a PLD-realized FSM in the form in which the AND plane is done using the PLA-like
regular layout plane but the OR plane is absent: OR gates are composed of single fan-in
constrained cells, also gates other than OR (such as AND/NAND, EXOR, eic.) are used.
isi singly taken into account in new PLD architectures. Also, some other
exolic logic cclls are becoming popular, such as the Conditional Decoder gate in the
recently introduced CY7C361 device from Cypress Semiconductor, intended to realize
concurent state machines, Regular Expressions, and Petri Nets.

When realizing the logic for the microprogrammed state machines (the hybrids of
microprogrammed controllers and state machines, they inherit best properties of both
their parcnt machines - sce |2]) one has to assign, in some variants, not only the internal
states, but also the input states and the output states of the machine. In such cases the
state machine has the input encoder, the output decoder, or both of them. In [54] several
microcoded machines are described (using both counters, and separate registered subsys-
tems for non-branching parts of FSMs). The methods introduced here would also
improve the cfficicncy of such machines. Similarly, when the FSM state minimization
technology decribed in [60] is used, the input encoder is the result of the input minimiza-
tion procedure, and Lhe problem of code assignment for this encoder exists. The metho-
dology prescnted in this paper can be used for all these design approaches as well.
Finally, many FSM design mcthodologics use networks of FSMs created from direct
CFSM description, high level description such as a Petri Net or parallel program graph
[581, FSM decomposition [43,48,35,76] or partitioning. No program currently exist for
the state assignment of CFSMs and FSMs for constrained logic realization, and programs
like Nova, Kiss or Stash applicd to component machines can sometimes give results
worse than by hand. Also, those programs do not take into account the constraints result-
ing from the structurc of the network of machines. No CAD tools exist which would
minimize the excitation functions for FSMs and especially CFSMs, realized in PLDs.
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The program described here, AE for Assignment Expert, gives very good results for
machines implemented in PLDs, it was applied with good results to large ASIC VLSI
machines and large structurally decomposed CFSMs. Moreover, it finds the solution to
the constrained problemn of simultancous input/output/internal-state assignment of con-
current FSMs, and not only the assignment of internal states, as most of the well known
methods. We hope that the results of this rescarch will be quite useful practically for the
companics that develop Lhe new generation synthesis tools for PLDs.

3. THE ASSIGNMENT QF CFSMS.

The AE program assigns automatically the internal states of all component
machines, as well as the input and output symbolic signals in all ports of the component
machines. The assignment process of a CFSM is a sequence of assignments of ports in
its component machines. Such assignments are called parrial assignments. All partial
assignments arc realized on very similar basic principles.

AE uses scveral Lypes of rules: rules to select the order of partial assignments, rules
to create input, state and output assignments. Below, the most important of those rules
will be discussed. The Lisp-implemented rules collaborate with the heuristic algorithms
(such as the Quadratic Assignment), and the algorithmic subroutines (such as the genera-
tion of all sct partitions of certain type).

The order of the ports for partial assignments is decided heuristically. Based on the
structure of the network of FSMs, and the complexity of the component machines and
their ports, the complexitics of all the partial assignment problems for all ports are
evaluated. Next, the assignment problems evaluated as the most complex are solved in
the first rate. Once the port is cncoded in one machine, its code is propagated through the
network to all machines that share this port. This improves assignment quality of all
these machincs, since the assignments for them are now performed in more realistic
terms.

The user has also the option of manually assigning codes to any selected type(s) of
states or symbolic signals. Morcover, the user has the option to restrict the set of assign-
ment choices by declaring the set of codes to select codes from in the state assignment
processes. For instance, he can cnumerate a set of codes to choose from, he can also
declare codes smatler than some selected number (codes, as the binary vectors can be
represented internally as numbers in a computer). He can, as well, declare any applicable
“n out of m" codc. (A special circuit can be added that will detect in real time that the
machinc gocs out of this code. Therefore, all single stack-at faults and most of multiple
faults are detected in a run). Finally, the user has the option to control the assignment
process by usc of the program parameters. User creates the agenda of actions to execute,
and this agenda is updated and modified by the programs of the system during the design
process. The concept of agenda is a dynamic generalization of the concept of script.
Each partial assignment is found in two phases:

- Algorithmic Hypercube Embedding, realized by program FASS (Fsm ASSign-
ment).

Knowledge-based code improvement, realized by program RUBASS (Rule Based

ASSignment).

4. THE FIRST PHASE OF THE PARTIAL ASSIGNMENT

Program FASS uscs subroutine HyperCoder which solves the partial assignment
for a hypercube of a given dimension as the modification of the Quadratic Assignment
Problem. In the quadratic assignment approach to state assignment, like in many other
combinatorial problems of logic design, one can distinguish two phases:

1. Creation of the assignment graph AG,

and formulation of the cost function CF to be optimized.

2. Solution to the Quadratic Assignment Problem for graph AG that minimizes the
function CF.

Different methods cxist in AE 1o create the AG graphs; for input ports, output ports
and internal states. Their principles are however the same: the more desired it is to have
symbols Si and Sj to be of small Hamming distance after the assignment in order to
minimize logic, the higher vaiue of a weighted cost function edge_cost(S;,S;) should be
assigned to the cdge(Si, Sj) in the AG. Different approaches have been used for the crea-
tion of the assignment graph in different papers. Saucier {Sauc 72] creates a nonoriented
weighted graph, whosc edges correspond 10 the transitions between the states of the
FSM. Moroz [Moro 70[ crcatcs an oriented graph, whose edges correspond to the
oriented transitions between the states. Although he writes about the embedding, his
work can be treated as an approximate solution to the quadratic assignment of particular
type, in which the graph is oricnted, the costs of edges are equal, and the cost function is
defined as in the quadratic assignment problem. This approach attempts to form Grey
code assignments, the method that has some additional advantages, especially for asyn-
chronous machincs. Armstrong [Arms 60, 60a} formulates a nonoriented graph, whose
edges are created according to several principles of adjacency. We created a melhod that
uscs a generalized weighted cost function for each edge of AG: the value of this function
is a weighted sum of component evaluation functions. By selecting appropriate values of
coefficients we are ablc to emulate the well known methods and compare their applica-
bility to various assignment problems. Some of the partial functions are new and
correspond to the input and output ports assignments.

Also the solution (o the sccond phase is different in our approach. In contrast to
MUSTANG which uscs the cost function:

i=NN-1 j=NN

CF= 3 ¥ edge_cosi( N HAMMING  code(S;), code(S;) ]

izl j=i+l X .
where: $ is the sct of symbols, NN = CARD(S), §;,S; are symbolic states, code(S;) is a
code of statc S;, and HAMMING is a Hamming distance of codes, we minimize the func-
tion:

i=NN-1 j=NN
CF="3 'Y edge_cost( 5.5 EVAL[ code(S)), code(S;)1+F2
where  fanction EVAL is defined as follows:

0 if HAMMING (code,codey) = 1,
EVAL (code,, code,) =

G(HAMMING (code,, code,)), otherwise

where o is a sigmoidal function of one variable.

Additionally, we minimize the number of true minterms by selecting codes that
have as few symbols "1" as possible. This is done by calculating the following F2 com-
pcne%of the cost function:

o * Y COSTON(S;) * Number_Of _Ones(code(S;))
i=1

where:

o is a parameter, COSTON is an evaluation of difficulty of creating implicants in realiza-
tion of state §; (based on the number and location of symbols S;).

Our function CF has advantages of approaches from {50,2,3,24], but can be made similar
to any of them.

Different constructive algorithms have been used by the above authors to embedd
the created by them graphs to hypercubes. They do not give any, other than heuristic,
explanations of adequacy of the proposed by them assignment (embedding) techniques.
Also, the program of Saucicr is only for asynchronous machines.

FASS embedds the AG graph to a hypergraph in such a way that the pairs of nodes
of AG that have high conncction cost in their respective edges, are placed in adjacent
nodes of a hypercube, or nodes of small Hamming distance. FASS does not assume to
design a circuit with the minimum possible number of flip-flops, as do several of the clas-
sical approaches, neither it wanis to satisfy all the groups from multi-valued minimiza-
tion, as in one of the approaches of Micheli. The dimension of the hypercube is first
selected as the minimum number of binary signals (flip-flops) necessary to realize the
given set of symbols {rom the port. Then FASS looks for the optimum realizations by
gradually increasing the number of binary signals. Only few numbers are investigated,
not much larger than the minimum number of the signals. The costs of the embeddings
to hypercubes of larger dimensions are compared. When essential worsening of the cost
occurs, the growth of the hypercube is interrupted. As the practice shows such approach
is sufficient. This approach is consistently used by FASS to all kinds of symbolic ports,
when it calls HyperCoder with corresponding AG graphs and respective hypercubes of
increasing dimensions.

HyperCoder is a constructive algorithm that successively selects nodes of the AG
graph and assigns them 1o nodes of a hypergraph. In contrast to most quadratic assign-
ment algorithms, HyperCoder does not use the explicit assignment graph adjacency
matrix (which would be very inefficient) but constructs the codes for the node symbols
step-by-step, while traversing the AG graph. HyperCoder uses several methods to select
the next symbolic node of AG: most of these methods select the node SS that is most
connected 1o the alrcady assigned symbolic nodes. The nodes in AG that share edges
with SS arc called its neighbors and denoted by neighbors(SS). A set of all codes
assigned to nodes {rom neighbors(SS) is found. Next, for each of those codes C, a set of
all candidate codes in Hamming distance one to it is generated. We call it a
candidate(C,) set of codes. A set CANDIDATES(SS) is created as the set sum of all
such candidate scts. The alrcady used codes are removed from CANDIDATES(SS).
Next, a code is sclected from CANDIDATES(SS) that locally minimizes the current
weighted cost function CF, calculated only for the SS and its already assigned neighbors
from ncighbors(SS). This code is assigned to SS and the procedure iterates by selecting
next SS node, untit all nodes were assigned.

FASS rcalizes a multi-variant synthesis concept. This means, that different design
approaches are created with use of different kinds of AG graphs and different assignment
algorithm varianis realized by HyperCoder. We have examples, that multi-variant syn-
thesis gives better results for CFSMs than a single method, iterated many times. The
principle is this: we can crcate different assignment graphs and next find the assignments
for them, using various mcthods. If we have two methods of creating the assignment
graphs, and two methods of solving them, this approach would create four solution
methods. It is usually betier o try these four methods, than to iterate one method four
times. FASS itcrates similar variants of HyperCoder, each of them using different graph
AG created from the machine’s list of transitions, slightly different cost function CF, and
rules for selecting next node. It evaluates the variants using CF. The best of the selected
according to CF variants are ncxt evaluated again, after logic minimization, this time
using a more complex cost [unction, based on the technology mapping. This function
checks also input, output, state variable and fan-in constraints, essential for the PLD real-
ization. Although this idea scems extremely obvious, surprisingly to our knowledge
nobody has yet reported its usage.

The FASS program generates quickly first approximate solution and next generates
other solutions with more sophisticated methods, using a family of evaluation functions
used in weighted functions for AG edge costs and assignment rules. This permits to have
at least one solution when the user’s allotted time is exhausted. When sufficient com-
puter time is allowed, the program can work long and there is a chance that better solu-
tion will be found (The question is this: is it worthy to work the whole weekend to find a
3% better realization of a 100 states’ machine? It seems worthy when one wants to fit the
design to a device, the chip resources are only slightly exceeded, and there is a hope that
better assignment will allow 10 realize the machine without increasing the chips count).

5. THE SECOND PHASE OF THE ASSIGNMENT.

The second pass of AE uscs the heuristic rule-based program RUBASS to locally
improve the code, generated by FASS. The rules are applied while traversing the List of
Transitions, which represents the symbolic transition graphs of all the component FSMs.
The transitions are in the form:

<input logic function of a transition> <input port symbol> ... <input port symbol>
<output port symbol> ...<output port symbol> <output logic function of a transition> ...
<output logic function of a transition>

The logic function is not nccessarily a binary vector, temary vector(with don’t cares) or a
“cube calculus” cube, as in the known approaches. The ports may be encoded, partially
encoded or not encoded at all. From such list of transitions several Transition Graphs
can be created: one for cach symbolic port being not in feedback, and one for each
feedback pair of ports. The symbols from this port become the states (nodes) of the
Transition Graph.

Firing a rule invokes other rules-candidates to the agenda. Those rules, the nodes

and the state variables where to apply them, are selected heuristically, on global or local
bases. The globally sclected arc the nodes that have maximum values of some measures:
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in first order - TOTAL, next COSTON, next the number of neighbors, and finally - the
number of adjacent arrows. The locally selected rules select new nodes of the transition
graph that arc the neighbors (in first order - the predecessors, next - the succesors) of the
previously assigned/modified nodes. When there are several equally rated choices - a ran-
dom selection of a rulc number, a node and a variable is done.

The rules used in the program have been derived from the practical experiences of
attempts to improve assignments. As mentioned earlier, the number of product terms for
aregistered output PLD (PAL) is very limited (only 8 terms). Hence, the excitation func-
tion realization exceeds often the limit imposed by the PLD architecture. The method to
assign binary codes is, therefore, very important, because the complexity of the excitation
functions and the number of the product terms in particular, are the direct results of the
state assignment. We wanted, therefore, to create a method that produces the PLD-
optimized solution as often as possible, for sizes of FSMs encountered in practical PLD
realizations.

Basically, there arc two classes of designs.

a)  The output signals arc other types of signals than the state variables.
- the outputs are functions of the inputs and state variables (Mealy model).
- the outputs are {unctions of the state variables only (Moore model).

b)  The outputs arc encoded as the state variables (Moore model).

In the class b), there is less freedom to perform the state assignment than in the
class a), because the state assignment is dictated by the output signals polarity.
Example 5.1. The stae variables for the state assignment from Fig. 5.1 are: {R1, RO}.
Output: y = R1 R0+ R1RO0. This design takes 3 output pins, whereas for the assign-
ment of the same machine shown in Fig. 5.2 the output: y = RO.
This design takes only 2 oulput pins. In this scheme, however, the state variable RO in
states B and D is dictated by the polarity of the output y.
At this point we are ready (o introduce the set of heuristic rules for state assign-
ment which attempt 10 minimize the cxcitation functions.
Definition 5.1. COSTON and COSTOFF. Let set V be a set of encoding variables. Let
Vin=(0, 1) forall V,, e V, where subscript i is for state variable 7, and subscript # is for
the current state. Let X be a sct of branching conditions, i.e. X = {A, Y, Z}. Thus
CARD(A) =3.
COSTON:
1f V; , = 0 then COSTON =0.
If V; , = 1 then. COSTON = number of product terms going to the state plus the
number of product tcrms looping in that state.
The set D in Fig. 5.3 is the set of looping product terms for that state,
COSTOFF:
If Vi, = 0 then COSTOFF = 0.
If Viy = 1 then COSTON = number of product terms going out of that state.
Example 5.2. COSTON = CARD{A,B,CD} = 4, COSTOFF = CARD(E} = 1.
TOTAL = COSTON + COSTOFF.
Note that E is a complement of D. Otherwise, the transition from state n to the next state
n+1 would not be deterministic.
Let us observe that first, before state assignment, the costs COSTON, COSTOFF and
TOTAL arc caiculated for the worst case. Next, when partial codes are already known,
these costs can be recalculated more accurately and will be never higher.
Example 5.3. The transition function for state B is shown in Fig. 5.4 and Table 5.0
below. State variables: V = {V,, Vy, V). The variables: X, Y, K, and Z are the input
variables and they constitute the branching conditions.
Implication of COSTON and COSTOFF. The COSTON and COSTOFF costs together
determine the number of product terms that need to be created for the state variable under
consideration, when the state machine transits from the current state to the next state.
Method for writing equations directly from the state graph. (analogous method is
used for the state graph in the form of transitions).
For the D-type flip-flop, the transition table is as in Table 5.1.
The following rules apply:
1) IfV,=0and V,, =0 then noequation is needed. It is a free transition.
2) IfV,=1and V., =0 and there is no looping back at V,, then no equation is
needed. It is a free transition.
3) 1 V,=1o0r0and V,, =1 then the equation is needed. The number of product
terms depends on the input set.
Example 5.4. Write the transition cquation for next state J, assuming V = {V,, V,, Vy,
Vo) (Fig 5.5). code(J) = 0101, code(J) = 0011. Branching condition = XY +Z,
CARD(XY, Z}) =2.
Equation for state I:
For V3 = none, cost = 0. For V; = none, cost = 0.
For V, = (0101) * (XY + Z) => produces two terms, cost = 2.
For Vy = (0101) * (XY + Z) => produces two terms, cost = 2.
From the above example, the following RULE 1 can be then formulated.
RULE 1.
The higher the valuc of COSTON of state S;, the more zero bits should be assigned
to the state variables in S;.
This rule is used to locally improve codes by changing V; , variable values from 1 to 0 in
state codes so that a proper encoding (one-to-one mapping among states and codes) is
preserved.
NOTE. For any FSM, the reset signal is needed to reset the FSM 1o a known state on the
power up or during the resct condition. Thus, the reset state normally has the highest
COSTON and is assigned binary code 0.
There is a method which can bring the FSM to a known state without using the
reset signal. This is achieved by making all the unused states in the state diagram to

branch to some selected internal state.

Example §.5. Consider the two-bit up-counter from Fig. 5.6. When the input X is high,
the counter will count up. To be able to control the counter, we introduce the signal reset
1o bring it to the known statc A (during reset = 1). Thus at every state, the counter will
enter the state A and stay there until the reset signal is removed. The cost of state A in
this cxample is, therefore, S and it is the highest cost. We respect to what was mentioned,
10 optimize the cxcitation function for this example, one assigns code 00 to state A. Nor-
mally, the resct is shown as in Fig. 5.7.

RULE 2.
ir:
- there is a transition from state SA to state SB,
and
- the state variable V; in state SA is already assigned to be 1,
and

- there is looping condition in state SA

then, if possible, assign V; in state SB to value 1.
If in state SA V; = 1 then assign 1 to V; in state SB. Hence, COSTON of V; in state SB =
1 since COSTON of V; in staie SB = SA * (D + D) = SA * (1) = SA => CARD{SA} =
one term. Rule 2 is illustrated in Fig. 5.8.

RULE 3.

If:

there is a transition from state SA to state SB
and
- there is no looping condition in SA,
then assign 0 10 V; in state SB, to achieve a free transition.

Rule 3 is illustrated in Fig. 5.9.

NOTE. Rule 3 will give better results than the Grey Code Assignment. However, one

has 1o pay attention 1o the combinational outputs of the state machine, because since the

assigned state codes are not in the Grey code, the output may glitch due to more than one
variable changing, and variables’ delays being not equal.

Let us obscrve that the number of times the symbol 0 or 1 can be assigned 10 any
variable is limited by the number of flip-flops used in the design. For some machines,
therefore, more state variables need to be introduced in order to fit the PLD device, when
using the above rules, which must be verified by RUBASS whether the device resources
arc not violated.

Output Considerations.

The outputs of FSM can be the registered or combinational outputs. In the latter case, it

can be in the Moore or Mcaly machine form. This type of outputs required the Grey

Code assignment (only one variable changes per any state transition) or the consensus

prime implicants must be added in logic realization to avoid glitches (static hazards). In

the first case, the outputs are clocked. The glitches will, therefore, not occur. In addition,
the registered outputs are faster than the combinational outputs by a tpd (15 ns if B-PAL
type is used); and 15 ns is a lot of time in a high speed design.

Observations.

1.  The two schemes occupy the same number of pinouts.

2. Registered outputs arc more reliable due to no glitching.

3. Registered outputs are faster.

The following is a complete example of a DRAM BUS INTERFACE design. The
first part will illustrate the result of the Grey Code assignment. The second part will
show the result of using the above rules.

Example 5.6. The staic diagram shown in Fig. 5.10 was encoded using the Grey Code.

The Boolean equation version (the output from LOGMIN) is given in Fig. 5.11. We

observe that: variable R2 has two terms; variable R1 has four terms; variable RO has six

terms.

The state diagram shown in Fig. 5.12 is encoded by RUBASS using the above rules. The

Boolean equation version is given in Fig. 5.13. The following facts can be observed as

well: variable R2 has four terms; variable R1 has four terms; variable RO has two terms.

This example has shown that by using the above rules one achieves a better result com-

pared to that of the Grey Code assignment method. In fact, on most real-life cases the

result was either cqual or better when compared to the results from STASH (a CAD tool
of INTEL which does heuristic state assignment - an improved version of KISS).

The design sequence of rules is as follows.

1. The COSTON, COSTOFF, and TOTAL costs are found as in Table 5.3. COSTON
of state A =5 duc 1o the RESET signal. COSTON of state D = 4 due to the inver-
sion of $2 S1 SO and the transition of ACC PHIT into the node. COSTOFF of state
B =1 because RDY (FP + FP)=RDY.

2. With respect to those worst case costs evaluations, by RULE 1, state A is selected
as having the highest cost and is assigned a code with most zeros - 000.

3. Nextnode D is taken as having second highest TOTAL cost. RULE 1 is applied
again and the code 010 is arbitrarily chosen.

4. Next node C is considered (B, and C have the same TOTAL, COSTON and COST-
OFF costs and numbers of neighbors, but C has more adjacent arrows). RULE 2 is
applied on variable R1. Thus the code 110 is chosen.

5. Nextnode B is considered. RULE 1 is applied and the code 001 is created.

6. Lastly, node E is taken. RULE 3 is applied and the code 100 is generated. This
way, all codes from Table 5.3 have been generated.

The equations are listed below and it can be seen that the maximum number of sum
terms for cach variable is four, compared to six from the Grey Code assignment above.
This will give a better chance of fitting the device. The listing of the equations after using
these rules is presented in Fig. 5.12.
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