
AN EXACT ALGORITHM TO MINIMIZE MIXED-RADIX
EXCLUSIVE SUMS OF PRODUCTS FOR INCOMPLETELY

SPECIFIED BOOLEAN FUNCTIONS

Marek Perkowsih, and Malgorzata Chrzanowska-Jesk

Portland State University, Dapamnent of Elechical Engineering
P.O. Box 751. Portland. OR, 97207, tel. (503) 725-3806 x23

ABSTRACT

An exact algorithm for the synthesls of mixed polarity Exclusive Sum
Of Product (ESOP) expressions for arbinary size incompletely specified
Boolean functions is presented. For more than 4 input variables, this problem
has not been solved yet A decision function H is constructed for a Boolean
function f that describes all possible ESOP solutions to f. The function H
plays for the ESOP minimization problem the role analogous to that of the
Pemck function for the minimization of the inclusive sum of product expres-
sion problem of the classical logic. Each product of literals that satisfies the
function H corresponds to one ESOP solution off. The algorithms to create
and solve function H are presented.

1. INTRODUCTION
Various circuit realizations of Boolean functions that use a high percentage of Exor

gates have been proposed. All of them will be called the Exor circuits. They include Reed-
Muller form (RMJ [20,30], Generalized Reed-Muller forms (GRM) [10,19], Exclusive Sums
of Products [12,311 Multi-Valued Input Exclusive Sums of Products [24] Multi-Valued Gen-
eralizedReed-Muller Trees (MGRMJ 1251, and many other multi-level and multi-output reali-
zations in which an Exor gate is repeatedly used as a basic logic component Out of those the
RM, GRM and MGRM are canonical forms. Such Exor clrcuits have several advantages over
the realizations which include only other kinds of gates, for instance the circuits that use only
NAND and NOR gates. The main advantage of the Exor circuits is their essentially improved
testability: for those of them that are canonical forms, the test generation is very easy, and a
number of tests is small. Moreover, for some of them (like the Reed-Muller or generalized
Reed-Muller forms) the set of all tests is universal and does not depend on a particular
Boolean function that is realized by the cucuit. Also, the Exor-based circuits often require
smaller layout area for their realization on VLSI chips. This is especially common for arith-
metic. error detectionlcorrection and telecommunication circuits. However, two perceived
disadvantages of Exor circuits cause that they are not as often used in practical applications as
they deserve. The first disadvantage is the lack of a good minimization theory and
corresponding practical minimization algorithms. This problem has k e n addressed in many
papers in the last few years and several efficient approximate algorithms have been recenrly
programmed or proposed. The other, much more essential, disadvantage of the Exor circuit?
is the slow speed of the many-input Exor gate. There are, however, some hopes that this will
be overcome in new technologies, including the logic families based on current switching [SI,
and the optical technology realizations [11.32].

Reed-Muller forms'and other Exor circuits are useful outside the area of circuit design.
They can serve as eficient data S V U C I U ~ ~ S for logical forms manipulation in symbol process-
ing for CAD [281 as well as in the unification, being a base of automatic theorem provers and
logic programming languages like Prolog. They have been also used in image processing,
coding. and recognition problems [29]. The above reasons have recently caused an increased
interest in the development of the theory of Exor circuits that would find practical applica-
tions. The classical but yet unsolved problems of finding the minimal forms become more
interesting again.

The basic circuit model used in this paper can be formulated as follows. Given is a sin-
gle output, incompletely specified Boolean function f of n binary inputs in the form of a Kar-
naugh map, or a set ON of true minterms (called sometimes the "ones" of the funcuon) and a
set OFF of false m ' n r e m (the "zeros" of the function). The Mixed Polarity Radix)
Exclusive Sum Of Products (ESOP [311, or MRESP [12,241) of a Boolean function is an
Exclusive sum (Exor) of products of literals. each literal being a vuriable or its negation. The
same variable can stand in both positive and complemented forms in various products of the
ESOP. This formulation is the most general basis for a two level Exor/And-based realization
of a general purpose Boolean function. The other forms of such a realizaoon include the
Reed-Muller and so-called "generalized Reed-Muller forms". In a Reed-Muller form all vari-
ables have positive polnrities. GRM forms are created for all possible polarities of the input
variables. Each variable in a GRM can be either positive (positive polarity, I) or comple-
mented (negative polarity, 0). but it cannot have both polarities in one form. Since there are
two polarities for each of the n input variables there are 2" polarities of all variables and,
therefore, there exist 2" various GRM forms out of which one with the least cost should be
selected.

In the ESOP minimization problem one wants U) find a solution with the minimum
number ofproducts or with the minimum total literal cost. As mentioned above. the problem
to find an exact minimum solution for a Boolean function in an ESOP form is an old one [I , 4.
6. 7, 8, 10, 16, 17, 19, 281. but it still remains unsolved, even for the case of completely
specified Boolean functions. Several papers that propose theories and programs to produce
quasiminimum solutions have been published. With the exception o f a paper by Papakonstan-
tinou [21] who shows how to find a minimum solution for four variable functions, nobody has
attempted to formulate an exact algorithm for a Boolean function f with an arbitrary number
of input variables.

In this paper an algorithm to solve this important problem is presented for the
first time. I t finds always the exact solution and has no theoretical limits on the size of
the function. Moreover, it finds the exact minimum solution for incompletely specified
functions as well. Interestingly. for a function with a high percentage of don't cares the solu-
uon can be found even more efficiently, as opposed to most algorithms for the sum of prc-
ducts (SOP) realization of Boolean functions. Finally, although the approach proposed here is
very time consuming, its speed can be essentially increased by using parallel processing tech-
niques or the special VLSI data-How hardware accelerator described in [141.

Section 2 inuoduces the decisron function H that finds applicauons in all oddleven cov-
ering problems. It is a direct counterpart of the well-known Petrick function used in a sef
covering problem. Creation and use of the function H is illustrated with examples. Secuon 5
presents various methods to minimize such functions.

2. THE HELLIWELL'S DECISION FUNCTION FOR EVENiODD COVERIXG
PROBLEMS

The basic idea of this method is to create, for a given Boolean function f i x l , .xz, x d
a new BooI& function H (g , , g,, ,., g K) , where K 5 3". that describes all possible solutions
10 the function f The name H comes after Marlin Helliwell who has b s t proposed this h n d
ofdecision function [ljl .

Definition 2.1. A lireral is a variable with negation or not. It is assumed that ? = xa (
nepative literal) andx = x i (posinve literal).

Let us denote by G = (g I , g,, ..., g K] the set of all decision vuriables. All those van-
ables are used in the function H only as positive lirerais.

The function H is created as follows. First one finds all possible products of literals
from the set [xl", x i ' x.'" 1, where i, E (0.1 J for j=1, .._ n. that cm be used as producr
groups in the ESOP minimuauon problem o f 5 4 product group is denoted as Cl, and the set
of all such groups will be denoted by GG. In the worst case GG is the set of all 3' possible
literal products calculated by ternary ccunting. Temary counting creates all possible cubes
with variable x , position values: 0 - for x,, 1 - for x , , and X for xt absent in the product. Next.
a unique new variable (a positive literal) g , , gZ.. . . , gK is assigned to each of the product
groups from GG.

A true minrerm (a "one") is denoted by m,, a false minterm (a "zero") by M,. The set of
all true minterms (or, in general ON-cubes) is denoted by ON. The set of all false minterms
(OFF-cubes) is denoted by OFF.

Now, the formal method of creaung the decision function H for the funcnon f and the
proof of its usefulness in minunuation will be given.

Definition 2.2. A redundant ESOP is an ESOP that includes products that can be
removed and the ESOP will sull be a solution. A non-redundant ESOP is an ESOP that is no1
redundant.

Erample 2.1. Iff is a solution then f l = f @ ab f3 ab @ a is a redundant soluuon since:
f I = f @ a 8 a , f l = f @O, f l =J

Theorem 2.1. Each non-redundmt ESOP solution of the function f is an Exor ~ e r m of
groups GI corresponding to those decision vanables g, that stand as positive l i t eds in 3 pro-
duct that satisfies the following logic equation:

1 = H (g l , ..., gK)= (2.1)

Proof To describe covering possibilities of a single true minterm in, one has to create an
Exor term:

W m ,) = 2 2 g, (2.1)
8, Y a v m d & ior a pr& p w p G, 3 m.

which is an Exor of the variables g, describing al the product groups G, ihat cover the true
minterm m,. If the product group G, is selected, a value one is assigned to its vanable g,. If
the group GI is not selected, a value 0 is assigned to g,. If an even number of g, vannbles IS

selected the logic ones assigned to them will anihilate to zero III the Emr term If an odd
number of g, vanables is selected hen the resulfant value of the Exor term will be 1. One can
now create a product H I of such Exor terms H (m ,) for all m e minterms o f t

H I = n H (m ,) (2.3)
m. E ON

Similarly as in the Pemck function, the product of such terms equals 1 whenever all true min-
terms are covered.

Function H I is. however, not sufficient as a satisfiability formula since one has also to
take into account that while all the true minterms are covered by the selected groups from
GG, all the false minterms must not be covered by these groups. This cm be done for a single
false minterm M , by an exor of value 1 with an Exor of all variables g, for groups G, that
cover h is false minterm. Therefore, the Exor term for a false minterm M, has the form:

H (M ,) = 1 0 Ce E1 (2 41
9. " d vonebir for * Inup G> 3 'U,

The funcuon for all false minterms of a function f will be a product of the above Exor terms:

Hz = n H(M,) (2 . 5)
M , i OFF

Now, the Boolean product of functions H I and H , :

H (g i ,..., g K) = H l ' H z (1.6)

will be 1 when all true mintems of f are covered and all false minterms of f are not covered
by groups G,. The equation

H k l , ...,g K) = H l . H z = 1 (1.7
is therefore a generator of all non-redundant solutions. QE.D.

CH2868-8190/0000-1652$1.00 0 1990 IEEE

In the firs1 approach, presented in this paper, it is assumed that the product groups GI
correspond to all possible extensions of the true and false minterms off. (More efficient
approach is prcscnted in I26.271). These extensions are created by the removal from the min-
terms of all possible subsets of x," lite$ (also empty-subsets). For instance, for a minterm
abone creates product groups: C I = ab, G 2 = a, G3 = b. G o = 1. The value 1 is an universe -
the enure Kamaugh map of a funcuon f. The corresponding variables of H, assigned to
groups G I . G 2 , G,, and Co. will be g , . g2. g,, and go. respectively.

Emmple 2.2. Given is a completely specified function f (a,b) = I: 1.2.3. The product

&TOUPS are: CO = 1, GI = ab, G 2 = a, G3 = b, G4 = ab, G S = b, G 6 = Zb? G7 = Z, Gg =

All product groups that can be used for the realization of me minterm a b are: Go, G I , G 2 ,
G 3 . All product groups that can be used for the realization of the true minterm ab are: Go.
G 2 , G4. G S . All product groups that can be used for the realization of the true minterm Zb
arc: G, G5, G 6 , C7. All product groups that can be used for the realization of the false min-
term Zb are: Co. G,, G7, G B .

Function I l l is therefore:

ZG.

HI = (g o $81 @ 82 @E?) ' (80 fE 82 $ 8 4 @ g S) . k O f E 8 S @ 86 $87)

Function H, is:

H, = (1 @go @ 83 @ g7 fE gs).

Therefore:

H = H i ' H 2 = ko $81 @ g z $83) '

(8 0 @ 82 $84 @ gS) ' (80 $ 8 5 $ 8 6 @ g 7) ' (1 $ 8 0 @ g3 @ b'7 @ 88).

Definition 2.3. The Exor term that includes logic 1 is called the I-term. The Exor term
that has no logic 1 is called 0-term.

The first three terms in the above expression are @terms and the last one is a I-term.
Let us observe that in the initial function H 1-terms correspond to false minterms and 0-terms
to m e minterms of the functionf.

Example 2.3 In the next section we will systematically describe methods to solve
(minimize) this kind of decision functions. Let us. however, observe now that by selecting
variable go (it m a n s substituting logic value 1 for variable go) function H obtains the form:

Ill I , . = I 1 =

(I @ # I @ 8 2 @ g ?) . (l 0 8 2 $84 @ gS).(l @gS $ 8 6 @ 87) ' (1 @ 1 @ g3 @ 8 7 @ 88)

= (I 0 8 1 e 8 2 @ g 3) ' (I e 8 2 $ 8 4 @ g S) . (l @gS $ 8 6 @ 8 7) ' (g 3 $ 8 7 f E 8 8)

The above formula would be satisfied if all variables from the lirst three terms were not
selected and a single variable from the last term was selected. Since variables g 3 and g7
occur in terms 1 and 3, they cannot be selected. Variable g s can be selected and the function
II becomes:

111 I * o ,,=I1 =

(l e g 1 (O 8 2 $ g ?) ' (1 Q g 2 $ g 4 d 8 S) ' (1 @ 8 5 @ 8 6 @ 8 7) ' (8 3 @ 8 7 @ 1)

In the above function each Exor term includes a logic 1 (is a 1-term). This means that the ter-
mination condiuon IS satisfied and all the remaining variables in H are substituted by logic 0.
After substitution:

[H I 8..;.;.;.E G.z.;.Rl=l] = (1) ~ (1) O) W = 1.

It was shown abole that the product go g l g2 g, g4 gs g6 g7 g8 = 1 satisfies H. Therefore
G o EI G g = 1 d Zb is an ESOP solution tof. It has one product term and a term 1, so this is a
solution of cost 2 (the cost of each product group is 1) or of costl 1 (the cost of each product
group other than one is 1). In a similar way, it can be easily verified in H that the only two
solutions of f with two product terms (and no term 1) are: G 2 d G6 = a 63 iib and G I (3 Gs =
ab @ b. both of them of cost 2.

Among all solutions to function H one selects those that minimize certain cost function.
The simpliest three cost functions used by us are:
1. cost = number of all ESOP product groups, together with logic 1.
2. cos1 I = number of ESOP product groups other than logic 1.
2. cosi2 = a total number of literals in product groups of ESOP.
Also, any kind of a linear combination of cost, and cost2 can be used, as well as any oddifive
cost function that does not decrease with the addition of product terms to ESOP. All such cost
funcuons can be easily used for cut-off in uee-searching methods described in section 3.

The meaning of variables g, is as follows. The selection of a given product group GI to
some ESOP solution o f f corresponos to assigning the logic value 1 to variable g, in H
assigned LO this product group. Not selecting a product group to ESOP corresponds to assign-
ing the value 0 to the respective variable gl in H. Each ESOP solution o f f corresponds to a
product of literals gI" of H that logically satisfies the function H. The product of gp literals
which satisfies II and has the minimum cost (cost,, cost2,) corresponds to an exact
miniinum solution of a function f. n the simpliest case when the number of groups Cl is
minimized, the solution is sought that has the minimum number of selected variables g,. The
ESOP solution is an Exor sum of all product groups G, that correspond to positive literals 8,
from a product sausfying H.

The role of the funcuon H i s analogical to that of the Perrick function used in the exact
minimization of SOP forms, which is well-known from many logic design textbooks [14,18],
and is a pmcular case of the Satisfiabiliry Formula of the program complexity theory [9]
(The Satisliability Formula allows complemented vanables as well). Several algorithms for
Pemck function minimization and satisfiability decision making have been already proposed,
implemented and analyzed by many authors [14,]. All these algorithms can be found useful
while creating algorithms to minimize the function H.

The form of Helliwell's function H is similar to the Penick function P as well, but an
Exclusive summing (Exor) of the decision variables gl is used in H instead of their Inclusive
Or. In the classical SOP minimization, a set of prime implicanfs of f is first found, and next

- - - - - - -

the Penick funcuon P is created as a product of inclusive sums of positive literals. Each literal
is assigned to a pnme implicant off. Each inclusive sum from P corresponds to a single true
minterm m, of the function ,f This sum contains variables corresponding to prime implicants
off that cover m,. In the ESOP minimization problem the creation of the decision function is
more complicated because for such circuits there is no concept of a prime implicant.
Therefore, any product of literals that covers a true minterm (i.e. a group from GG) can be
theoretically considered as a potential candidate for the exact optimum cover. Also, in the
Peuick function the inclusive sums of variables are used, since a repeated covering of a true
minterm by the prime implicant is allowed. In the exor-based design the product groups are
not summed but exored, therefore an odd number of groups covering a Kamaugh map cell
produces a true m'nterm mi, while an even number of products covering a cell produces a
"zero" a false minterm M,.

Let us observe, that it is not necessary to take the don't cares off into account while
creating the function H. This means that when the ratio of the m e and false minterms to the
don't cares decreases, the complexity of the function H decreases as well. Such functions
with a high percentage of "don't cares" - the strongly unspecified Boolean functions - are
recently of an increased interest with respect to their usefulness in a multi-level logic syn-
thesis (Elrayton and U.C. Berkeley research) I2.31. Our approach to ESOP minimization is an
interesting example of a logic synthesis algorithm which becomes relatively more efficient for
the case of incompletely speciiied functions.

The algorithm to End an exact minimum solution to the function f can be now formu-
lated as follows.
Algorithm 2.1.

1. For each true minterm mi E ON find the set GG(mi) of its all ertensionr. i.e. literal pro-
ducts that can be found by the removal of any (also empty) subset of literals from m;.

2. GG, := CC(mi).

3.
* E O N

For each false minterm Mi E OFF End set GG(M,) of all its extensions.

4. GG2:= U GG(M,).
M, E OFF

5. Assign uniquely variables gl to groups from GG = GGI U GGz. Create set G of these
variables.

For each m, E ON create H(m,) = C@ 81. 6.
8, U a va&zbk fora pmdvct 8mvp C, E GG(m)

7. For each Mi E OFF create H(Mi) = (1 fB I:@ gj 1.
g, U "anobi. for (1 pmdvccr g,mq c, E GG(M.)

8.
9.

Create the function H according to formula (2.6).
Find the set MIN-SOL of all the minimal solutions LO formula (2.6). Each element of
the set MIN-SOL is a product of variables g,.

For each solution product Il gj E MIN-SOL create an ESOP solution expression 10.
I

I:@ GI.
I

In another variant of the above algorithm one looks for a tint subset of all minimal
solutions onlv.

3. COMPUTER ALGORITHMS TO SOLVE THE HELLIWELL'S FUNCTION.
There are several possible methods to find all literal products satisfying the function H
Conversion of the function H to an equivalent Generalized Propositional Formula
(GPF) [I41 and solving the GPF farmula: by the method of tree search, by the Boolean
manipulation, or by any other method.
The Boolean manipulation of the function H that transforms this function to the form of
an Exor of products of variables, from which all solutions can be found.
Direct um search of the function H to find the solutions, i.e. the products of literals
satisfying the function H.
The sophisticated algorithm of tree search with several somnglselecting heuristics and
heuristic evaluation functions that operates on ON and OFF cube array representation
of the function f(with cubes being not minterms) [25,27J. Thii algorithm makes also
use of the theory how to simplify the function H, by inkoducing fundamental concepts
of elementary transformations. implixors, minimal implicants and implicates.

1.

2.

3.

4.

The 6rst three above methods will be described in the sequel.

3.1. Conversion of the function H to an equivalent GPF formula.
Let us first consider, how an Exor of term can be uansformed to an equivalent Inclusive

OR of Product of Literals. For instance, the Exor term 81 d g2 d g3 6? g4, being an odd
function, is replaced by an Inclusive Sum of Products:

g i g z g A E 4 u ~ i ~ 2 ~ n ~ 4 ~ g i 8 z ~ 3 8 4 U g t 8 z ~ ? ~ 4 U 8 i ~ 2 ~ 3 8 4 U ~ i ~ 2 8 3 g 4 U

g 1 8 2 g3 8 4 U g 1 g2 g3 g4 composed of products having odd numbers of positive literals.
If there is a logic 1 in the Exor term, then the logic 1 is treated as one of the variables, i.e. the
term

(1fEZl @gz)

- - - - - - - - - - - - - -

is replaced by

(181 8 2 + 1 8 1 8 2 + 1 g i gz+ I g , SZ)= @ i G + g l 82).

In an equivalent method, the Exor term of 1 and decision variables is replaced with an
Inclusive Or of the products of the decision variables, where all the products are created only
for g, variables (logic 1 is not treated as a variable). Since such a function (complement of
Exor) is an even function, each of the created products includes an even number of positive
literals, and the literals for the remaining variables are negative (Zero is treated as an even
number). For instance, the term (1 d g CB g2 13 gs) is replaced by

_- - - --

_ _ -
(~ i ~ Z 8 3 + ~ l ~ Z ~ + ~ l ~ ~ 3 + ~ 8 2 g ?) .

Let us 6rst consider, how the function H being a product of Exors of terms can be
transformed to an equivalent product of Inclusive ORs of products of Literals.

1653

Theorem 3.1. Function H from formula (2.1) is logically equivalent to the following
GPF formula:

H(g1, ... 1 8 K) = (3.1)

Proof. Let us observe that Exor is an odd function, so that the Exor term E = ZCd g, of

decision variables g, can be replaced by an Inclusive Or of Producrs of corresponding deci-
sion literals g?, where all the products are created for variables g,. j = 1, ._.. v. Each of the
created products includes an odd number of positive Literals, and the literals for the remaining
vanables are negative.
L e t m = [m l , m z ,.__, m,]beabinarynumberofvbi t swherem,~ (0.1)and

, = I , . , "

[g1,g2, .._. g.l"=[g1,g2. .._, &] [" ' . " ~ ~ I = g1"' gzm, ' . ' g"-

Let deg (m) be a number of bits equal one in vector m

Then for the 0-term of variables one gets:

c "e& = U k l , 62. ..., &I" (3.2)
m e 0.1. 2.-1 I = 1 ,

&g I") ir odd

Analogously, for the I-term the Inclusive Or of Products of literals is:

By using (3.2) and (3.3) each Exor term of H is, therefore, convened to an Inclusive Or
of products of literals. The whole function H has been then tansformed to the form of the

3.2. Boolean Manipulation.
Boolean manipulation method transforms the function H 10 a "flattened decision func-

tion" FH being an Exor sum of Products form. The transformation is based on application of
the following rules of Boolean algebra:

a (bc)=(ab)c. (3.4)

(a@b)c=ac@bc. (3.5)

aOa=O. (3.6)

a@O=a. (3.7)

aa=a. (3.8)

ba=ab. (3.9)

la=a l=a. (3.10)

b@a=a@b. (3.11)

a (bOc)=abOnc.

The function H is processed by the program from left to right Srarting from left. rule
(3.4) is applied to every 6rst two Exor terms (t e m for short). For each such pair of terms
rules (3.5) are applied creating a new term t . Rules (3.8). (3.9), (3.10) are used. All pairs of
repeated products in term t are removed by applying rule (3.6) followed by rule (>.?>. The
products are sorted using rule (3.11). Rule (3.4) is applied to term r and the next term in H
and the algorithm is repeated until all terms in H are exhausted This is all programmed in a
symbol manipulation program that permits for combining the above rules together in order to
increase the processing efficiency.

The final formula FH is in the form of an Exor of products of variables. It can be con-
verted to an equivalentlnclusive Or of Products Form (IOF) as follows:
1. New form FH' is created by removing from FH all products that are included in other

products of FH. Such products can be removed because the solutions Corresponding to
them. even if they exist, would be inferior than the solutions correspondmg to the cubes
subsuming them.
Create an Inclusive Or Form g0D in which each product P, is a logcal AND of a p r e
duct from the FH' form and the product of the negations of the remainmg vanables
from G:

2.

-
(3.13

Producr of Sums ofproducts oflirerals. Formula (3.1) is obtained from formulas (2.1), (3.2)
and (3.3). Q.E.D.

Formula (3.1) is a particular case of the Generalized Propositional Formula (GPFj into-
duced in [14,].

Example 3.1. For the function H from Example 2.2 the Inclusive Or terms correspond-
ing to the Exor terms are as follows.
For r1 = (s o O g i O g2 O g3) the new term is
GPF(t1) =

C P , = C product. (n g,)
g,sG--Jg, I g,aprducf l producr FH' fJroduci E FH'

Theorem 3.3. The function IOF created as above describes all minimal solutions to the
flattened decision function FH.
Proof. Let us assume fust that FX=FH. Since each product in FH' is distinct and is not
included in any other, each corresponding to it product P, satisfies the function FH and the
function IOF. Each product of variables that is included in aproducr from FH' would create
product P sub r that would satisfy no product in FH. Therefore F H d O F . where IOF IS

go g1 g2 g s +

- - - - - - - - -
(go g i g2 g3 + g o g l g2 g3 + go g l g2 gs +

Fort, = (I @go O g3 69 g l @ga) thenew term is

GPF(t4L
go 83 87 gs +E83 81 g S + g O g s G g a + gOG8.l ~s +gog3 87 8s).
Therefore, a GPF equivalent to H is:

-_ - -
(so 83 87 f a +go 8, ;&+go 8 3 x 7 G+

GPF = GPF(ri) . GPF(t2). GPF(t3) . GPF(I,).

By repetitive application of standard Boolean rules (like o(b+c)=ab+ac, Z a=O. or a+a=a)
the above GPF is converted 10 an inclusive sum of products of positive and negative Literals.
Each such product describes a single solution to the GPF and hence to H. One with the smal-
lest cost is selected.

Another method to solve GPF is the heuristic recursive simplification based on: variable
selection. substitution the value 1 for it, and subsequent simplification of the decision func-
tion. For instance, an analysis of the GPF using this method, demonstrates that the products:

& P I 8>8Agpss&gJgJ. g o g i 82 g3 8 4 8s 8687 &'a. and
go gi gz 93 84 8s 8 6 g i ga
satisfy this GPF and hence are the solutions to it.

The decision problem for GPF is. like for the Petrick function (Product of Sums - POS),
bF-COmplele [91. Similarly the optimization problems for the GPF, POS and H funcuons are
W - h x d . It is, extremely unlikely that p efficient (polynomial) algorithm will be ever found
for the function H manipulation. However, among such NP-hard algorithms, there are still
some that are more efficient and can be applied practically for problems of smaller &men-
sions. Formula manipulation, recursive substitution/simplification, and t e e searching prrr
grams have also been created for exact and approximate minimization [271. A special data-
flow wavefront array architecture has been designed for this task [14, 151. Discussion of the
efficiency of a class of algorithms for GPF minimization/decision is given. together wlth the
presentation of several program benchmarks in [151.

Theorem 3.2. The minimum solution to the function GPF (3.1) is the minimum solu-
tion to the function H (2.1).
Proof. Since function GPF is equivalent to the function H (GPF = H is a Boolean tautology),
each mmimum solution to GPF is a minimum solution to the function H as well. Q.E.D.

This method is the most time and memory consuming out of the methods presented in
this paper and its only advantage is a reduction of the function H minimization problem to the
well-known problem of GPF minimization for which computer programs exst and computer
architectures have been proposed.

- - - - - - - - - - - - - -

created as in (3.12). For each product that includes a product, from FH' the FH can be
satisfied or not but the solution created for the respective product in IOF would be more
expensive than one corresponding to the product 1 . On the Same base one can exclude from
FH those products that are included in other products, creating function F X . Q.E.D.

Exnmple 3.2. For function H = (a f3 b) (a O c) the function FH is a 8 ac @ ab 0 tc.
After removal of ac c a and of ab c a, FH'.= a O bc. Hence according to formula (3.12):
IOF = ai? + Zbc.

3.3. Direct Tree Search Method Model.
The tree search method consist of the systematic selection of all possible subsets of a

set of aU positive literals and creating a branch for each subset Most of the branches are not
completely extended since the cost-based cut-off principle of the branch-and-bound program-
ming is also used. This is the most efficient method from those proposed here.

Exumple 3.3. Application of the Direct Tree Search method for the function from
Example 2.2 is presented in Figure 3.1. Branching is done with respect to the variables from
the "best r e m " (explained below). The best terms in each node of the tree are underlined.
Variables g, are the search operators.

The function H for nodet is denoted by H(nodei). Whenever a posiove literal g, is
selected. it is replaced with Iogc 1 in all respective terms of H(nodet). If two 1's occur ~n a
term, they are anihilated. Thus a new nodet+l is created to which an arrow (operator) g, leads
from the previous node,. The function H for n ~ d e ~ , ~ is, after simplification.
denoted by H(nodei+l). The goal of the search is to select such positive literals that ones will
appear in all Exor terms (all terms become I-terms). In such case the soluuon is a product of
two product terms:
- the product of all the positive literals selected in a branch leading to the node w~th all

terms being I-terms,
and
- the product of the negations of all the remaining variables from the set G.

Let us observe that the expression H(nodet) is the function H simpldied by substitution
of ones for all the literals along the branch leading to nodet.

The literals for branching are selected in each node as follows. One Exor term of the
expression is selected according to some heuristic criteria, similar to those from [221. For
simplification, in this example, a term is selected that maximizes the total uefulness of its
literals.

(3.13)

Definiiion 3.1. The usefulness of a variable in nodet is the number of Exor terms m the
function H (nodei) that are converted fron @terms to I-terms minus the number of terms
convened from I-terms to 0-terms by selecting this variable.

Definition 3.2. The best term of nodet, denoted by I,, is a term of H(nodet) which
maximizes function (3.13).

1654

nodc l . (to Q g l Qtl Qtl)(gO Q g 2 Q 8, Q8d(Bo et5 Q 86 Q tm e g o Q xI b g 7 @sa)
K O

nodc2. (1 a 6'1 e82 @ 81)(l @ 82 8, @h's)(l $85 @ S6 @8,)(g1 fB 87

81

n d - 3 . (I Q 8 1 Q 8 1 e 8 ,) (l ~ 8 1 Q 8 a Q 8 ~) (l ~ x ~ Q g s Q g 7) (l Q g l 3s;) .

noded. (1 @ g o a g , e g m @ g o e t 6 mg5)(ga exs eg6 e t m e go mg3 e g , et,)

cosl=2.SOLmON=go 8 ~ 8 1 8,81 8 4 8s 8 6 8 7 .

82

86

nodes. (I
cosi=2.SOLUTION=g,S68o8, 83g48sg788.

80 g i Q 81)(l @ 80 3 4 @ g,)(l @ go 85 @ g i) (l e g o Q X I @ 87 fB 8s).

g 5

node.5. bO@8l 3 8 7 @ 8 %)

8,

cQrt=2.SoLUTIoN=81 85 8 0 82 83 84 86 87 8s.
Mde7. (1 Q 8a Q 8, Q 8 N Q 8, Q 8 l Q g d l Q go Q 86 Q g d l Q SO fB 8, Q 87 Q 88).

8 4

nocie8. (s o Q s l ~ ~ , Q g ,) (~ Q g ~ Q t ~ Q t ~) ~ ~ Q ~ ~ ~ g 6 Q g ,) (l ~ ~ Q Q g , @ 8 , @ g 8)

8 0

MdC9. (1 b g i @ 82 @ 81)(8z 0 gr)(l
cost = 2. Cut-oif,

82

nodelo. (1 ~ t ~ ~ t , ~ g ~) (g ~ ~ g ~) 0 ~ ~ g ~ ~ g ~ e t ~) (i ~ g ~ ~ ~ ~ e g ~ ~ g ~) .
cost = 2, cut-oif.

85

n o d e l l . (a o Q g i Q ~ l Q ~ l) ~ o Q ~ l) (i Q ~ o Q ~ a ~ ~ 7) (l ~ g o Q ~ , e g , e g s) .
COS[= 2. cui-oif,

g5 @ 86 @ 87)(8, Q 87 @ 8s).

Figwe 3.1

After the selection of the best term t,.,, the variables g, in the term I,,, are sorted
according to the non-increasing values of function usefulness(g,). Next the search operators
3rc created. based on lhose variables. If the best term is a 0-term the search operators are sim-
ply the variables fi, If the best rerm is a I-term than the operators are:
. a11 the posiuve literals - the g, variables from the 1-term,
and
- the product of the negative lilerals corresponding to those variables.
This branching method results from the fact that the function H can be satisfied only when
each of its Exor terms is satisfied, and the above method describes all substitutions that sausfy
the selected term.

The tree from Figure 3.1 assumes the depth-first searching method. In node 1 term
(2" cD gz 8 g4 8 g5) is selected as the base for branching. Node 2 is created by substituting
go = 1 and simplifying 1 8 1 = 0 in the last term. Term (g3 €3 g l 'rD g8) is selected in node 2.
Now. let us ObSeNe that in node 2 the branching is done only for g8. This is due to the fact
that g 8 is the only variable that occurs in the best term and does not occur in the other terms
of / l (n o d e z) . Other vanables from this best term (g3. g7) occur also in other terms and hence
they would make other terms unsatisfied after application of the a 8 a = 0 cancellations. They
will. thcrdore. not lead to a solution node of the same (or better) cost as one to which g 8
Icids. Application of the operator g8 leads to a node 3 with a solution
x o g 8 6 , gz g, g4 gs g6 g7 of cost 2. The value of 2 becomes the temporary optimal solu-
tion cost that will be used for cut-off. Backtrack to node 1 occurs and literal g2 is selected.
Node 4 IS created by substitution g2 = 1. Term (go 8 g5 €3 86 8 g7) is selected as the best
term in node 4. The variable g6 is the only one that occurs in the best term and does not occur
in any other terms of H(node4) . Selection of variable g, as an operator leads to node 5 . There
is no need to do the branching for the other variables !?om that best term, as that will not
create the solution with the same or better cost than the solution at node 5. Node 5
corresponds to a solution gz g6 go g, g3 g4 g5 g l gs of cost 2. Now, a backtrack to node 1
is done and the branching is continued from it. Similarly the endre tree from Fig. 3.1 is
created.

Theorem 3.4. The Direct Tree Search method creates all minimal ESOP solutions.
Proof. It results from the method of search organization that the entire solution space of pro-
duct groups is searched: in each term one has to select a positive literal out of its variables, or
no positive literal is selected for this term (which means selecting a product of all its variables
with negations). The selection of best terms and sorting of literals inside the terms have no
meaning other than being a speeding-up heuristics which enables to find a good solution
quickly. thus improving cut-offs in the next phases. It was also explained in the Example 3.3
why branching in some nodes (such as nodez) can be limited. The above explained type of
cut-oll principle, as well as the standard cost-based cut-off will not prevent a generation of all
exact solutions. Q.E.D.
The search is organized in such a way that the cut-off is expected as scon as possible. The
following explanation can be given:

1. For wch I-term one has to select as an operator etther a product of all negated literals
(no positive literal selected for this term) or one positive literal. A generation of a tree
based on the best terms is more efficient than the others branching methods.
For each 0-term one has to select as an operator only one positive literal to convert it to
a 1-term. A 0-term with the literals that make most improvement (cover as many uue
ininterms and as few false minterms as possible) is selected as the best term. This is a
heuristic rule for the best branching.
If a term can be find so that by selecting one of its positive literals. all terms are con-
verted to 1-terms - the term IS selected and branching is done only for this one positive
liieral. This terminates the search for this branch. This is a suict rule.

- - - - - - -

2.

3.

The advanwge of this approach is a speed, assuming a sufficient memory.
Another tree searching qtrategy for the best product of variables is the so-called "tree of

a11 subsels of :I set" (the set of all posiuve literals in his search variant) [2?1. The are many
nielhoils lo search such a trce. One method assumes a lexicographical order of variables. For
each node the branching is done for all variables that are higher in the order than the variable
leading to this node. In another variant of this method. the variables are sorted in each node
alter crating it, according to heunsuc evaluation of their local quality. In yet another variant

sorting is also done after backtracking to a node. In all these algorithms the cut-off principle
is used to prune nodes of the solution tree which costs exceed the stored cost of the actually
found minimum solution. The advantage of this approach is memory efficiency.
1. CONCLUSION

A new concept of a decision function for evenlodd covering problems @articularly
ESOP minimization), together with the algorithm to minimize such functions, have been
introduced. Such an approach permits exact minimization of ESOPs and is to OUT knowledge
fie h s t attempt to create an exact minimization algorithm for an arbitrary number of input
variables.

The introduced here method is very time and memory consuming. Recently. the new
theory and the exact algorithm have been developed, which improves time and memory con-
strains by essentially decreasing the size of the searching tree [26,271. This new algorithm
has been also generalized for multi-valued input logic and multi output functions [271. Van'-
gnts of these algorithms to find quasi-minimum solutions are presented in 1271. Furthermore.
several systolic architectures to solve this problem have also been proposed by the authors
[14.151.

Since the Reed Muller Forms and the Generalized Reed Muller Forms are special cases
of ESOPs. with additional restriction imposed on product groups - all the above methods can
be easily generalized for RMs and GRMs of incompletely specified Boolean functions. We
u e not aware of any exact algorithms to create Reed-Muller forms for incompletely specified
functions. For the GRM forms of the completely specified functions this problem has not
been solved satisfactorily until now, even approximate algorithms have not been proposed.
For the incompletely specified functions it has not been solved at all. In addition. thanks to
some additional search reductions (more powerful than by only reslricting polarities), which
are particular to the polarity consmints of GRM forms, the search is essentially reduced and
even larger functions can be minimized [271.
5. ACKNOWLEDGMENT

cept of function H for tointerms.
6. LITERATURE
[l] Besslich, Ph.W., "Efficient Computer Method for EXOR Logic Design", Proc. IEE. Vol.
130, Part E, CDT, No. 6.. pp. 203-206, 1983. [2] Brayton, R.K., Camposano, R., De Micheli,
G., Otten, R.H.J.M., and J. Van Eijndhoven, "The Yorktown Silicon Compiler System".
Chapter 7 in Gajski, D., (ed), Silicon Compilation. 1987. [31 Brayton, R., Rudell. R.,
Sangiovanni-Vincentelli. A., Wang, A., "MIS: Multiple-Level Logic Optimization System",
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, NOV.
1987. pp. 1062-1081. "Inconsistent canonical forms of switching functions'', IRE Trans.
Electron. Comput.. Vol. EC-11, p. 284, April 1962. [4] Csanky, L., "On the Generalized
Reed-Muller Canonical Form of Boolean Functions", M. S. Thesis, University of Californfa.
Berkeley, December 4, 1972, California 94720. [SI Daasch, R., Private Communication. [61
Davio, M., Deschamps. J.P.. and A. Thayse, "Discrete and Switching Functions". McGraw-
Hill Book Co.. Inc., New York, 1978. [7] Fieisher. H., Tavel, M, and J. Yeager, "Exclusive-
OR representations of Boolean functions", IBM J . Res. Develop., Vol. 27, pp. 412416, July
1983. [SI Reisher, H., Tavel, M., and J. Yeager, "A Computer Algorithm for Minimizing
Reed-Muller Canonical Forms", IEEE Trans. on Compuers, Vol. C-36, No. 2, February
1987. [9] Garey, M. and Johnson D., "Computers and Intractability: a Guide to the Theory of
Ijp-Completeness", Freeman, San Francisco, CA, 1979. [lo] Green, D., "Modern Logic
Design". Electronic Systems Engineering Series, 1986. [U] Handschy, M.A., Johnson, KM..
Cathey, W.T., and L. A. Pagano-Stauffer. "Polarization-based optical parallel logic gate util-
izing ferroelectric liquid crystals", Optics Letfers. Vol. 12, No. 8, August 1987. [12] Hel-
liwell, M., and M.A. Perkowski, "A Fast Algorithm to Minimize Multi-Output Mixed-Polarity
Generalized Reed-Muller Forms", Proc. 2 5 t h ACMIIEEE Design Aufomufion Conference,
peper 28.2, pp. 427432, June 12- June 15, 1988. [13] Helliwell, M., Privafe Information.
[I41 Phuong Minh Ho, M. Perkowski, "Systolic Architecture for Solving Combinatorial Prob-
lems of Logic Design", Proc. International Symposium on Circuits and Systems, ISCAS'89.
May 9-11, 1989. E151 Phuong Minh Ho. M. Perkowski, "Performance Analysis of a Parallel
Architecture for Solving Combinatorial Problems", submitted to 17th Intern. Symp. on Com-
puter Architecture. Seattle. WA, May 28-31. 1990. [16] Hurst, S.I., "Logical processing of
digiral signals", Edward Amold. London: Crane-Russak, N.Y., 1978. [17] Kodandapani.
K.L., and R.V. Setlur, "A note on minimum Reed-Muller canonic forms of switching func-
tions", IEEE Trans. Comp.. Vol. C-26, pp. 310313, 1977. [U] Kohavi Z., "Switching and
Finite Automata Theory.", (2nd edition), McGraw-Hill, New York, 1978. 1191 Mukho-
phadhyay. A., and G. Schmitz. "Minimization of exclusive-OR and logical equivalence
switching circuits", IEEE Trans. Comp.. Vol. C-19, No. 2. , pp. 132-140, February 1970. (201
Muller, D.E.. "Application of Boolean algebra to switching circuit design and to error detec-
tion'', IRE Trans. Electron. Comp., Vol EC-3, pp, 6-12, September 1954. [211 Papakonstan-
tinou. G.. "Minimization of modulo-2 sum of products", IEEE Trans. on Computers., Vol. C-
28, pp. 163-167. February 1979. 1221 Perkowski, M.A.. Liu. J., and JE. Brown, "Quick
Software Prototyping: CAD Design of Digital CAD Algorithms", In G. Zobrist fed) "Progress
in Computer Aided VLSI Design". Ablex Publishing Corp., 1989. [231 Perkowski, M.A., and
P. Wu. "KUAI-EXACT A New Approach for Multi-Valued Logic Minimization in VLSI
Synthesis", Proc. 1989 ISCAS -International Symposium on Circuits and Systems, May 9-1 1,
1989. [241 Perkowski, M.A., Helliwell, M., and P. Wu, "Minimization of Multiple-Valued
Input, Multi-Output Generalized Reed Muller Forms", Proc. International Symposium on
Multi-Valued Logic, Guangzhou, May 29-31 1989, People's Republic of China. [ZS] Per-
kowski, M.A. Dysko. P.. and BJ . Falkowski, "Two Leaming Methods for a Tree-Search
Combinatorial Optimizer", Proceedings of JEEE International Phoenix Conference on Com-
puters and Communication, Scottsdale, Arizona, March 1990. [26] Perkowski, M.A., and M.
Chrzanowska-Jeske, "Tree Search Algorithms to Find Exact ESOP Forms", PSU EE. Dept.
Report. 1990. [271 Perkowski, M.A.. and M. Chrzanowska-Jeske, "Approximate and Exact
Tree Search Algorithms for Minimization of Binary and Multiple-Valued Input ESOPs, RMs
and GRMs for Suongly Unspecified Boolean Functions", PSU EE. Depr. Report. 1990. [28]
Pitty, E.B., Salmon, J.V.: "Input Irredundancy of Mixed-Polarity Reed-Muller Equations",
Electronics Letters, March 3, 1988, Vol. 24, No. 5.. pp. 258-260. [29] Reddy, B.R.K., and
A.L. Pai, Reed - Muller Transform Image Coding, Computer Vision, Graphics. and lmuge
Processing. Vol. 42, pp. 48 - 61 (1988). [301 Reed. I.S., "A class of multiple-error-correcting
codes and their decoding scheme", IRE Trans. Inf.Th., Vol. PGIT-4, pp. 3849, 1954. [311
Sasao, T.. Besslich, P.: "On the Complexity of MOD-2 Sum PLA, Institute of Electronics
and Communication Engineers of Japan. F I X b 1 7 , pages 1-8, Nov. 17, 1986. [321 Yu,
Francis T.S., Suganda, J., and D.A. Gregory, "Real-time liquid crystal W X O R - and XNOR-
gate binary image subtraction technique", Applied Optics. Vol. 26, No. 14/15 July 1987.

The authors would like U) thank Martin Helliwell for the development of the initial con-

1655

