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ABSTRACT 

The paper describes a program for exact minimization of three-level 
combinational functions from NAND (NOR) gates. This algorithm general- 
izes the well-known approaches of TANT synthesis in the following ways: the 
function is multi-output it includes don't cares, any subset of variables can be 
available in only complemented form, or in both a f h a t i v e  and comple- 
mented forms. The number of PP-implicants that can be used for exact 
minimum solution is reduced as a result of proving some theorems. 

I. INTRODUCTION 
Currently, the synthesis of PLA circuits (two level N O W O R  smctures) is well under- 

stood and several sophisticated and efficient algorithms for this task exist. including Espresso 
[2,29,30], Mini [12], Umini [4], McBoole, and other. Also, synthesis of multi-level nerworks 
composed of various kinds of logic gates becomes quickly a popular research area in which 
good and practically applicable results have been obtained [3,7,32,22]. Program MIS I1 from 
U.C. Berkeley is widely used for optimization of such networks. However, our own experi- 
ence with MIS ll is that in many cases the optimal result, that can be found using a more 
sophisticated hand design method. is not generated, even by hying various design scripts and 
for relatively small circuits like single cells of iterative networks. Moreover. MIS I1 cannot 
be used for the synthesis of asynchronous Finite State Machines since it can not remove static 
hazards kom the circuit 

It was proven in a recent paper by Tsutomu Sasao [331 that three levels of logic are 
enough to produce an oprimal nerwork for "most (statisrically) of Boolean functions". This 
important result should, in our opinion. stimulate renewed interest in the design of circuits 
with three levels. One of the advantages of such circuits is that the theory of their design is 
quite close 10 rhe PLA minimization theory. so that all concepts and efficient algorithms 
recently introduced for two-level logic and used in the mentioned above programs can be 
easily modified for the three-level network synthesis as well. Next, it is a common practical 
experience in modem integrated VLSI design automation systems that. because of resmcted 
abilities of macro-cell generators and placementlrouting programs, the logic minimuers are 
needed for various logic design styles, including those other than PLA. 

Three level networks (TrSrJ have the advantage that the TLN design for function f can 
never be worse than the corresponding PLA in terms of the number of gates and connections 
(gate inputs). Usually, the TLN design is better. It is faster and it also permits for better 
incorporating of fan-in and fan-out constraints than standard cell realizations of two-level 
logic corresponding to PLA. Three level network are imporrant from the speed opthizauon 
point of view, since three levels is the minimum number of logic levels necessary to realize 
an arbitraq logic function from inclusive gates (even PLA has three levels, including 
inverters). The algorithms for hazardless synthesis of such networks have been also proposed 
which makes them useful for the design of asynchronous state machines. 

TLN networks that will be introduced in this paper are generalizations of the Three 
level And-Not Nerworks with True inputs (TANT) of McCluskey and Gimpel[16,101. Several 
algorithms to minimize TANT networks have been published, and some of them have been 
realized as computer programs. The relevant papers by Mc Cluskey 1161, Gimpel [lo], Kulpa 
[14], C h a h b a n i  [15], Choudhury [61. Koh [131, Lee [151. Frackowiak [SI, Vink f34.351, and 
Perkowski [18,191 are available. A closely related topic of negative gate network minimiza- 
tion is presented in [20,211. In those papers only I35.181 deal with incompletely speched 
functions, only [18] discusses multioutput functions, and only [35,181 discuss the case in 
which certain variable inputs are available in both forms. 

The algorithms described in this paper are not only more general than the above algo- 
rithms but are also more efficient than the published exact algorithms. In Vink's algorithm. 
the size of the function is essentially expanded by increasing of the number of variables a v d -  
able in both forms. Also, additional permissible implicants (PP-implicants) are generated for 
those prime implicants that contain don't cares. 

In this paper, we will present the program TLN-MINI for the multioutput, incompletely 
specified functions where any subset of input variables can be available in both affirmative 
and complemented forms, or only in one of them. The cost to be minimized is any weighted 
cost of a gate cost and connection cost, which is a more realistic assumption from the point of 
view of modem technologies than the gate cost used in most of the well-known papers. 

The networks discussed below use NOR gates. When one wants to use NOR gates in 
the realization, the corresponding Boolean function f must be first transformed to its dual 
function f', to which next the presented methods can be used without modification. Finally, 
in the netlist created by 'EN-MINI the symbols of NAND gates are replaced with the sym- 
bols of NOR gates. 

It is assumed that a subset of variables is available in an aflirmative form, the so called 
positive variables. Some subset of variables is available in a complemented form, the so 
called negative variables. The available literals are the literals that are available. For 
instance, if x is both a positive and negative variable then literals x and 2 are available. The 
set of available literals is defined by the user as the input data to the prognm. 

To simplify the explanation, in the sequel, we will explain iirst the basic method. in 
which only positive variables are available and a function is single output and completely 
specified. Next generalizations of this method are presented. 

2. THE ALGORITHM FOR TANT NETWORK MINIMIZATION FOR COM- 
PLETELY SPECIFIED SINGLE OUTPUT FUNCTIONS WITHOUT COMPLE- 
MENTED INPUTS 

2.1. T H E  CONCEPTS, DEFlNITIONS AND THEOREMS 
The following example will illushate how TANT optimization leads to network reduction 
Example 2.1.1. The function presented in the -ugh map from Fig. 2.la can be minim- 
ized as the following Boolean expression: F = 0 C + 0 d + b d . Its NAND-based PLA reali- 
zation (so called PLA-expression ) has 7 gates and 12 connections. We will say that the cost 
is (7, 12) - the gate cost is 7 and the connection cost is 12. In our algorithms the total costs, 
that can be any weighted sums of these two costs, will-be minimized. The corresponding 
optimal expression for TANT network is FT = 0 cd + b d , and can be realized by the net- 
work from Fig. Z.lb, which has one gate and one connection less than the previous realiza- 
tion. 

One can observe from the above example that in TANT networks the 6rst level realizes 
a logical sum, the second realizes a product and the third one the negation of the variables' 
producr TANT network minimization problem consists in finding the Boolean expression 
that minimizes the total cost. It means that the synthesis method should minimize simulfane- 
ouriy the second and third levels. 
Definition 2.1. An available kernel, K ( P ) ,  (or simply a kernel) of a product of lirerals P is 
the product of those literals from P which belong to the set of available literals. 
Example 2.1.2. Assuming that the available literals are a, b, C, and 2, the available kernel of 
product abFd is abF. 
Definition 2.2. The kernel k 1 includes kemel k2. which is denoted by k 1 2 k 2, when all the 
minterms that are covered by k2, are covered by k 1 as well. A set of kernels K 1 includes 
another set of kernels K 2 ,  which is denoted by K 2  K1. when 
(V k; E KZ)( 3 k, E K 1) [ k, c k,] It is obvious that k 2  c k 1 if and only if all the literals 
contained in k 1 are also contained in k2. 
Example 2.13. Kernel abcde E acd since the literals of the second kemel are all contained in 
the first kernel. 
Definition 23. The positive kernel of a product of literals is the product of those literals 
which are positive. 
Example 2.1.4. The positive kernel of ab? 2 is ab. 
The kernel is a cube, so that definitions of cube calcuius operations [2,3,7,12,29.30,31], such 
as sharp (#), absorption, and intersection are applicable to it. 
It can be seen from Definitions 2.1 and 2.3 that when ail variables are available only in an 
affirmative form, then the available kemel of the product of literals is also a positive kernel. 
Definition 2.4. A permissible expression is a Boolean expression of form 
P = H where both Hand Ti are available kernels. ci called the head of per- 
missible expression and each T, is called a tail kernel while each T; is called a tail factor. 
Definition 2.5. A permissible implicant PP-impticant) of function f is a permissible 
expression which implies f (covers a subs t  of m e  minterms off). 
Example 2.1.5. A B@wzxpressiono"_b d is the prime LTplicant of the function from Exam- 
ple 2.1.1, and b d, b bd, b ad ?, b ad  cd are some of PP-implicants ofthis function. 
Definition 2.5a. A head of a PP-implicant of function f is called the second level group. 
The set of all second level groups is denoted by H p  A tail kernel of a PP-implicant is called 
the third level group. The set of all third level groups is denoted by Tp 
Example 2.1.6. For the TANT network of the function f from Example 2.1.1, realized in Fig. 
2.lb. products b, and 1 are the second level groups, while products a, b, and cd are the thud 
level groups. 1 is the head of the PP-implicant 
Definition 2.6. A permissible realization for function f is the inclusive sum of the set of 
PP-implicants which cover all minterms of the function. An optimal permissible realization 
for function f, denoted by OPR U), is such a permissible realization that its corresponding 
TANT network has the minimum total cost. 
Definition 2.7. A prime permissible implicant, ppr implicant for short, is a permissible 
implicant that is not included in a prime implicant and if a rail factor is removed from it then 
the resulting expression is no longer a PP-implicant The set of all pprimplicants is denoted 
by PPp 
Example 2.1.7. FoLfunLtion f from ELample 2.1.1: 
PPL= 6 ?, 0 d, Z cd,b d, b ii cd, b ad  cd, 
b bd, b ab cd, b0 bcd, b abd 2, b ad b s ,  b abd bcd) . 
Definition 2.8. A principal PP-implicant, pcr implicant for short, is such a pp,-implicant 
that its tail kernels do not contain variables from its head. The set of all pcr implicants is 
denoted by PC,. 
Example 2.1.8: Forfuncgon f from ELamnple 2.1.1: 

Definition 2.9. A maximal pc/-implicant, mp,-implicant for short, is such a pc,-implicant 
that is not included in otherpcr implicants. The set of all mpr implicants is denoted by M,. 
Theorem 2.1. The tail kernels of a mp,Amplicant are included in all the tail kernels of pc,- 
implicants included in this mprimplicant. 
Example 2.1.9. For funchon f from Example 2.IL 4 = (a c2. b ad 21. 
The tail kemels @ and cd of a mpr implicant b ad cd are included in the rai-kernel d of the 
pc,-implicant b d. They are also included in the tail kernels a and cd of b Z cd. 
Definition 2.10. An augmented pp/-implieant, apfimplicant for short, is such a p p r  
implicant that it is not apcr implican~ The set of all upr implicants is denoted by APp 
Example &l.lOLF~r f u n c l i i  f fr~m&3"~2.1.1: - - 
.Uf= (b  bd. b ab cd. b 
Definition 2.11. A necessary ap/-implicant, nu,-implicant for short, is such a up,-implicant 
that all of its rail factors can be shared by other ppr implicants of a different head. The set of 
all nur implicants is denoted by NAP An unnecessary upr implicant is the aprimplicant 
which is not an nu,-implicant. It is called an unaf implicant. 
Theorem 2 2 .  If the unar implicant is not selected to an exact O P R V )  then at leart one exact 
optimum solution is not lost. 

' ' ' 

ii C, 

- - 

p c  I- - (a -- c, - a d, a cd, b d, b Z cd, b ad  cd]. 

- - 
bcd, b ab  bcd, b abd cd, b ad  bcd, b abd bcd]. 
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Example 2.1.11. For function f from Example 2.1.1: NAf = e .  
Definition 2.12. A necessary ppf implicant, np,-implicant for shon  is such a pp,- implicant 
Lhat is not a ma,- implicant. The set of all np,- impticants is denoted by Np 
From Definitions 2.7,2.8,2.10,2.11 and 2.12 one can conclude thatNI = PCf U NAf . 
Example 2.1.12. For function f from Example 2.1.1: NI_= PCp- 
The next theorem results directly from the property A B  = A AB and the definitions of pc,- 
impticants and no,- implicants. 
Theorem 2.3. Every up,- implicant can be generated from a PP-impticant by addition of cer- 
mn variables contained in its head to a subset of its tail kemels. 
Theorem 2.4. The kernels of all prime implicants of function f are sufficient as the heads of 
the ppr implicants. 
Example 2.1.13. The prime implicants of function f from Example 2.1.1 are: [Z C, Z 2, b 21. 
The heads of these implicants are [ 1, b )  which are the heads of the pp,-implicants from 
Example 2.1.7. 
Theorem 2.5. The kernels of all prime implicants of function ?(the complement offunction 
j J  are sufficient as tail kernels of the mpf implicants off. 
Example 2.1.14. Prime implicants of the complement of function f from Example 2.1.1 are 
( a  b, od. cd) .  The heads of these implicants are [ a .  ad, cd) which are tail kernels of the 
mp,-implicants from Example 2.1.9. 

2.2. THE ALGORITHMS FOR THE MINIMIZATION 
The algorithm is divided into two parts. In the 6rst stage the set NI for function f is 

found. Then the optimal permissible expressions O P R ( f )  are generated from it. Io the 
second stage the existing set covering algorithm is adapted by making only small modification 
to thc way how the cost function is calculated. For the reason of explanation, the algorithms 
given below are simplified: for inslance in reality the steps 3 and 4 of Algorithm 2.2 are done 
concurrently to improve efficiency. 

2.2.1. THE ALGORITHMS FOR THE SET Nf GENERATION 
Algorithm 2.1. Generation of set NI of implicants. 
I .  
2. 
3. 
Algorithm 2.2. Generation of set MI of maximal implicants. 
1. 

2. 

3. 

4.  

5. 

6. 
7. 
Algorithm 23.  Generation o f  set PCI of principal implicants. 
1.  

2 .  

3. 
4. 

5 .  

6 .  
Algorithm 2.4. Generation of set NI of necessary implicants. 
1. 

2. 

3, 

4. 

5 .  

Algorithm 2.5. Generation of the set of mpf implicants that have head H. 
1. 

Using Algorithm 2.2 generate the set MI of maximal implicants 
Using Algorithm 2.3 generate the set PCf of principal implicants 
Using Algorithm 2.4 generate the set NI of necessary impticants. 

Generate the set of all prime implicants of functionf. 
Find all positive kernels of all the prime implicants generated in step 1, put them in set 

If  necessary, calculate the complementf(see [361). Generate the set of all prime impli- 

Find all positive kernels of all the prime implicants found in step 3, put them in set Tp 
Select one element H from set HI as the head and delete the variables contained io this 
head from each element in TI. creating a new set T I .  
Using Algorithm 2.5 generate an mp,- implicant that has head H and put it to set Mp 
Repeat steps 5 and 6 until all the elements in Hf have been selected. 

H,. 

cants of r. 

copy set Mf to PC,. 
Select an mprimplicant from Mp 
Make one possible combinational deletion of variables from one of its tail kernels. 
Check whether the new permissible expression with deleted tail kernels is still a pp,- 
implicant. If yes, append this new pp,- implicant to set PCp 
Repeat steps 2 and 3 until all the possible combinational deletions of variables from all 
t a l  kernels have been applied (this is a tree search process with backtracking). 
Repeat steps 2 to 4 until all the mpr implicants in MI have been processed. 

Select one pc,- implicant from PC,. 
Make one possible combinational addition of variables contained in its head to a subset 
of its tail kernels in order to create a new candidate for a npf  implicant to N p  
Using Algorithm 2.6 check each tail factor with added variables TA to see if it could be 
shared by other np,-implicants. If yes, append this new np,- implicant to N p  
Repeat steps 2 and 3 unlil all the possible combinational additions of variables have 
been applied. 
Repeat steps 1 to 4 until all Ihepcr implicants from PCf have been processed. 

Find the set 2, which consists of those false minterms that are covered by the head H .  It 
is done by an intersection operation of the head H with the set of all false minterms. 

2. copy z to zc. 
3. 
4. 

5. 

6 .  

7. 
8. 

9.  

Select one false minterm from set Z. 
Select one tail kemel from those created in Algorithm 2.2. 
Using intersection operation, verify if this kernel covers the selected false minterm. If 
no, repeat steps 3-5. 
Using sharp operarion remove the false minterms covered by this tail kernel from the 
set ZC. 

Repeat steps 3 to 6 until ZC becomes empty. 
Select another set of tail kernels which also covers all the false minterms in Z. Repeat 
steps 2 to 7 until all such selections have k e n  med. 
Select one of the sets created above that contains most variables in its tail kernels. 
Combine the selected head with the complements of the tail kernels to generate an 
mp,- implicant. Return it as the value. 

Select one of the already generated np,-impticants from N/. NP 1, which has the head 
different from those selected before. If all the already generated npf implicants f” 
NI have been processed. end the check and r e m  the ‘no‘ signal. 

Algorithm 2.6. Checking the augmented tail factor. 
I .  

2. 

3. 

4 .  

5. 

6 .  

Compare the tail factors of NP 1 with the checked tail factor TA to see if there is one 
equal to it. If yes, end the check and renun ’yes‘ signal. 
Compare the tail kernels of NP 1 with the checked kernel TA to see if there is one 
which includes iL If no, repeat steps 1 and 2, otherwise go to the next step. 
Delete all the variables contained in the tail kernel found in step 3 from the checked 
factor TA. 
Check if the head of the selected np,- implicant contains all the remaining variables left. 
If no, repeat steps 1 to 4, otherwise rem the ’yes’ signal and go to the next step. 
Copy the selected nprimplicant and replace the tail factor found in step 3 with the 
checked tail factor to create a new np,-implicant if it doaF not exist 

_- 

2.2.2. THE ALGORITHM FOR FINDING OPR FROM THE SET Nf 
Since the O P R ( f )  is found from the set of existing np,-implicants, OUT search model is 

that of the covering table [23.24,301 rather than the covering-closure table [34.35,1.10]. 
Preparation of data for this stage requires specifying column factors and row factors for the 
searching table as well as specifying a proper cost function for this particular case. The 
column factors and row factors for this problem are the minterms and npf implicants, respec- 
tively. The standard cost function for state-space search is fc = c ( n )  + p (n) ,  where c ( n )  for 
the covering problem is the total cost of row factors already applied, and p ( n )  is a prediction 
of the cost of other row factors still needed to cover the remaining columns. The cost of a sin- 
gle row factor is the cost of circuit realization for its corresponding np,- implicant. Realization 
of each npr implicant should have gates for the rail factors as well as a gate to realize the 
logic product of the head and all the tail factors. A gate should be always counted for each 
tail factor that is not shared. For a shared tail factor the gate should be counted only once for 
all the factors that share it The connection cost for the second level is the number of tail fac- 
tors plus the number of the variables contained in the head. The connection cost for the third 
level group is the total sum of numbers of variables contained in each tail kemel. The number 
of the thud level connections for the shared tail factors should be also counted only once. 
The cost of TANT network should include also the cost of the 6rst level group, that is: one 
gate to realize the logical sum and the connections to this gate. The prediction of the cost 
p ( n )  in current algorithm is very simple -just one gate and two connections are added to the 
cost of those nodes being not solutions since at least one more np,-implicant should be 
applied for this node and this is the least possible cost of a single p p f  implicant These ideas 
were used to create the algorithm for the cost function. 
Algorithm 2.7. 
Evaluation of the cost of the node in the state-space for the OPR covering problem. 
1. 

2. 

3. 
4. 

Algorithm 2.8. Evaluation of the cost of applied npf implicants in a node. 
1. 

Count one gate for the 6rst level gate cost. Count the number of the np,-implicants 
already applied as the connection cost for this gate. 
Select one of the np,-implicants already applied and evaluate its cost using Algorithm 
2.8. Add the cost of this selected np,-implicant to the cost already evaluated. 
Repeat step 2 until all the applied np,- impticants have been evaluated. 
If it is not a solution node, add one gate and two Connections to the cost evaluated 
above. 

Count one gate for the realization of the logical product in the second level gate. Count 
the number of variables contained in head and the number of tail factors as the connec- 
tion cost for this gate. 
For each tail factor check if it is also contained in the npf implicant already evaluated 
for the current node. If no, count one gate for the thud level gate and count the number 
of the variables contained in this tail kernel as the connection cost of thii gate. 

2. 

3. THE ALGORITHMS FOR THE FUNCTION OF NOT ONLY AFFIRMATIVE 
VARIABLES 

3.1. THE ALGORITHM FOR THE FUNCTION OF SOME VARIABLES IN ONLY 
COMPLEMENTED FORM 
Certain transformation should be first performed for a function in which some variables are 
available only in a complemented form: those variables that are only in a complemented form 
are replaced with new variables available only in a f h a t i v e  form. It will be illustrated by 
the following example. 
Example -3.1.1. -For the function from Fig. 3.la the PLA-expression is: f = 
b C 2 d Z b + b Z d . If variable b is available only in the complemented form, a new variable 
U = b is introduced. After replacing b with ii the function is transformed to a new form from 
Fig. 3.lb where the variables U. U, c, d a r e  all available in the a f h a t i v e  form. For this new 
function all the algorithms from this section can be directly applied. The O P R W  is found: 
f = i i d E + u E + u d Z .  
Next by substituting the original variable b for ii and 6 for U, one gets the OPR with original 
variables: 

f = Z d bc + bbc  + d  bZ (Fig. 3.1~).  
From the above example the algorithm for the function with some variables available only in 
complemented form can be found, as the following modification to the algorithms from sec- 
tion 2.2. 
Modification 3.1. For the function of some variables available only in a complemented form 
the Algorithm 2.1 should start with the following step: 
0. Transform the function to a new function, of only a f h a t i v e  input variables, by replac- 

ing the negative variables with new a f h a t i v e  variables. 
Also, after the OPR is found the following step is executed: 
**. Substitute original complemented form variables to the corresponding replacement 

variables io the OPR found from the set covering problem to get the OPR for the origi- 
nal function. 

- _  

3.2. THE ALGORITHM FOR THE FUNCTION OF SOME VARIABLES AVAIL- 
ABLE IN BOTH AFFIRMATIVE AND COMPLEMENTED FORMS 

The algorithms for the function of only a f h a t i v e  variables can be adopted for the 
function of some variables available in both forms, when the following modification is inno- 
duced. 
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Modification 3.2. In the searching process for the OPR step I in Algonthm 2.8 should be 
modified as follows: 
1A. Check for each tail kernel if it contains only one variable and this variable is available 

in both forms. If yes, count no cost for this tail factor. Otherwise check if this tail fac- 
tor is also contained in the np,-implicant already evaluated for the current node. If no. 
count one gate for the third network level gate and count the number of the vanables 
contained in this tail kernel as the connection cost for this gate. 
Another modification is to do all processing for available kernels instead of positive 

kernels. 

4. THE ALGORITHM FOR THE INCOMPLETELY SPECIFIED FUNCTION 
For the function containing don't cares, the OPR can not always be found among the 

implicants of the Nr set defined by Definition 2.12. This can be illustrated by the following 
example. 
Example 4.1. For the function from Fig. 4.1 the corresponding set Nr c-an be found_accord- 
ing to the algorithms for the function without don't carcs: Nf = [Li b C, C d, C bd. a d ] .  The 
OPR found from this N, is f = ii C bd + a 2 .  If the don't cares are treated in this functions as 
false minterms, another form of OPR can be generated with the same algorithms: f = 
ii C bd + a b  b;i . The cost of the second expression is one gate less than that of the first one. 
In the second expression, however, the item ad  bd is not a pp,-implicant defined in Definition 
2.7, since it is included in the prime implicant ad. We call this item an additional implicant. 
Therefore, for an incompletely specified function some additional imphcants should be gen- 
erated in order to find OPR. The generation of additional implicants is actually the generation 
of additional heads. 
Definition 4.1. An additional bead is the kernel of an implicant being included in certain 
prime implicant 
Example 4.2. The additional heads for the function f from Example 4.1 are (ab, ac. abcl 
which are the kernels,f ab d, ac d and abc 2, respectively. AU these implicants are included 
in prime implicant a d. 
Definition 4.2. A separate minterm included in a prime implicant is such a minterm that its 
kernel is not included in a kernel of any olher minterm that is covered by the same prime 
implicant 
Example 43 .  For minterms included in the prime implicant a of the function f from Fig. 
4.2a, the separate minterms are ad and abc. 
Theorem 4.1. It can be proven that no additional head need to be generated for an n p r  
implicant, if one of the following conditions is satisfied for the pp,-implicant: 
1. It is included in a prime implicant that contains no don't cares. 
2. It is included in a prime implicant which has no tail factors. 
3. It is included in a prime implicant which has the same head as one of the minterms 

included in this prime implicant. 
4. It  is included in a prime implicant in which the number of separate minterms included 

in this prime implicant exceeds the number of the tail factors of the pp,-implicant 
5.  It contains only don't cares. 
Example 4.4. No additional heads should be generated for implicants covered by the prime 
implicant a of function f from Fig. 4.2% No additional heads should be generated for impli- 
cants covered by the prime implicant a d of the functions from Fig. 4.2b. c, d. since: 
1. 
2. 

3. 

The prime implicant ad  in (b) contains no don't cares. 
The prime implicint a 2  in (c) has the Same head as the sepante minterm a b C 2 
included in iL 
The number of separate minterms covered by the prime implicant ad in (d), which is 
two, exceeds the number of its tail factors, which is one. 
Therefore, using the following modifications the algorithm for completely speczed 

functions can be adopted for incompletely specified functions. 
Modification 4.1. The modification of step 2 in Algorithm 2.2 for incompletely specified 
functions looks like this: 
2A. Select positive kernels of all the prime implicants found in step 1. Combine these ker- 

nels with additional heads generated by Algorithm 4.1 to form set If,. 
Algorithm 4.1. Generation of additional heads. 
1. 

2. 
Select a prime implicant of the function. 
Check if the selected implicant contains don't cares. If no, repeat step 1. Otherwise go 
to the next step. 
Generate m e  minterms contained in the selected implicant. 
Generate separate m e  minterms from thosc found in step 3. 
Check if the number of separate minterms exceeds the number of mil factors of the 
selected pnme implicant. If yes, go to step 1. 
Check if there is a separate minterm which has the same head as the selected implicant. 
If yes, go to step 1. 
Using Algorithm 4.2 generate the heads of the implicants covered by the selected impli- 
cant and put them in the set of additional heads. 
Repeat steps 1 to 7 until aU the prime implicants have been processed. 

3. 
4. 

5. 

6. 

7. 

8. 
Algorithm 4.2. 
Generation of heads of implicants covered by a selected prime implicant. 
1. 

2. 

Select a separate me minterm covered by the selected prime implicant and generate its 
kernel. 
Generate the kernels of the m e  minterms or don't cares that are covered by the 
selected prime implicant, which either include the kernel found in step 1 or are included 
in it. Put these kernels in the set of additional heads. 
Repeat steps 1 and 2 until all the separate m e  mintems have been processed 3. 

5. THE ALGORITHM FOR T H E  MULTIOUTPUT FUNCTIONS 
For a multi-output function, the function corresponding to a single output will be called 

the subfunction for this output. The OPR for total output will always be the accumulation 
of OPRs for each subfunction. This can be illusuated by the following example. 

Example5.1. Thesubfunctions f l .  f2.and f' ofathree-outputfunction fare: 

5,6,12,14), f*(a,b,c,d) = ~(2.6,8,10,12,14), f3(a,b,c.d) = 

The OPRs for each separate subfunction are: 
f i  = Li c7 + b d. 
The TANT network has cost (14, 24). If one changes the permissible expressions for f 1 and 
f 2 to another form: 
f ' = Z C + c  Z d + a b d ,  f 2 = a b  d c c  L i d e n  b d ,  
the TANT network of cost (11.23) is found. 

Comparing the two networks we find that the cost is reduced because of the existance 
of some implicants which can be s h e d  by several subfunctions. Sometimes the commonly 
shared implicant is not an pp,-implicant for all the subfunctions, such as d i n  Example 5.1. 
Therefore the pp,-implicants cannot be created in the generation of Nr for each subfunction 
with algorithms for single output function. We noticed that the commonly shared implicanrs 
contain the minterms which are commonly conrained by the subfunctions sharing them. By 
intersection of sets of minterms of different subfunctions one can easily find their commonly 
contained minterms. Then this set of minterms can be treated as the mlnterms of a new 
independent function. and the new set NI for this function is generated using the algorithms 
for the single output function. This new set Nf contains the commonly shared implicants of 
the above intersechons of subfunctions. 

The algorithm for the multioutput function is based on the above ideas. With the 
modification given below the algorithms for the single output function can be applied to the 
multioutput function as well. Before doing this the definition helpful for undersmdmg this 
modification will be formulated. 
Definition 5.1. For the multioutput function f = (f', f2 ,  ...F ), (m is the number of outputs) 
the component function IS defined as a Boolean product of a subset of single ourput subfunc- 
tions:f= n f , w h e r e I  ~ ( 1 . 2 ,  . . .  ,m]. 
Modification 5.1. 
The Algorithm 2.1 should be modified for the multioutput function as follows. 
The generation of Nr can be done by: 
1. Generate component function fi 
2. Generate MI with Algorithm 2.2. 
3. Generate PCf with Algorithm 2.3. 
4. Generate NI with Algorithm 2.4 and copy it to Np 

5 Check if all the component functions have been generated. If no, repeat steps 1 to 4. 

When next the covering problem is formulated, the columns of the covering table are 
the minterms of all subfunctions. For the funcuon from Example 5.1 there should be 20 
columns in the covering table, since the total number of minterms in all subfunctions is 20. 

6. CONCLUSlON AND CURRENT WORK 
Program TLN-MINI was written in FORTRAN 77 for VAX-llf780. It takes much less 

tinie to generate NI than to select from it the OPRO. This is because in the generation most 
of executions are bitwise operation among memory words, while the cube array of the func- 
tion is transferred to a vector in memory. In this vector each symbol of the m y  IS  

represented with only two bits. TLN-MINI has been med on many Boolean functions. and 
yielded always correct results. For functions with complemented variables the soluuons were 
always exact. For multi-output functions the number of PP-implicanrs grows so fast that the 
exact variant of a l g o r i h  is not practical to use for more than 10 total inpub'output variables. 

Presendy we are wcrking on improving its applicability [27]. however, at the pnce of 
sacrifying its exactness. First. subminimal implicants [23,17] and reduced OFF-cubes will be 
used instead minterms and false minterms. respectively. Then, better cube calculus algo- 
rithms for complementation, tautology, supercube, overexpanded cube, disjoint sharp and 
other will be used [231. 

We used several possible layout styles [27] to implement TLN networks: Three-level 
NORINOWOR PLA (called 3PLAJ; Nor-based Weinberger layouc ANDIORANVERT- 
based Weinberger layout: a single NOR plane of a PLA with feedback connections (as in 
[33]): OCT tools-based layout from iMissisipi State Library, obtained after providing M I S  II 
with the results of TLN-MIN. With some of those tools we are able to mvestigate the 
influence of the number of ga:es in each level on the shape and size of the layout cell. The 
user can affect the layout's shape as well [271. 

We are working also on another related topics: design of TLN network, free from any 
kind of smtic or dynamic hazard [27]; incorporating of fan-in and fan-out constraints [?71; 
efficient methods to solve coveringjclosure proklms [35,34.1241; merging the ideas of TLN 
design and Exclusive Sum of Products (ESOP) design [11.26,25] into a new concept of Three 
Level NORIEXORINOT Nenvorks that have inverters in levels 1 and 5. and NOR and EXOR 
gates in levels 2, 3, and 4. 
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Figure 2 . 1 ~ .  
Boolean Function to Example 2.1. The Karnaugh map, 

Figure 2.lb. 
Boolean Function to Example 2.1. 

TANT network which assumes that only positive literals are available. 

(c) 
Figure 3.1. 

Boolean Function to Example 3.1.1. 
(a) - the Karnaugh map, 

(b) - the Karnaugh map @ter replacing b with ii 
in which all variables are available in an afirmaJve form. 

(c) the final T W  network afer minimization: literal b is available, 
while NOT gates are used to create the complements of variables a and d. 
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I 

Figure 4.1, 
The Karnaugh map to Example 4.1. 

Figwe 4.2. 
The Karnaugh maps to Example 4.4. 
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