AN EXACT ALGORITHM TO MINIMIZE MIXED-RADIX
EXCLUSIVE SUMS OF PRODUCTS FOR INCOMPLETELY
SPECIFIED BOOLEAN FUNCTIONS

Marek Perkowski, and Malgorzata Chrzanowska-Jeske

Portland State University, Department of Electrical Engineering
P.O. Box 751, Portland, OR, 97207, tel. (503) 725-3806 x23

ABSTRACT

An exact algorithm for the synthesis of mixed polarity Exclusive Sum
Of Product (ESOP) expressions for arbitrary size incompletely specified
Boolean functions is presented. For more than 4 input variables, this problem
has not been solved yet. A decision function H is constructed for a Boolean
function f that describes all possible ESOP solutions to f. The function H
plays for the ESOP minimization problem the role analogous to that of the
Petrick function for the minimization of the inclusive sum of product expres-
sion problem of the classical logic. Each product of literals that satisfies the
function H corresponds to one ESOP solution of f. The algorithms to create
and solve function 4 are presented.

1. INTRODUCTION

Various circuit realizations of Boolean functions that use a high percentage of Exor
gates have been proposed. All of them will be called the Exor circuits. They include Reed-
Muller forms (RM) [20,30], Generalized Reed-Muller forms (GRM) [10,19], Exclusive Sums
of Products [12,31] Multi-Valued Input Exclusive Sums of Products [24) Multi-Valued Gen-
eralized Reed-Muller Trees (MGRM) [25], and many other multi-level and multi-output reali-
zations in which an Exor gate is repeatedly used as a basic logic component. Out of those the
RM, GRM and MGRM are canonical forms. Such Exor circuits have several advantages over
the realizations which include only other kinds of gates, for instance the circuits that use only
NAND and NOR gates. The main advantage of the Exor circuits is their essentially improved
testability: for those of them that are canonical forms, the test generation is very easy, and a
number of tests is small. Moreover, for some of them (like the Reed-Muller or generalized
Reed-Muller forms) the set of all tests is universal and does not depend on a particular
Boolean function that is realized by the circuit. Also, the Exor-based circuits often require
smaller layout area for their realization on VLSI chips. This is especially common for arith-
metic, error detection/correction and telecommunication circuits. However, two perceived
disadvantages of Exor circuits cause that they are not as often used in practical applications as
they deserve. The first disadvantage is the lack of a goed minimization theory and
corresponding practical minimization algorithms. This problem has been addressed in many
papers in the last few years and several efficient approximate algorithms have been recenty
programmed or proposed. The other, much more essential, disadvantage of the Exor circuits
is the slow speed of the many-input Exor gate. There are, however, some hopes that this will
be overcome in new technologies, including the logic families based on current switching 5],
and the optical technology realizations [11,32].

Reed-Muller forms and other Exor circuits are useful outside the area of circuit design.
They can serve as efficient data structures for logical forms manipulation in symbol process-
ing for CAD [28] as well as in the unification, being a base of automatic theorem provers and
logic programming languages like Prolog. They have been also used in image processing,
coding, and recognition problems [29]. The above reasons have recently caused an increased
interest in the development of the theory of Exor circuits that would find practical applica-
tions. The classical but yet unsolved problems of finding the minimal forms become more
interesting again.

The basic circuit model used in this paper can be formulated as follows. Given is a sin-
gle output, incompletely specified Boolean function f of # binary inputs in the form of a Kar-
naugh map, or a set ON of true minterms (called sometimes the "ones” of the function) and a
set OFF of false minterms (the "zeros" of the function). The Mixed Polarity (Radix)
Exclusive Sum Of Products (ESOP (31], or MRESP {12,24]) of a Boolean function is an
Exclusive sum (Exor) of products of literals, each literal being a variable or its negation. The
same variable can stand in both positive and complemented forms in various products of the
ESOP. This formulation is the most general basis for a two level Exor/And-based realization
of a general purpose Boolean function. The other forms of such a realization include the
Reed-Muller and so-called "generalized Reed-Muller forms". In a Reed-Muller form all vari-
ables have positive polarities. GRM forms are created for all possible polarities of the input
variables. Each variable in a GRM can be either positive (positive polarity, 1) or comple-
mented (negative polarity, 0), but it cannot have both polarities in one form. Since there are
two polarities for each of the n input variables there are 2” polarities of all variables and,
therefore, there exist 2" various GRM forms out of which one with the least cost should be
selected.

In the ESOP minimization problem one wants to find a solution with the minimun
number of products or with the minimum total literal cost. As mentioned above, the problem
to find an exact minimum solution for a Boolean function in an ESOP form is an old one (1, 4,
6,7, 8, 10, 16, 17, 19, 28], but it still remains unsolved, even for the case of completely
specified Boolean functions. Several papers that propose theories and programs to produce
quasiminimum solutions have been published. With the exception of a paper by Papakonstan-
tinou [21] who shows how to find a minimum solution for four variable functions, nobody has
attempted to formulate an exact algorithm for a Boolean function f with an arbitrary number
of input variables.

In this paper an algorithm to solve this important problem is presented for the
first time. It finds always the exact solution and has no theoretical limits on the size of
the function. Moreover, it finds the exact for inc letely specified
functions as well. Interestingly, for a function with a high percentage of don’t cares the solu-
tion can be found even more efficiently, as opposed to most algorithms for the sum of pro-
ducts (SOP) realization of Boolean functions. Finally, although the approach proposed here is
very time consuming, its speed can be essentially increased by using parallel processing tech-
niques or the special VLSI data-flow hardware accelerator described in [14].

Section 2 introduces the decision function H that finds applications in all odd/even cov-
ering problems. It is a direct counterpart of the well-known Petrick function used in a set
covering problem. Creation and use of the function H is illustrated with examples. Section 3
presents various methods to minimize such functions.

2. THE HELLIWELL’S DECISION FUNCTION FOR EVEN/ODD COVERING
PROBLEMS

The basic idea of this method is to create, for a given Boolean function f{x;, X2, ... Xu).
a new Booléin function H(gy, g2, ..., gx), where K < 3", that describes all possible solutions
to the function f. The name H comes after Martin Helliwell who has first proposed this kind
of decision function {13].

Definition 2.1. A literal is a variable with negation or not. It is assumed that X = 20
negative literal) and x = x* (positive literal).

Let us denote by G = {g,, g2. 8x} the set of all decision variables. All those vari-
ables are used in the function H only as positive literals.

The function A is created as follows. First one finds all possible products of literals
from the set (x;", x5, ... x,"}, where i; € (0,1} for j=1, ... n, that can be used as product
groups in the ESOP minimization problem of £, A product group is denoted as G, and the set
of all such groups will be denoted by GG. In the worst case GG is the set of all 3" possible
literal products calculated by ternary counting. Ternary counting creates all possible cubes
with variable x; position values: 0 - for x;, 1 - for x;, and X for x; absent in the product. Next,
a unique new variable (a positive literal) g1, g2, . .., gx 18 assigned to each of the product
groups from GG.

A true minterm (a "one") is denoted by m;, a false minterm (a "zero™) by M,. The set of
all true minterms (ar, in general ON-cubes) is denoted by ON. The set of ail false minterms
(OFF-cubes) is denoted by OFF.

Now, the formal method of creating the decision function 4 for the function f and the
proof of its usefulness in minimization will be given.

Definition 2.2. A redundant ESOP is an ESOP that includes products that can be
removed and the ESOP will still be a solution. A non-redundant ESOP is an ESOP that is not
redundant.

Example 2.1. 1f fis a solution then f, = f ® ab @ ab © a is a redundant solution since:
fHi=f@a®afi=f®0, fi=f

Theorem 2.1. Each non-redundant ESOP solution of the function f is an Exor term of
groups G; corresponding to those decision variables g; that stand as positive literals in a pro-
duct that satisfies the following logic equation:

1 =H@, . e0)= @n
Te e I ae px: &)
ms ON 8 is a variable M OFF g i a vriable
for a product group G; 2 m; for a product growp G; 2 M;
€GG G GG

Proof. To describe covering possibilities of a single true minterm m; one has to create an
Exor term:

Hm;)= ® 8 @2
2 is a variable for a product group Gj 2 me

which is an Exor of the variables g; describing al the product groups G; that cover the true
minterm ;. If the product group G; is selected, a value one is assigned to its variable g, . If
the group G; is not selected, a value 0 is assigned to g;. If an even number of g; variables is
selected the logic ones assigned to them will anihilate to zero in the Exor term. If an odd
number of g; variables is selected then the resultant value of the Exor term will be 1. One can
now create a product /| of such Exor terms H (m;) for all true minterms of f£:

= IT Hm; 2.
Hy s oN (my) 23)
Similarly as in the Petrick function, the product of such terms equals 1 whenever all true min-

terms are covered.

Function H, is, however, not sufficient as a satisfiability formula since one has also to
take into account that while all the true minterms are covered by the selected groups from
GG, all the false minterms must not be covered by these groups. This can be done for a single
false minterm M; by an exor of value 1 with an Exor of all variables g; for groups G; that
cover this false minterm. Therefore, the Exor term for a false minterm M; has the form:

HM)=1® Se & 2.4

g is @ variable for a group G; 2 M;
The function for all false minterms of a function fwill be a product of the above Exor terms:

Ho= I1 HMY 2.5
M. e OFF
Now, the Boolean product of functions #, and H :
Hgy, on g)=Hy - H> 2.6

will be 1 when all true minterms of f are covered and all false minterms of f are not covered
by groups G;. The equation

H(gys o g)=H, Hy = 1 en

is therefore a generator of all non-redundant solutions. QE.D.

CH2868-8/90/0000-1652$1.00 © 1990 IEEE

In the first approach, presented in this paper, it is assumed that the product groups G;
correspond 10 all possible extensions of the true and false minterms of f. (More efficient
approach is presented in {26, 27]). These cxtensions are created by the removal from the min-
terms of all possible subsets of x," literals (also empty subsets). For instance, for a minterm
ab one creates product groups: G, = ab,G,=a,G3=b,Gy=1. The value 1 is an universe -
the entire Karnaugh map of a function f. The corresponding variables of H, assigned to
groups G, G4, Gy, and G, will be gy, g2, g3, and g, respectively.

Example 2.2. Given is a completely specified function f (a,b) = 3 1,2,3. The product
groups are: Go = 1, Gy = ab, Gy = a,Gy = b, G4 = ab,Gs = b,Gs = a,G7= & Gy =
ab.

All product groups that can be used for the realization of true minterm ab are: Gy, Gy, G2,
G,. All product groups that can be used for the realization of the true minterm ab are: Go,
G4, Ga, Gs. All product groups that can be used for the realization of the true minterm ab
are: Go, Gs, G, G7. All product groups that can be used for the realization of the false min-
term 3b are: Gy, G3, G4, Gs.
Function #; is therefore:

Hi=(2002192:9g3) (8098:984985) (80D g5 DgsDgy).

Function H , is:
Hy=(1®g,®g; D279 gy)
Therefore:
H=H\ Hy = (g®g ®g2Dg3)"
(8o @2, Dga®gs) (g0 Dgs D2 Dgr) (1D g0 g3®g7Dgs)
Definition 2.3. The Exor term that includes logic 1 is called the I-zerm. The Exor term

that has no logic 1 is called 0-term.

The first three terms in the above expression are O-terms and the last one is a 1-term.
Let us observe that in the initial function # 1-terms correspond to false minterms and 0-terms
10 true minterms of the function £,

Example 2.3 In the next section we will systematically describe methods to solve
(minimize) this kind of decision functions. Let us, however, observe now that by selecting
variable g (it means substituting logic value 1 for variable g,) function A obtains the form:

[H 1] =
(1@g ©2,Dg3) (102, Dg.Dg5) (19850 gsDgy) (101Dg; 087D gs)
=108, ®g,983) (19g,08:Dg5) (19250 g4Dg7) (83D g7 Dgs)
The above formula would be satisfied if all variables from the first three terms were not
selected and a single variable from the last term was selected. Since variables g; and g,
occur in terms 1 and 3, they cannot be selected. Variable gg can be selected and the function
11 becomes:

[Il | ELAN {0
(108, ®g,Dg;) (1D, DgsBgs) (1025 DeeDey) (8398701

In the above function each Exor term includes a logic 1 (is a 1-term). This means that the ter-
mination condition is satisfied and all the remaining variables in H are substituted by logic 0.
After substitution:

OO =1

[H1 4,

It was shown above that the product go g1 82 83 84 85 86 §7 §s = 1 satisfies H. Therefore
Go® Gy =1 abis an ESOP solution to £. It has one product term and a term 1, so this is a
solution of cost 2 (the cost of each product group is 1) or of cost 1 (the cost of each product
group other than one is 1). In a similar way, it can be easily verified in H that the only two
solutions of f with two product terms (and no term 1) are: G, ® Gg=a @ aband G, ® G;s =
ab @ b, both of them of cost 2.

Among all solutions to function H one selects those that minimize certain cost function.
The simpliest three cost functions used by us are:
1. cost = number of all ESOP product groups, together with logic 1.
2. cost; = number of ESOP product groups other than logic 1.
2. costy = a total number of literals in product groups of ESOP.
Also, any kind of a linear combination of cost, and cost, can be used, as well as any additive
cost function that does not decrease with the addition of product terms to ESOP. All such cost
functions can be easily used for cut-off in tree-searching methods described in section 3.

£1°82°83°84 85 ke g1 £2=1] =

The meaning of variables g; is as follows. The selection of a given product group G; to
some ESOP solution of f corresponas to assigning the logic value 1 to variable g; in #
assigned 10 this product group. Not selecting a product group to ESOP corresponds 10 assign-
ing the value O to the respective variable g; in /. Each ESOP solution of f corresponds to a
product of literals g, of H that logically satisfies the function H. The product of gj"' literals
which satisfies // and has the minimum cost (costy, cost,) comesponds to an exact
minimum solution of a function f. n the simpliest case when the number of groups G, is
minimized, the solution is sought that has the minimum number of selected variables g;. The
ESOP solution is an Exor swn of all product groups G; that correspond to positive literals g;
from a product satisfying H.

The role of the function H is analogical to that of the Petrick function used in the exact
minimization of SOP forms, which is well-known from many logic design textbooks [14,18],
and is a particular case of the Satisfiability Formula of the program complexity theory [9]
(The Satisfiability Formula allows complemented variables as well). Several algorithms for
Petrick function minimization and satisfiability decision making have been already proposed,
implemented and analyzed by many authors [14,]. All these algorithms can be found useful
while creating algorithms to minimize the function f.

The form of Helliwell's function # is similar to the Petrick function P as well, but an
Exclusive summing (Exor) of the decision variables g, is used in # instead of their Inclusive
Or. In the classical SOP minimization, a set of prime implicants of f is first found, and next

1653

the Petrick function P is created as a product of inclusive sums of positive literals. Each literal
is assigned to a prime implicant of £, Each inclusive sum from P corresponds to a single true
minterm m; of the function f. This sum contains variables corresponding to prime implicants
of f that cover m;. In the ESOP minimization problem the creation of the decision function is
more complicated because for such circuits there is no concept of a prime implicant.
Therefore, any product of literals that covers-a true minterm (i.e. a group from GG) can be
theoretically considered as a potential candidate for the exact optimum cover. Also, in the
Petrick function the inclusive sums of variables are used, since a repeated covering of a true
minterm by the prime implicant is allowed. In the exor-based design the product groups are
not summed but exored, therefore an odd number of groups covering a Kamaugh map cell
produces a true minterm my;, while an even number of products covering a cell produces a
"zero" a false minterm M;.

Let us observe, that it is not necessary to take the don’t cares of f into account while
creating the function H. This means that when the ratio of the true and false minterms to the
don’t cares decreases, the complexity of the function H decreases as well. Such functions
with a high percentage of "don’t cares" - the strongly unspecified Boolean functions - are
recently of an increased interest with respect to their usefulness in a multi-level logic syn-
thesis (Brayton and U.C. Berkeley research) [2,3]. Our approach to ESOP minimization is an
interesting example of a logic synthesis algorithm which becomes relatively more efficient for
the case of incompletely specified functions.

The algorithm to find an exact minimum solution to the function f can be now formu-
lated as follows.

Algorithm2.1.

1. For each true minterm m; € ON find the set GG(m;) of its all extensions, i.e. literal pro-
ducts that can be found by the removal of any (also empty) subset of literals from m;.

2. GGi:= y GG(my).
m e ON
3. Foreach false minterm M; € OFF find set GG(M;) of all its extensions.
4 GGy:= \y GGMM).
M€ OFF
5. Assign uniquely variables g; to groups from GG = GG U GG,. Create set G of these
variables.
6. For each m; € ON create H(m;) = ® 8-
g is a variable for a product group G; € GG(m;)
7. Foreach M; € OFF create HM;)=(1 & Yo &)
4} is a variable for a product group G; € GG(M;)
8. Create the function H according to formula (2.6).
9. Find the set MIN_SOL of all the minimal solutions to formula (2.6). Each element of
the set MIN_SOL is a product of variables g;.
10.

For cach solution product IT g; € MIN_SOL create an ESOP solution expression
i

YeG;.

i

In another variant of the above algorithm one looks for a first subset of all minimal

solutions only.

3. COMPUTER ALGORITHMS TO SOLVE THE HELLIWELL’S FUNCTION.

There are several possible methods to find all literal products satisfying the function 42
1. Conversion of the function H to an equivalent Generalized Propositional Formula
(GPF) [14] and solving the GPF formula: by the method of tree search, by the Boolean
manipulation, or by any other method.
The Boolean manipulation of the function A that transforms this function to the form of
an Exor of products of variables, from which all solutions can be found.
3. Direct tree search of the function A to find the solutions, i.e. the products of literals
satisfying the function H.
The sophisticated algorithm of tree search with several sorting/selecting heuristics and
heuristic evaluation functions that operates on ON and OFF cube array representation
of the function f (with cubes being not minterms) [25,27]. This algorithm makes also
use of the theory how to simplify the function A, by introducing fundamental concepts
of elementary transformations, implixors, minimal implicants and implicates.
The first three above methods will be described in the sequel.

3.1. Conversion of the function / to an equivalent GPF formula.

Let us first consider, how an Exor of term can be transformed to an equivalent Inclusive
OR of Product of Literals. For instance, the Exor term g, @ g, © g3 ® g4, being an odd
function, is replaced by an Inclusive Sum of Products:

81828384V 81828384 81828382 81828384 818283849 818281841
81828384 \Y g1 82 &3 84 composed of products having odd numbers of positive literals.

If there is a logic 1 in the Exor term, then the logic 1 is treated as one of the variables, i.e. the
term

(1©g19g2)

is replaced by

(1g182+18182+18182+1g182)= (g1 82+8182)-

In an equivalent method, the Exor term of 1 and decision variables is replaced with an
Inclusive Or of the products of the decision variables, where all the products are created only
for g; variables (logic 1 is not reated as a variable). Since such 2 function (complement of
Exor) is an even function, each of the created products includes an even number of positive
literals, and the literals for the remaining variables are negative (Zero is treated as an even
number). For instance, the term (1 © g, ® g, ® g4) is replaced by

(818283 +818283+81 8283 +8; 82 83)-
Let us first consider, how the function H being a product of Exors of terms can be
transformed to an equivalent product of Inclusive ORs of Products of Literals,

Theorem 3.1. Function H from formula (2.1) is logically equivalent to the following
GPF formula:

H(gy, v 88)= G.n
IT s 8r2 ey ™
for all Exor terms (h) " l[g"l 8.2 o]™)
& =50 e odd

I1 (a1+ 8,20 wrfi, ™)
* for all Exor terms H" . o2 o
-(‘ szegs i) deg (m;".'.—E evendeg (m=0,2....

Proof. Let us observe that Exor is an odd function, so that the Exor term E = Z@ g; of
=1

decision vanables g; can be replaced by an Inclusive Or of Products of correspondmg deci-

sion literals g, , where all the products are created for variables g;, j = 1, ..., v. Each of the

created products includes an odd number of positive literals, and the literais for the remaining

variables are negative.

Letm =[m,, mz, ..., m, | be a binary number of v bits where m; € {0,1} and

(81, 82, @)™ = (21, 82, g] ™ = g g g™
Let deg (m) be a number of bits equal one in vector m.
Then for the O-term of variables one gets:

T ezi=)
= v me 01,21
deg (m) is odd

(g1, 820 81" 3.2)

Analogously, for the 1-term the Inclusive Or of Products of literals is:

16 Y g =

deg(myis 4v¢n.d4g (m):o_z,

(81,82, 81" (3.3)

By using (3.2) and (3.3) each Exor term of H is, therefore, converted to an Inclusive Or
of products of literals. The whole function H has been then transformed to the form of the
Product of Sums of Products of Literals. Formula (3.1) is obtained from formulas (2.1), (3.2)
and (3.3). QE.D.

Formula (3.1) is a particular case of the Generalized Propositional Formula (GPF) intro-
duced in [14,].

Example 3.1. For the function & from Example 2.2 the Inclusive Or terms correspond-

ing to the Exor terms are as follows.

Fort; =(g0 D g1 ® g2 D g3) the new term is

GPF(1,) = (20818283+80818283+80818283+
80818283+80818283+80818283+80818283)-

Fore, =(g0 @ g, @ g4 @ g5) the new term is

GPF(r2) _= (80828485 +80 8284 85 +£0 82 84 85 + 80 §2 8 &5+
80828485 +80828485+808284 85+ 808284 85) -

Fortz=(go ® gs ® g¢ ® g7) the new term is

GPF(¢3) =_ (8085 86 87+ 80 8586 87+8085 86 87+
808586871+80858687+80858687+ 80858687

Forts=(1Dg0 D gy D g7 Dgs)thenew term is

GPF(t4) _ = (go 238783+ 80838788+ 80838785 +
80838785+ 80858788 +308387 83+ 8083 87 83 +8083878s).
Therefore, a GPF equivalent to H is:

GPF = GPF(t,) - GPF(t3) - GPF(t3) - GPF(ts) .

By repetitive application of standard Boolean rules (like a(b+c)=ab+ac, a - a=0, or a+a=a)
the above GPF is converted 10 an inclusive sum of products of positive and negative literals.
Each such product describes a single solution to the GPF and hence to 4. One with the smal-
lest cost is selected.

Another method to solve GPF is the heuristic recursive simplification based on: variable
selection, substitution the value 1 for it, and subsequent simplification of the decision func-
tion. For instance, an analysis of the GPF using this method, demonstrates that the products:

808182858485 86 81 8x,
808182838485868788
satisfy this GPF and hence are the solutions (o it.

The decision problem for GPF is, like for the Petrick function (Product of Sums - POS),
NP-complete [9]. Similarly the optimization problems for the GPF, POS and H functions are
NP-hard. Tt is, exwremely unlikely that an efficient (polynomial) algorithm will be ever found
for the function 4 manipulation. However, among such NP-hard algorithms, there are still
some that are more efficient and can be applied practically for problems of smaller dimen-
sions. Formula manipulation, recursive substitution/simplification, and tree searching pro-
grams have also been created for exact and approximate minimization [27]. A special data-
flow wavefront array architecture has been designed for this task [14, 15]. Discussion of the
efficiency of a class of algorithms for GPF minimization/decision is given, together with the
presentation of several program benchmarks in [15].

Theorem 3.2. The minimum solution to the function GPF (3.1) is the minimum solu-
tion to the function H (2.1).

Proof. Since function GPF is equivalent to the function # (GPF = H is a Boolean tautology),
each minimum solution to GPF is a minimum solution to the function f as well. Q.E.D.

This method is the most time and memory consuming out of the methods presented in
this paper and its only advantage is a reduction of the function A minimization problem to the
well-known problem of GPF minimization for which computer programs exist and computer
architectures have been proposed.

20818283+

80858647+

2031823384858687£’x- and

3.2. Boolean Manipulation.

Boolean manipulation method transforms the function H to a "flattened decision func-
tion” FH being an Exor sum of Products form. The transformation is based on application of
the following rules of Boolean algebra:

a(be)=(ab)c. 3.4)
(a®b)c=ac®bc. (3.5)
a(b®c)=ab®@ac.

a®a=0. 3.6)
a®0=qa. 3.7
aa=a. (3.8
ba=ab. 3.9
la=al=a. (3.10)
b®a=a®b. (3.1

The function A is processed by the program from left to right. Starting from left, rule

(3.4) is applied to every first two Exor terms (terms for short). For each such pair of terms

rules (3.5) are applied creating a new term «. Rules (3.8), (3.9), (3.10) are used. All pairs of

repeated products in term ¢ are removed by applying rule (3.6) followed by rule (3.7). The
products are sorted using rule (3.11). Rule (3.4) is applied to term ¢ and the next term in #

and the algorithm is repeated until all terms in 4 are exhausted. This is all programmed in a

symbol manipulation program that permits for combining the above rules together in order 10

increase the processing efficiency.

The final formula F# is in the form of an Exor of products of variables. It can be con-
verted to an equivalent Inclusive Or of Products Form (IOF) as follows:

1. New form FH’ is created by removing from F# all products that are included in other
products of FH. Such products can be removed because the solutions corresponding to
them, even if they exist, would be inferior than the solutions corresponding to the cubes
subsuming them.

2. Create an Inclusive Or Form (IOF) in which each product P, is a logical AND of a pro-
duct from the FH’ form and the product of the negations of the remaining variables
from G:

P = >
product € FH' product € FH'
Theorem 3.3. The function JOF created as above describes all minimal solutions to the
flattened decision function FH.

Proof. Let us assume first that FH'=FH. Since each product in FH’ is distinct and is not
included in any other, each corresponding to it product P, satisfies the function FH and the
function /OF. Each product of variables that is included in a product from FH’ would create
product P sub r that would satisfy no product in FH. Therefore FH'2IOF, where IOF is
created as in (3.12). For each product that includes a product, from FH’ the FH can be
satisfied or not but the solution created for the respective product in /OF would be more
expensive than one corresponding to the product,. On the same base one can exclude from
FH those products that are included in other products, creating function F4’. Q.E.D.

Example 3.2. For function H = (a @ b) (a © c) the function FH is a © ac ® ab & be.
After removal of ac < 2 and of ab c a, FH’.= a © bc. Hence according to formula (3.12):
IOF = abc + abc.

o 2) 31
product + (sg_{g”g“epmdm}gj

3.3. Direct Tree Search Method Model.

The tree search method consist of the systematic selection of all possible subsets of a
set of all positive literals and creating a branch for each subset. Most of the branches are not
completely extended since the cost-based cut-off principle of the branch-and-bound program-
ming is also used. This is the most efficient method from those proposed here.

Example 3.3. Application of the Direct Tree Search method for the function from
Example 2.2 is presented in Figure 3.1. Branching is done with respect o the variables from
the "best terms” (explained below). The best terms in each node of the tree are underlined.
Variables g; are the search operators.

The function H for node; is denoted by H(node,). Whenever a positive literal g; is
selected, it is replaced with logic 1 in all respective terms of H(nodey). If two 1’s occur in a
term, they are anihilated. Thus a new node;,, is created to which an arrow (operator) g; leads
from the previous node,. The function H for nodey ., is, after simplification,
denoted by H(nodey.,;). The goal of the search is to select such positive literals that ones will
appear in all Exor terms (all terms become 1-terms). In such case the solution is a product of
two product terms:

- the product of all the positive literals selected in a branch leading to the node with all
terms being 1-terms,

and

- the product of the negations of all the renaining variables from the set G.

Let us observe thart the expression H(node,) is the function H simplified by substitution
of ones for all the literals along the branch leading to nodey.

The literals for branching are selected in each node as follows. One Exor term of the
expression is selected according to some heuristic criteria, similar to those from (22]. For
simplification, in this example, a term is selected that maximizes the total usefuiness of is
literals.

2, usefulness(g;) (3.13)
ge
te Hinode)

Definition 3.1. The usefulness of a variable in node, is the number of Exor terms in the
function H (nodey) that are converted from O-terms to 1-terms minus the number of terms
converted from 1-terms to O-terms by selecting this variable.

Definition 3.2. The best term of node,, denoted by ¢, is a term of H(node,) which
maximizes function (3.13).

nodel. (20® 8 B2 D23)(g0 @ 2:98:P25)20B2s OB g1 D 0D g3 D27 Dgy)
£o
nodel. (198, ®2,Dg3)(198:92,985X1D2sDgs@g1)g3 D27 ®gy)
£

cost=2, SOLUTION = g 25 81 £2 83 8« §5 86 87+

82

noded. (19go®g; @g3)1@20D24B2s)g0@gs5D2cDg1)(1D80D219g7Dgs)
&8s -
node5. (198021 923)(10g0P8:Dgs N1 00259 g:)(1Dg0D g3 g7 gg)
cost=2, SOLUTION = ¢g; 26 80 81 83 84 &5 87 &3

gs

node6. (80D g1 @229 81)(1D20D 22081920985 Dg7)(1@20D 2357 gs)
R ’
node7. (190D g, @831 0209228019 2:DgsDg)(19g0Dg:D g7 Dgy)
cost =2, SOLUTION =¢, g5 g0 82 83 84 85 §7 §3-

84

node8. (8o ® g1 D21 D ga)(1B 20D 22D g5)(go D gs @ 86D g1)(1980D 5B g7 D gy)

8o

node9. (1@ g, B g2 ® g3)(g2 @ g5)(1 D g5 ® g5 D g1)(g1© g7 D g9).

cost =2, cut-off.

82

nodel0. (1®g0@ 219 23X80 P 25) g0 B gsDgs D g)1D 20D g3 D g7 D gs)
cost = 2, cut-off,

85

nodell. (20© g1 B g2 g3)(g0®g2)(1 B 209 g6 D 57X D g0 D g3 D879 gg).
cost = 2, cut-off.

Figure 3.1,

After the sclection of the best term 1,,,, the variables g; in the term £, are sorted
according 10 the non-increasing values of function usefulness(g;). Next the search operators
are created, based on those variables. If the best term is a O-term the search operators are sim-
ply the variables g,. [f the best term is a 1-term than the operators are:

all the positive literals - the g; variables from the 1-term,

and
- the product of the negative literals corresponding to those variables,

This branching method results from the fact that the function # can be satisfied only when
each of its Exor terms is satisfied, and the above method describes all substitutions that satisfy
the selected term.

The tree from Figure 3.1 assumes the depth-first searching method. In node 1 term
(80D gy D gs D gs) is selected as the base for branching. Node 2 is created by substituting
#o =1 and simplifying 1 ® I = 0 in the last term. Term (g3 ® g, ® g3) is selected in node 2.
Now, let us observe that in node 2 the branching is done only for g;. This is due to the fact
that g is the only variable that occurs in the best term and does not occur in the other terms
of /{(node ;). Other variables from this best term (g3, g4) occur also in other terms and hence
they would make other terms unsatisfied after application of the a ® a = 0 cancellations. They
will, therefore, not lead to a solution node of the same (or better) cost as one to which gg
leads. _ Application of the operator g5 leads to a node 3 with a solution
L0838 8182818485 8¢ 87 Of cost 2. The value of 2 becomes the temporary optimal solu-
tion cost that will be used for cut-off. Backtrack to node 1 occurs and literal g, is selected.
Node 4 is created by substitution g, = 1. Term (g, ® g5 ® g ® g-) is selected as the best
term in node 4. The variable g is the only one that occurs in the best term and does not occur
in any other terms of H (node). Selection of variable g ¢ as an operator leads to node 5. There
is no need to do the branching for the other variables from that best term, as that will not
create the solution with the same or better cost than the solution at node 5. Node 5
corresponds to a solution g, g6 g0 £1 83 84 &5 &7 &3 of cost 2. Now, a backtrack to node 1
is done and the branching is continued from it. Similarly the entire tree from Fig. 3.1 is
created.

Theorem 3.4. The Direct Tree Search method creates all minimal ESOP solutions.

Proof. It results from the method of search organization that the entire solution space of pro-
duct groups is searched: in each term one has to select a positive literal out of its variables, or
no positive literal is selected for this term (which means selecting a product of all its variables
with ncgations). The selection of best terms and sorting of literals inside the terms have no
meaning other than being a speeding-up heuristics which enables to find a good solution
quickly, thus improving cut-offs in the next phases. It was also explained in the Example 3.3
why branching in some nodes (such as node,) can be limited. The above explained type of
cut-ofl principle, as well as the standard cost-based cut-off will not prevent a generation of all
exact solutions. Q.E.D.

The scarch is organized in such a way that the cut-off is expected as soon as possible. The
following explanation can be given:

L For cach 1-term one has to select as an operator either a product of all negated literais
(no positive literal selected for this term) or one positive literal. A generation of a tree
based on the best terms is more efficient than the others branching methods.

For each O-term one has to select as an operator only one positive literal to convert it to
a l-term. A O-term with the literals that make most improvement (cover as many true
minterms and as few false minterms as possible) is selected as the best term. This is 2
heuristic rule for the best branching.

S

3. Ifaterm can be find so that by selecting one of its positive literals, all terms are con-
verted 10 1-terms - the term is selected and branching is done only for this one positive
literal. This terminates the search for this branch. This is a strict rule.

The advantage of this approach is a speed, assuming a sufficient memory.

Another tree searching strategy for the best product of variables is the so-called "tree of
all subsets of a set” (the set of all positive literals in this search variant) (22]. The are many
methods to scarch such a tree. One method assumes a lexicographical order of variables. For
each node the branching is done for all variables that are higher in the order than the variable
leading to this node. In another variant of this method, the variables are sorted in each node
after creating it, according to heuristic evaluation of their local quality. In yet another variant

1655

sorting is also done after backtracking to a node. In all these algorithms the cut-off principle
is used to prune nodes of the solution tree which costs exceed the stored cost of the actually
found minimum solution. The advantage of this approach is memory efficiency.

4. CONCLUSION

A new concept of a decision function for even/odd covering problems (particularly
ESOP minimization), together with the algorithm to minimize such functions, have been
introduced. Such an approach permits exact minimization of ESOPs and is to our knowledge
the first attempt to create an exact minimization algorithm for an arbitrary number of input
variables.

The introduced here method is very time and memory consuming. Recently, the new
theory and the exact algorithm have been developed, which improves time and memory con-
strains by essentially decreasing the size of the searching tree [26,27]. This new algorithm
has been also generalized for multi-valued input logic and multi output functions [27]. Vari-
ants of these algorithms to find quasi-minimum solutions are presented in [27]. Furthermore,
several systolic architectures to solve this problem have also been proposed by the authors
(14,15

Since the Reed Muller Forms and the Generalized Reed Muller Forms are special cases
of ESOPs, with additional restriction imposed on product groups - all the above methods can
be easily generalized for RMs and GRMs of incompletely specified Boolean functions. We
are not aware of any exact algorithms to create Reed-Muller forms for incompletely specified
functions. For the GRM forms of the completely specified functions this problem has not
been solved satisfactorily until now, even approximate algorithms have not been proposed.
For the incompletely specified functions it has not been solved at all. In addition, thanks to
some additional search reductions (more powerful than by only restricting polarities), which
are particular to the polarity constraints of GRM forms, the search is essentially reduced and
even larger functions can be minimized [27).

5. ACKNOWLEDGMENT

The authors would like to thank Martin Helliwell for the development of the initial con-

cept of function H for winterms.

6. LITERATURE

[1] Besslich, Ph.W., “Efficient Computer Method for EXOR Logic Design", Proc. IEE, Vol.
130, Part E, CDT, No. 6., pp. 203-206, 1983. [2] Brayton, R.K., Camposano, R., De Micheli,
G., Otten, R.HJM., and J. Van Eijndhoven, "The Yorktown Silicon Compiler System",
Chapter 7 in Gajski, D., (ed), Silicon Compilation, 1987. [3] Brayton, R., Rudell, R,
Sangiovanni-Vincentelli, A., Wang, A., "MIS: Multiple-Level Logic Optimization System”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Nov.
1987, pp. 1062-1081. "Inconsistent canonical forms of switching functions”, JRE Trans.
Electron. Comput., Vol. EC-11, p. 284, April 1962. [4] Csanky, L., "On the Generalized
Reed-Muller Canonical Form of Boolean Functions”, M. S. Thesis, University of California,
Berkeley, December 4, 1972, California 94720. [5] Daasch, R., Private Corumunication. [6]
Davio, M., Deschamps, J.P., and A. Thayse, "Discrete and Switching Functions”, McGraw-
Hill Book Co., Inc., New York, 1978. [7] Fleisher, H., Tavel, M, and J. Yeager, "Exclusive-
OR representations of Boolean functions”, IBM J. Res. Develop., Vol. 27, pp. 412416, July
1983. {8] Fleisher, H., Tavel, M., and J. Yeager, "A Computer Algorithm for Minimizing
Reed-Muller Canonical Forms", IEEE Trans. on Computers, Vol. C-36, No. 2, February
1987. [9] Garey, M. and Johnson D., "Computers and Intractability: a Guide to the Theory of
NP-Completeness”, Freeman, San Francisco, CA, 1979. [10] Green, D., "Modern Logic
Design”, Electronic Systems Engineering Series, 1986. [11] Handschy, M.A., Johnson, K.M.,
Cathey, W.T., and L. A. Pagano-Stauffer, "Polarization-based optical parallel logic gate util-
izing ferroelectric liquid crystals”, Optics Letters, Vol. 12, No. 8, August 1987. [12] Hel-
liwell, M., and M.A. Perkowski, "A Fast Algorithm to Minimize Multi-Output Mixed-Polarity
Generalized Reed-Muller Forms”, Proc. 25-th ACM/IEEE Design Automation Conference,
paper 28.2, pp. 427432, June 12- June 15, 1988. [13] Helliwell, M., Private Information.
{14} Phuong Minh Ho, M. Perkowski, "Systolic Architecture for Solving Combinatorial Prob-
lems of Logic Design", Proc. International Symposium on Circuits and Systems, ISCAS'89,
May 9-11, 1989. [15] Phuong Minh Ho, M. Perkowski, "Performance Analysis of a Parallel
Architecture for Solving Combinatorial Problems”, submitted to 17t Intern. Symp. on Com-
puter Architecture, Seatle, WA, May 28-31, 1990. [16] Hurst, S.IL, "Logical processing of
digital signals”, Edward Amold, London: Crane-Russak, N.Y., 1978. [17] Kodandapani,
K.L., and R.V. Setlur, "A note on minimum Reed-Muller canonic forms of switching func-
tions”, JEEE Trans. Comp., Vol. C-26, pp. 310-313, 1977. [18] Kohavi Z., "Switching and
Finite Automata Theory.", (2nd edition), McGraw-Hill, New York, 1978. [19] Mukho-
phadhyay, A., and G. Schmitz, "Minimization of exclusive-OR and logical equivalence
switching circuits”, [EEE Trans. Comp., Vol. C-19, No. 2. , pp. 132-140, February 1970. {20]
Muller, D.E., "Application of Boolean aigebra to switching circuit design and to error detec-
tion", IRE Trans. Electron. Comp., Vol EC-3, pp. 6-12, September 1954. [21] Papakonstan-
tinou, G., "Minimization of modulo-2 sum of products", JEEE Trans. on Computers., Vol. C-
28, pp. 163-167, February 1979. {22] Perkowski, M.A., Liy, J., and J.E. Brown, "Quick
Software Prototyping: CAD Design of Digital CAD Algorithms", In G. Zobrist (ed) "Progress
in Computer Aided VLSI Design”, Ablex Publishing Corp., 1989. [23] Perkowski, M.A., and
P. Wu, "KUAI-EXACT: A New Approach for Multi-Valued Logic Minimization in VLSI
Synthesis", Proc. 1989 ISCAS - International Symposium on Circuits and Systems, May 9-11,
1989. [24] Perkowski, M.A., Helliwell, M., and P. Wu, "Minimization of Multiple-Valued
Input, Multi-Output Generalized Reed Muller Forms", Proc. International Symposium on
Multi-Valued Logic, Guangzhou, May 29-31 1989, People’s Republic of China. [25] Per-
kowski, M.A. Dysko, P., and BJ. Falkowski, "Two Learning Methods for a Tree-Search
Combinatorial Optimizer", Proceedings of IEEE International Phoenix Conference on Com-
puters and Communication, Scottsdale, Arizona, March 1990. [26] Perkowski, M.A.,, and M.
Chrzanowska-Jeske, “Tree Search Algorithms to Find Exact ESOP Forms", PSU EE. Dept.
Report, 1990. [27] Perkowski, M.A., and M. Chrzanowska-Jeske, "Approximate and Exact
Tree Search Algorithms for Minimization of Binary and Multiple-Valued Input ESOPs, RMs
and GRMs for Strongly Unspecified Boolean Functions”, PSU EE. Dept. Report, 1990. [28]
Pitty, E.B., Salmon, J.V.: "Input Irredundancy of Mixed-Polarity Reed-Muller Equations”,
Electronics Letters, March 3, 1988, Vol. 24, No. 5., pp. 258-260. [29] Reddy, B.R.K., and
A.L. Pai, Reed - Muller Transform Image Coding, Computer Vision, Graphics, and Image
Processing, Vol. 42, pp. 48 - 61 (1988). {30] Reed, LS., "A class of multiple-error-correcting
codes and their decoding scheme", IRE Trans. Inf.Th., Vol. PGIT-4, pp. 38-49, 1954. [31]
Sasao, T., Besslich, P.: "On the Complexity of MOD-2 Sum PLA", Institute of Electronics
and Communication Engineers of Japan, FTS86-17, pages 1-8, Nov. 17, 1986. [32] Yu,
Francis T.S., Suganda, J., and D.A. Gregory, “Real-time liquid crystal TV XOR- and XNOR-
gate binary image subtraction technique”, Applied Optics, Vol. 26, No. 14/15 July 1987.

