
THE ENCODING PROGRAM FOR CONCURRENT FINITE
STATE MACHINES REALIZED USING PLD DEVICES

Marek A. Perkowski.
Department of Electrical Engineering, Portland State University.
P.O. Box 751. Portland, OR 97207, tel. (503) 725-3806x23..

Loc Bao Nguyen, Intel Scient$c Computers
5200 N E Elam Young Pkwy. Beaverton. OR 97006.

ABSTXACT

A Concurrent Finite State Machine (CFSM) is a network of Finite
State Machines, each FSM from the network has an arbitrary number of
symbolic input and output ports that communicate to other FSMs and to
the outside world. Such machines include, in particular, FSMs with
counters, stacks, subroutine registers, encoders and decoders. Program
AE, Assignment Expert, is described, which finds the encodings of input
ports, output ports and internal states of the FSMs. It finds the solution to
the constrained problem of simultaneous input/output/intemal-state
assignment of CFSMs. It is a two-pass method: a very fast modified qua-
dratic assignment algorithm for graph embedding is fust iterated several
umcs, using different quality functions and realization-related cost func-
tions. Next, the knowledge-bascd, rulc-implemented, optimizing transfor-
mations are executed To improve the results, the technology-related cost
of the logic mapping is used in the oplimization loop. This technique is
particularly useful to implement large concurrent state machines realized
using several instances of new types of Programmable Logic Devices
(PLDs) .

1. THE CONCURRENT FINITE STATEMACHINES
A Concurrent Finitc State Machine (CFSM) is a network ofFinite S l a e Machines

(FSMsj that communicate through their input and output signals. Outputs of some
machines are inputs to another ones, input signals can be also shared among the FSMS.
The DIADES system [j7,58] describes a digital circuit, usually a controller, as a CFSM.
A CFSM is realized wlth one or more PLD devices. There is a need to create design
methodologics for ellicicnt realization of such machines.

The general abstr;ict model for a single FSM Mi from the CFSM network is one
having an arbitrary number of symbolic input ports: / P i , . . . , IP,, and symbolic output
ports: OP , . . . , Or,,. The component machine of a CFSM can be a Mealy or (more
often) Moore type. Tlic component Mealy FSM is defined as follows:

where:
-
-

M; = < IP 1, IP,% IS 1 ', IS,', Dl,* A,, OP I ..., OP,, OSI', OS,', DO', 6j, h, >,

PI, .._, IP, are symbolic input ports,
ISj' = (,Ii, ,..., Is, ,..., I x ' j] . s = l ,__., k', is the set of the symbolic input values (sym-
bols) oi portlP,, j=1, ..., n.
01, is the set of (direct) logic input signals (binary),
A , is the sct of symbols of states,
DO, is the set ol (direct) logic output signals,
OS,' = [O ' , ,..., Ob, , . . . ,OR',) , s=l, ..., g', is the scts of the symbolic output values
of port OP,, j = I ,..., iii.
6, = ISi x .._ x i S , x L(D1,) x A, - ->Ai is the transition function,
L(DI) is a logic lwictioii on set of variables DI,,

is the output lunction,
L (D 0 ,) is a logic luriction on set of variables DO'.
The assignment problem for a component machine M, is to find a code code(S,) (a

binary sequence) ror cach ol' the symbols S, from the sets: Ai , IS' , , j = l , ..., n,, and OS' ,
j = l ,..., m;. (cach symbol in cach port needs to be encoded). Assigning codes to sy&-

bok from A , is callcd the state assignment. Assigning codes to symbols from IS',,
j=l ,...A,, is callcd thc input port assignment (input assignment). Assigning codes to
symbols from OS',, i=l, ... m,, is callcd the output port assignmeni (output assignment).
In general, assigning a code code to any symbol S will be called assignment or encoding
of this symbol. Somctimcs soiiic of the codes are given already in the initial specification
of the machinc (ror i i isuncc, this happens in classical machines where inputs and outputs
are iniually cncotlcdj. Tlicrclorc, the direct input and output signals have been intro-
duced to our modcl.

CI;SM=<(.M,,i=l ,..., K] , R > ,
wherc:
-
-

-
-
-
-

-
-
- h; =IS,' x ... x I S " , ' x L (D I ,) X A, --> L (D 0 i) X ... OSi' X ... X OS,' x D O ~

The CFSM is tlclincd ;b a network of component FSMs

(Mi] is 3 sct ofcomponcnt FSMs,
R = OP x IP I x ... x If', (where OP = U OP' , i = 1 ,..., m)) is the relation of con-
necting the output ports to input ports (one output port can be connected to any
number of i n p u t poru).

Let us observe, that in this iiiodcl a classical FSM M = <X, A, Y, 6, b with one input
set X and one output set Y, railized using D type flip-flops, becomes a machine with two
input ports: IP / P z , two output ports: OP Of',, and the following contraints:
A = I S I =OSl (looplroinoutputtoinput),Y=OSz.X=IS2.
IP1 and O P l arc callcd the feedback pair of ports. Let us observe that the output port
from this pair cm bc directly used U an input pon by some component machine other
than M (esscntinlly. this happens quite often in concurrent state machines that realize. for
instance, the Petri Nu) .

Let us obscrvc t h t since the component machines from the network are interre-
lated through thc p o i 1 5 - tlic mncnls of their ports are also related. For instance, if

chiiic , i l l is connected to the portlP, of machine M7 then finding a
IIIWI.; 1'roiii OS', wi l l mean using these codes ako for IS',. Let us
. i l l i l l p i i t mil output ports of a component machine M, (other than the

feedback portaj O~CIIIIIC <iicodctl as the result of assignments in all the component
machines that sIi:irc lioit'; with ,M,, tlicn h e assignment problem of M, becomes a classl-
cal state xsignincii t pioblciii of encoding only the intemal states of Mi. Let us finally
observe that wch iniichiiic tir CFSM can be in particular case a purely combinauonal
logic. This makes tlic al)ovc model vcry general, it includes many practical realizations of
controllers, discusactl i n liicrnturc and listed in the next section.

2. REALIZATION 01: CFShlS IN PLD. THE ASSIGNMENT PROBLEM.
A Fan-In OR C'oiismiiicd Logic Realization is one, like in a PAL or a EPLD,

where there is ;I liiiiitctl kin-iii lor the OR level of logic, but practically unlimited fan-in
for the AND I w c l ,

The rollowin:: constraints must be &an into account when designing state
machines using PAL.; t i r EI'LDs (lroin now, we will use a generic term PLD to all such
devices).
1. Most 01 the coiiIincrci;il registered PLDs implement only the D-type flip-flops.

This typc is d l titi: i i ios t popular among the high speed PLDs.
2. For the 20 and 2-1 pin PLDs, thcrc are at most eight registered outputs. Hence, this

will limit how I q c the FSM can be.
3. Each D-input of h e :ibovc eight registered outputs has at most eight products in the

sum term. This constT:iint severely rcstricts the design as Well.
4. The number oI' inpuls is limited to 21 and is found sufficient for most of the

machines dcsignod in practice at the board level.
5. Even if in the ncwcst PLDs the numbers and types of flip-flops. inputs and outputs

are larger, the basic ticsign contraints and cost functions remain of the same nature.
Because of these restrictions, only a small and medium sue FSM can be designed

From our personal cxpcricncc, the component FSMs of less than 15 inputs and 8
states are frcqucntly encountcrcd in the board level design.
Larger machines can be decomposed to such machines using the methods recently

In addition, each componcnt machine has normally more than one output signal. It
is then obvious that the oiiiput pins arc scarce resources in the PLD-based FSM design.
As h c consequence, the outputs ol the machine are normally encoded as the state vari-
ables to save the I/O pins lor some cxua functions (either input ot output). This design
style is cspccially prncticd lor rcalizing CFSMs.

With this dcsign style, the dcsigner knows often in advance the minimum number
of the Ilip-llops that arc to bo used lor each component FSM, and all that is necessary is a
method to assign binary codes to the state variables, such that the excitation functions
described by the Boolciin equations will lit into the device.

At the momcnt. thcrc are several programs available for the state assignment of
classical FSMs. Thc wcll-known Kiss [17,19,21,22], Mustang [241, and NOVA [701 are
in the public domain. Slash (INTEL) [13], Capuccino (IBM) [20,231 and Mustard
(AT&T) [72,73] arc propricltuy. However, often, the tools that we are familiar with
(Kiss, Mustang. Now. Slash), do not okc sufficiently the fan-in constraints, that exist not
only for the PLDs but also lor otlicr design styles, such as the multi-level logic.

It has bccn shown th:it tlicrc are several advantages of realizing the excitation logic
of a PLD-rcnlized FSM iil the form in which the AND plane is done using the PLA-like
regular layout plmc but the OR planc is absenc OR gates are composed of single fan-in
constraincd cells, iilso gates otlicr than OR (such as ANDINAND, EXOR, etc.) are used
This fact is increasingly lrikcn into account in new PLD architectures. Also, some other
exotic logic cells are bcconiing popular, such as the Conditional Decoder gate in the
recently inuotluccd CY7C36 I cicvice from Cypress Semiconductor. intended to realize
concurent sute miichincs, Rcgiilar Expressions, and Petri Nets.

Whcn realkiiig tho logic lor the microprogrammed state machines (the hybnds of
microprogrammed cuiitrollcrs m i sute machines, they inherit best properties of both
their parcnt machincs - x c (21) one has to assign, in some variants. not only the inlernal
states. but also thc input s u t a and the output states of the machine. In such cases the
state machinc has tlic input cncoticr, the output decoder, or both of them. In [54] several
microcodcd machines arc tlcscribcd (using both counters, and separale registered subsys-
t e m for non-branchi: purls of FSMsj . The methods introduced here would also
improve the cfficicncy of such machines. Similarly, when the FSM state minimization
technology dccribctl ii i [6OJ is used, the input encoder is the result of the input m'nim'za-
lion procedure, iiiid Ihc problem of code assignment for this encoder exists. The metho-
dology prescntcd in this papcr can be used for all these design approaches as well.
Finally, many FSM dcsign inctliodologics use networks of FSMs created from direct
CFSM descnption, high lcvcl dcscription such as a Petri Net or parallel program graph
[%I, FSM dccornposition lJi,iY,35,76] or partitioning. No program currently exist for
the state assignincnt of CFSIvls iind FSMs for constrained logic realization, and programs
like Nova, Kiss or Slash applicd to component machines can sometimes give results
worse than by hand. Also, thosc programs do not take into account the consmints result-
ing f;om the structure of the network of machines. No CAD tools exist which would
minimize the cxcililtitin functions for FSMs and especially CFSMs, realized in PLDs.

using a single instancc ol a PLD. This is, however, not a problem for two reasons:
1.

2.
developed [2,25,57,74751.

CH28 19-1/90/OooO-02O4$01.000 199 1 LE=

The program dcscribcd Iicrc, AE for Assignment Expert, gives very good results for
machines implcincntcd in PLDs, it was applied with good results to large ASIC VLSI
machines and largc structurally dccomposcd CFSMs. Morcover, it finds the solution to
tlic consuaincd problcln o l siinultancous inpul/output/intcmal-statc assignment of con-
current FSMs, and not only thc assignment of internal states, as most of the well known
mcthods. Wc hopc tli;it Llic rcsults of this research will be quite useful practically for the
companies that dcvclop tlic incw gcneration synthesis tools for PLDs.

3. THE ASSIGNMENT OF CFSMS.
ns automatically the intemal states of all component
"I output symbolic signals in all ports of the component

machines. Thc assignincnt process of a CFSM is a sequence of assignments of ports in
its component machincs. Such assignmcnts are called partial assignments. All partial
assignmenls are realizcd on vcry similar basic principles.

AE uses scveral typcs of rulcs: rules to select the order of partial assignments, rules
to create input, sutc and output assignments. Below, the most important of those rules
will be discusscd. The Lisp-implcmcntcd rules collaborate with the heuristic algorithms
(such iis thc Quadratic Assignmcnt), and the algorithmic subroutines (such as the gencra-
tion of all sct partitions ol'ccrtnin typc).

Thc ordcr ol thc poro: for partial assignments is decided heuristically. Based on the
structure of thc nctwark of FSMs, and the complexity of the component machines and

ics ol all the partial assignment problems for all ports are
iiiicnt problems evaluated as the most complex are solved in

the first rate. Oncc llic port is cncoded in one machine, its code is propagated through the
network to all innchincs that sharc this p o n This improves assignment quality of all
thcse machines, sincc thc assignrncnts for them are now performed in more realistic
terms.

Thc uscr has also thc option OC manually assigning codes to any selected type($ of
states or symbolic signals. Morcover. the user has the option to restrict the set of assign-
mcnt choices by declaring thc set of codcs to select codes from in the state assignment
processcs. For insmce, he can enumerate a set of codes to choose from, he can also
declare codes smallcr than soinc selccted number (codes, as the binary vectors can be
represented internally as numbcrs in a computer). He can, as well, declare any applicable
"n out of m" codc. (A spccial circuit can be added that will detect in real time that the
machinc goes out of this code. Thcrcfore, all single stack-at f2ults and most of multiple
faults are detcctcd in a run). Finally, the user has the option to control the assignment
proccss by usc of llic pru,qrum parameters. User creates the agenda of actions to execute,
and this agcnda is updatcd and modified by the programs of the system during the design
process. The conccpt oi'(i,yenda is a dynamic generalization of the concept of script.
Each pmial assig~iincnt is found in two phases:
- Algorithinic Hypcrcubc Embedding, realized by program FASS (Fsm ASSign-

mcnt).
Knowledgc-hascd code improvement, realized by program RUBASS (Rule Based
ASSignmcnt).

-

4. THE FIRST PIIASI: OF 'I'HE PARTIAL ASSIGNMENT
Program FASS uscs subroutine HyperCoder which solves the panial assignment

for a hypcrcubc ol a givcri tliincnsion as the modification of the Quadratic Assignment
Problem. In thc quadratic assignmcnt approach to state assignment, l i e in many other
combinatorial problcins of logic dcsign. one can distinguish two phases:
1.

2.

Creation of lhc <u.\I$ntnent graph AG.
and formulation ol' thc cost function CF to be optimized.
Solution to thc Quadr:itic Assignment Problem for graph AG that minimizes the
function CF.
Diffcrcnt mcthods exist in AE to create the AG graphs; for input ports, output ports

and internal statcs. Their principlcs arc however the same: the more desired it is to have
symbols Si and Sj to be o l small Hamming distance after the assignment in order to
minimize logic, thc highcr vaduc of a weighted cost function edge-cost(&,S,) should be
assigned to the cdge(Si, Sj) in thc AG. Different approaches have been used for the crea-
tion of thc assignmcnt graph in difkrent papers. Saucier [Sauc 721 creates a nonoriented
weighted graph, whosc ctlgcs correspond to the transitions between the states of the
FSM. Moroz [Moro 701 crcatcs an oriented graph, whose edges correspond to the
oriented wansitions bctwccn thc swtcs. Although he writes about the embedding, his
work can bc lrcatcd as an approximate solution to the quadratic assignment of particular
typc, in which the graph is oricntcd, the costs of edges are equal, and the cost function is
dcfincd as in the quadratic assigmxnt problem. This approach attempts to form Grey
code assignmcnw, thc mcthod that has some additional advantages, especially for asyn-
chronous machincs. Annsuong [Arms 60,60a] formulates a nonoriented graph, whose
edges are crcatcd according to scvcral principles of adjacency. We created a method that
uscs a gcncralizcd wcightcd cost function for each edge of AG: the value of this function
is a wcightcd sum OC component evaluation functions. By selecting appropriate values of
cwfficicnls we arc ahlc to cinulate the well known methods and compare their applica-
bility to various assignmcnt problems. Some of the partial functions are new and
corrcspond to thc input nntl output ports assignments.

Also thc solution to thc second phase is different in our approach. In contrast to
MUSTANG which uscs the cost function:

i=NN-l /=N#
CF = C C edge-cost(S,, S,) * HAMMING[code(Si), code(S j)]

,=I / = , + I
whcre: S is thc sct of symbols, NN = CARD(S), Si.Sj are symbolic states, code(&) is a
code of statc S,, and HAMhlING is a Hamming distance of codes, we minimize the func-
tion:

i=NN-I / =NN
CF = edgu-co,sl(S;,S,)*EVAL[code(&), code(Sj) I + F 2

,=I /"+I

0 if HAMMING (code ,,code 2) = 1,
a(HAMMING(code 1 , code,)), otherwise

EVAL is defined

EVAL (code 1 , Code 2) =

whcre a is a sigmoidal function of one variable.
Additionally, we minimiLC the number ol true minterms by selecting codes that

have as few symbols "1" as possiblc. This is done by calculating the following F2 com-
ponent of the cost function:
a * COSTON(S;) * Nii/r~ber-Of-Ones(co&(Si))

where:
a is a panmetcr. COSTON is an evaluation of difficulty of creating implicants in realiza-
tion of snte S, (based on thc nuinhcr and location of symbols Si).
Our function CF has advnnlagcs ol approaches from [50,2,3,241, but can be made similar
to any of them.

Different constructive algorithms have been used by the above authors to embedd
the created by them graphs to hypcrcubes. They do not give any, other than heuristic,
explanations of adcquacy of thc proposed by them assignment (embedding) techniques.
Also, the program of Saucicr is only for asynchronous machines.

FASS embcdds thc AG graph to a hypergraph in such a way that the pairs of nodes
of AG that have high corincction cost in their respective edges, are placed in adjacent
nodes of a hypcrcubc, or nodcs of small Hamming distance. FASS does not assume to
design a circuit with thc ininiinuin possible number of flip-flops, as do several of the clas-
sical approaches, ncithcr it wants to satisfy all the groups from multi-valued minimiza-
tion, as in one or thc approaches of Micheli. The dimension of the hypercube is first
selected as the minimum number of binary signals (flip-flops) necessary to realize the
given set of symbols lroin thc port. Then FASS looks for the oplimum realizations by
gradually incrcasing thc number of binary signals. Only few numbers are investigated,
not much larger than h e nlinimum number of the signals. The costs of the embeddings
to hypercubes of largcr dimcnsions are compared. When essential worsening of the cost
occurs, the growth of tlic hypcrcubc is interrupted. As the practice shows such approach
is surficient. This approach is consistently used by FASS to all kinds of symbolic ports,
when it calls HypcrCodcr with corresponding AG graphs and respective hypercubes of
increasing dimensions.

HypcrCodcr is a constructive algorithm that successively selects nodes of the AG
graph and assigns thcm to nodes of a hypergraph. In contrast to most quadratic assign-
ment algorithms, HypcrCodcr does not use the explicit assignment graph adjacency
matrix (which would bc vcry inefficient) but constructs the codes for the node symbols
step-by-step, whilc uavcrsing the AG graph. HyperCoder uses several methods to select
the next symbolic nodc of AG: most of these methods select the node SS that is most
connected to thc alrcady assigned symbolic nodes. The nodes in AG that share edges
with SS arc callcd its neighbors and denoted by neighbors(SS). A set of all codes
assigned to nodes from neighbors(SS) is found. Nexk for each of those codes C, a set of
all candidate codcs in Hnmming distance one to it is generated. We call it a
candidate(C,) sct of codcs. A sct CANDIDATES(SS) is created as the set sum of all
such candidatc scu. Thc alrcady used codes are removed from CANDIDATES(SS).
Next, a code is sclcctcd Crom CANDIDATES(SS) that locally minimizes the current
wcightcd cost [unction CF, calculated only for the SS and its already assigned neighbors
Crom ncighbors(SS). This code is assigncd to SS and the procedure iterates by selecting
next SS node, until all nodcs wcrc assigned.

FASS rmlizcs a multi-variant synthesis conccpt. This means, that different design
approaches are creatcd with use of different kinds of AG graphs and different assignment
algorithm variants rcalizcd by HypcrCodcr. We have examples, that multi-variant syn-
thesis gives bcttcr rcsults lor CFSMs than a single method, iterated many times. The
principle is this: we can crciitc dirkrent assignment graphs and next find the assignments
for them, using various mcthods. If we have two methods of creating the assignment
graphs, and two methods o l solving them, this approach would create four solution
methods. It is usually bcttcr to try these four methods, than to iterate one method four
times. FASS itcwtes similar variants of HyperCoder, each of them using different graph
AG creatcd from thc machinc's list of transitions, slightly different cost function CF, and
rules for selccting ncxt nodc. It cvaluatcs the variants using CF. The best of the selected
according to CF variants are ncxt evaluated again, after logic minimization, this time
using a more complex cost Tunction, based on the technology mapping. This function
checks also input, output, slate variable and fan-in constraints, essential for the PLD real-
ization. Although this idea s e " extremely obvious, surprisingly to our knowledge
nobody has yet reportcd ils usage.

The FASS program generatcs quickly first approximate solution and next generates
other solutions with morc sophisticated methods, using a family of evaluation functions
used in weighted [unctions for AG edge costs and assignment rules. This permits to have
at least one solution whcn thc uscr's allotted time is exhausted. When sufficient com-
puter time is allowcd, thc program can work long and there is a chance that better solu-
tion will be found (Thc qucstion is this: is it worthy to work the whole weekend to find a
3% better realization o l a 100 states' machine? It seems worthy when one wants to fit the
design to a dcvicc, llic chip resources are only slightly exceeded, and there is a hope that
better assignment will allow to rcalizc the machine without increasing the chips count).

5. THE SECOND PHASE OF THE ASSIGNMENT.
The second pass of AE uscs the heuristic rule-based program RUBASS to locally

improve the code, gcncrated by FASS. The rules are applied while traversing the List of
Transitions, which rcprcscnts the symbolic transition graphs of all the component FSMs.
The transitions arc in thc Torin:
<input logic function of a transition> <input port symbol> ... <input port symbol>
<output port symbol> ... <output port symbol> <output logic function of a transition> ...
<output logic function of U transition>
The logic function is not ncccssarily a binary vector, ternary vector(with don't cares) or a
"cube calculus" cube, as in thc known approaches. The ports may be encoded, partially
encoded or not cncoded at all. From such list of transitions several Transition Graphs
can be creatcd onc for each symbolic port being not in feedback, and one for each
feedback pair of ports. T I C symbols from this port become the states (nodes) of the
Transition Graph.

Firing a rule invokcs other rules-candidates to the agenda. Those rules, the nodes
and the state variables whcrc to apply them, are selected heuristically, on global or local
bases. The globally sclcctcd arc the nodes that have maximum values of some measures:

NN

i=l

205

in first order - TOTAL, next COSTON, next the number of neighbors, and finally - the
number of adjacent arrows. The locally selected rules select new nodes of the transition
graph that arc the neighbors (in first order - the predecessors, next - the succesors) of the
previously assignedimodificd nodcs. When there are several equally rated choices - a ran-
dom selection of a rulc nuinbcr, a node and a variable is done.

The rules uscd in tlic program have been derived lrom the practical experiences of
attempts to improve assignmcnts. As mentioned earlier, the number of product terms for
a registered output PLD (PAL) is very limited (only 8 terms). Hence, the excitation func-
tion realization excccds often the limit imposed by the PLD architecture. The method to
assign binary codcs is, thcrcfore, vcry important, because the complexity of the excitation
functions and the numbcr of the product terms in particular. are the direct results of the
state assignment. Wc wanted, thcrcfore, to create a method that produces the PLD-
optimized solution as oltcn as possible, for sizes of FSMs encountered in practical PLD
rcalizarions.
Basically, there arc two cli~sscs of designs.

a) The output signals arc othcr types of signals than the state variables.
-
-

b) The outputs arc encodcd as the state variables (Moore model).
In the class b), thcrc is less freedom to perform the state assignment than in the

class a), because thc state assignment is dictated by the output signals polarity.
Example 5.1. Thcstatcvariablcs for the state assignment from Fig. 5.1 are: (R l , RO].
Output: y = R 1 R 0 + R 1 R 0. This design takes 3 output pins, whereas for the assign-
ment of the samc macliinc shown in Fig. 5.2 the output: y = RO.
This design takes only 2 output pins. In this scheme, however, the state variable RO in
states B and D is dictated by the polarity of the output y.

At this point wc arc ready to introduce the set of heuristic rules for state assign-
ment which attcmpt to minimizc the excitation functions.
Dejnifion 5.1. COSTON cind COSTOFF. Let set V be a set of encoding variables. Let
Vi,,, 2 (0, 1) for all V,," E V , whcrc subscript i is for state variable i. and subscript n is for
the current statc. Let X bc a sct of branching conditions, i.e. X = (A, Y , Z). Thus
CARD(A] = 3.
COSTON:

the outpuc; are functions of the inputs and state variables (Mealy model).
the outputs arc functions of the state variables only (Moore model).

If V,," = 0 thcn COSTON = 0.
If
number of product tcnns looping in that state.

= 1 thcn COSTON = number of product terms going to the state plus the

The set D in Fig. 5.3 is the se(of looping product f e r m for that state.
COSTOFF:
If V,, = 0 then COSTOFF = 0.
If Vh = 1 then COSTON = number of product terms going out of that state.
Example 5.2. COSTON = CARD(A,B,CP] = 4, COSTOFF = CARD(E) = 1.
TOTAL = COSTON + COSTOFF.
Note that E is a complcmcnt of D. Otherwise, the transition from state n to the next state
n+l would not LE detcrministic.
Let us observe h a t first, More state assignment, the costs COSTON, COSTOFF and
TOTAL are calcularcd for thc worst case. Next, when panial codes are already known,
these costs can be recalculatcd more accurately and will be never higher.
Example 5.3. Thc transilion function for state B is shown in Fig. 5.4 and Tablc 5.0
below. Statc variables: V = (V,, V I , V o l . The variables: X, Y , K, and Z are the input
variablcs and thcy constitute the branching conditions.
Implication of COSTON and COSTOFF. The COSTON and COSTOFF costs together
determine the numbcr of product terms that need to be created for the state variable under
consideration, whcn the statc machine transits from the current state to the next state.
Method for writing equations directly from the state graph. (analogous method is
used for the statc graph in thc form of transitions).
For the D-type flip-flop, thc transition table is as in Table 5.1.
The following rules apply:
1) If Vi" = 0 and
2) If V,, = 1 and V,"+, = 0 and there is no looping back at Vin then no equation is

needed. It is a free transition.
3) If V,, = 1 or 0 and V,,,, = 1 then the equation is needed. The number of product

tcrms dcpcnds on the input set.
Example 5.4. Write the wansition equation for next state J, assuming V = (V 3 , V,, V,,
V ,) (Fig 53). codc(J) = 0101, code(J) = 0011. Branching condition = XY + 2,
CARD(XY, Z) = 2.
Equation for state J:
For V 3 = none, cost = 0. cor V 2 = none, cost = 0.
For VI = (0101) * (XY + 9 => produces two terms, cost = 2.
For V , = (0101) * (XY + z) => produces two terms, cost = 2.

RULE 1.

= 0 then no equation is needed. It is a free transition.

From the above exumplc, the following RULE 1 can be then formulated.

The higher the value of COSTON of state S,, the more zero bits should be assigned
to the state variables in Si.

This rule is used to locally improve codes by changing Vi," variable values from 1 to 0 in
state codcs so b a t a proper encoding (one-to-one mapping among states and codes) is
preserved.
NOTE. For any FSM, the reset signal is needed to reset the FSM to a known state on the
power up or during the rcsct condition. Thus, the reset state normally has the highest
COSTON and is assigned binary code 0.

There is a mcthod which can bring the FSM to a known state without using the
reset si&mal. This is achicvcd by making all the unused states in the state diagram to

branch to some sclcctcd internal state.
Example 55. Consider the two-bit up-counter from Fig. 5.6. When the input X is high.
the counter will count up. To bc able to control the counter, we introduce the signal reset
to bring it to thc known state A (during reset = 1). Thus at every state, the counter will
enter the state A and stay thcrc until the reset signal is removed. The cost of State A in
this example is, thcrcfore, 5 and it is the highest cost We respect to what was mentioned,
to optimize thc cxcitation function for this example, one assigns code 00 to state A. Nor-
mally, the ract is shown as in Fig. 5.7.
RULE 2.

IT:
- thcrc is a transition from state SA to state SB,

and
thc statc va" l e V, in state SA is already assigned to be 1.
and

- thcrc IS looping condition in state SA
then, if possible, assign V; in state SB to value 1.

-

If in state SA V, = I thcn a s s l y 1 to V, in state SB: Hence, COSTON of V, in state SB =
1 since COSTON of V, in state SB = SA * (D + D) = SA * (1) = SA => CARD[SA] =
one term. Rule 2 is illustrated in Fig. 5.8.
RULE 3.

I f
- thcrc is a transition from state SA to state SB

and
there is no looping condition in SA, -

then assign 0 to Vi in state SB, to achieve a free transition.
Rule 3 is illustrated i n Fig. 5.9.
NOTE. Rulc 3 will give better results than the Grey Code Assipnment. However. one
has to pay attention to the combinational outputs of the state machine, because since the
assigned state codes arc not in the Grey code, the output may glitch due to more than one
variable changing, and variables' delays being not equal.

Let us observe that the number of times the symbol 0 or 1 can be assigned to any
variable IS limited by the number of flip-flops used in the design. For some machines,
therefore, more statc variables need to be introduced in order to fit the PLD device, when
using the above rules, which must be vcrified by RUBASS whether the device resources
arc not violated.
Output Considerations.
The oucputs of FSM can bc the registered or combinational outputs. In the latter case, it
can be in the Moorc or niicaly machine form. This type of outputs required the Grey
Code assignment (only one variable changes per any state transition) or the consensus
prime implicants must be added in logic realization to avoid glitches (static hazards). In
the first case, thc outputs are clocked. The glitches will, therefore, not occur. In addition,
the registcred outputs arc faster than the combinational outputs by a I@ (15 ns if B-PAL
type is used); and 15 ns is a lot of time in a high speed design.
Observations.
1. The two schemes occupy the same number of pinouts.
2. Registercd outputs arc more reliable due to no glitching.
3. Registcred outputs are faster.

Thc following is a complcte example of a DRAM BUS INERFACE design. The
first part will illustrate the rcsult of the Grey Code assignment. The second part will
show the result of using the above rules.
Example 5.6. The statc diagram shown in Fig. 5.10 was encoded using the Grey Code.
The Boolean equation version (the output from LOGMIN) is given in Fig. 5.11. We
observe that: variable R2 has two terms: variable R1 has four terms; variable RO has six
terms.
The state diagram shown in Fig. 5.12 is encoded by RUBASS using the above rules. ?he
Boolean equation version is given in Fig. 5.13. The following facts can be observed as
well: variable R2 has four tcrms; variable RI has four terms; variable RO has two terms.
This example has shown that by using the above des one achieves a better result com-
pared to that of the Grey Code assignment method. In fact, on most real-life cases the
result was either cqual or bettcr when compared to the results from STASH (a CAD tool
of INTEL which does heuristic state assignment - an improved version of KISS).
The design sequence of rulcs is as follows.
1.

2.

3.

4.

5.
6.

The COSTON, COSTOFF, and TOTAL costs are found as in Table 5.3. COSTON
of state A = 5 due to thc RESET signal. COSTON of state D = 4 due to the inver-
sion of S2 S 1 SO nnd Liic tranjtion of ACC PHIT into the node. COSTOFF of state

With respcct to those worst case costs evaluations, by RULE 1, state A is selected
as having thc highcst cost and is assigned a code with most zeros - 000.
Next nodc D is laken as having second highest TOTAL cost. RULE 1 is applied
again and thc codc 010 is arbitrarily chosen.
Next node C is considered (B. and C have the same TOTAL, COSTON and COST-
OFF costs and numbcrs of neighbors, but C has more adjacent arrows). RULE 2 is
applied on variable RI. Thus the code 110 is chosen.
Next node B is considered. RULE 1 is applied and the code 001 is created.
Lastly, node E is taken. RULE 3 is applied and the code 100 is generated. This
way, all codes from Table 5.3 have been generated.
The equations are listed below and it can be seen that the maximum number of sum

B = 1 because RDY (rr + Fr) = RDY.

terms for cach variable is four, compared to six from the Grey Code assignment above.
This will give a better chance of fitting the device. The listing of the equations after using
these rules is presentcd in Fig. 5.12.

206

6. CONCLUSION.
AE was able to find very good quality solutions for both small and large machines.

In many cases the results better than those from Grey Code, Moroz, Kiss, Mustang and
Slash were generated. Several state assignments were found with AE for machines of
more than 100 slates. Since it is written in Lisp, AE is much slower than all those pro-
grms. but i t docs also more job. It is integrated with state minimization and other high-
level tools. The quality of PLD fitting ("Can the assigned circuit be litted or not?") in in
our opinion more imporunt than the speed of the program.

The processing timcs of AE range from about a minute to several hours, because
the novcl approach of this program is to give the user the trade-off between the speed of
optimization and ifs quality. For instance, in one experiment the 34 slate machine was
assigned in 10 hours (rcal time). 100 iterations were executed. 3 solutions, each of them
better than the previous one, were found in the 6rst 6 iterations and next all solutions
wcre worse. Because of such method, we think that we can claim that the best solution
found is the optimal or quasi-optimal one (this is, however, of course not the proof). The
solution that was only one term worse than the "optimal" solution was found after about
lhrce minutcs. This proves the quality of our heuristics. The time of 10 hours is men-
tioned here only as an example of the "trade-off' abilities of the program and the proof
of the quality of its heuristics. It does not imply in any way that on has to run the program
10 hours on a 34-slate machine.

" . . ,, . .
:: . . I

.

t v

