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ABSTRACT

The paper presents three types of extensions: vertical, horizontal, and
two-dimensional to the new, Faddeev algorithm based, systolic architecture
for matrix computations, presented in: H.V.D, Le, MA. Perkowski, "A New
General Purpose Systolic Architecture for Matrix Computations”. Proc.
Intern. Conf. on Computing and Information, ICCI'89, Ontario, Canada,
1989. It has essential advantages over previous architectures of this type and
finds various applications: extensions to Faddeev algorithm can be used in
many problems, including Karmarkar algorithm. The extensions described in
this paper not only increase a system throughput from two to four fold but
also enhance the inherent programmability of Faddeev’s algorithm. This
allows our architecture to perform very complex matrix calculations.

1. INTRODUCTION.

It has been conservatively estimated that 75 percent of all scientific applications
involve some form of matrix computations. In general, matrix computations are very
expensive in term of processing time. For real time operation, required by such applications
as robotics, signal processing, computer vision, computer graphics animation, simulation and
modeling, Computer Aided design, and many other, the processing power of serial comput-
ers is simply inadequate. Other applications, that are of special interest to our research group
are related to designing specialized co-processor architectures [22,8] for solving NP-
complete, combinatorial and other problems related to high-level and logic level synthesis of
digital circuits (also multi-valued). They include extremely fast solving of linear program-
ming problems (also using the Karmarkar algorithm that is particularly well suited for archi-
tecture presented in this paper), as well as spectral transforms and other modern approaches
to logic synthesis. All these problems require fast matrix computations composed of various
sequences of inversion, transposition, multiplication, and addition.

In (18] a new systolic architecture for Faddev algorithm was proposed, that has essen-
tial advantages over the well known architectures of this type [2,20,21]. Because Faddeev’s
algorithm is inherently general purpose, our architecture is able o perform a wide class of
matrix computations. And since the architecture is systolic based, it brings massive parallel-
ism to all of its computations. As a result, many matrix operations including addition, multi-
plication, inversion, LU-d. tr lutions to linear systems of equations,
convolution, 2D-polynomial operations, and mhe.r, can be now performed extremely fast.
This architecture has several other advantages as well: better performance for smaller cost,
easy r figurability, size independ. - problem decomposition, processing of sparse
arrays, and increased throughput (15-19]. Our design can be re-configured during run time

are two types of cells. The first type consists of all the diagonal cells (denoted by circles) of
the array and the second type of all the non-diagonal cells (denoted by squares). Depending
on the actual processing phase, the array functions in one of the two modes : the T (triangu-
lar) mode or the S (square) mode. Together, these two modes implement Faddeev’s algo-
rithm to compute CA ~'B +D from (2.1). When the array is in T mode, cells of rows i
where i = 1, 2, .., w and columns j where j 2 i, form a triangular sub-array which is based on
Gentlemen and Kung’s array of Fig. 2.1. It performs Gaussian elimination with neighbor
pivoting on A, and ordinary Gaussian elimination on C. During this mode of operation, the
circular and square cells essentially carry out the same functions specified by Fig. 2.2 boun-
dary and internal cells, respectively. When in S mode, the entire array is used to process B
and D. In this mode, every cell of the array acts similarly to the internal cell of Fig. 2.2, i.e.
circular cells functionally become square cells. In order to switch the array from one mode
1o another, it is only necessary to change the program of the diagonal cells. This is accom-
plished using the cell microprograms listed in Fig. 3.2.

The careful reader may observe [15] that by alternating between the two operational
modes T and S, our array essentially simulates the one-T and one-S system of Chuang and
He [2] to solve (2.1) with a smaller number of cells and half the bandwidth requirement.
Naturally, the input data flow will have to be slightly modified because of the differences in
the array’s topology.

The circular and square cells, as shown in Fig, 3.2, have identical /O and control
bandwidth: two n -bit data input ports, two n -bit data output ports, four one-bit control
input ports and four one-bit control output ports, for a total bandwidth of 4n+8. In fact, this
number is comparable to the actual pir count that the Chuang and He internal cell would
need, since their cell does require exira control capabilities 1o work properly.

Control Signals Interconnections.

As shown in Fig. 3.1, the circular cell relies on three external control signals C1, C2,
and C4 for internal computation and itself generates signal C3, all of which it broadcasts
locally to its neighbors for comrect operation of the entire array. The square cell uses only C3
and C4, and passes all control signals it receives to neighboring cells unchanged. Cl, C2,
C3, and C4 are all one-bit boolean values whose functions and interconnection paterns are
described below. C1 controls the behavior of diagonal cells and consequently selects the
operation mode of the array. When C1 is true, the diagonal cells execute the portion of their
code that enables them to function like Kung’s boundary cells from Fig. 2.1, thus changing
the array into T mode. Otherwise, with C1 false, diagonal cells function like square cells,
and the array is in S mode. Because of the strict timing required, mode switching should
occur as entries of the first row of B reach each cell, i.e. the switching sweeps across the
array in skewed waves as the transition between C and B flows through the cells. This can
be accomplished without the need to address separate control signals to each individual diag-
onal cell. In fact, C1 needs to be fed only to the top left diagonal cell of the array and will be
pipelined through the array to reach every diagonal cell. As the data flow changes from
matrix A to matrix C, T mode processing in the array gradually switches from Gaussian

to perform different functions with the uses of various control signals that are prop
throughout the arrays. It allows also for i overlaps of p g between consecu-
tive computations, thereby increasing system throughput.

In this paper only the new extensions are described, the reader is assumed to be fami-
liar with [18].

2. FADDEEV’S ALGORITHM AND MATRIX TRIANGULARIZATION

Faddeev’s algorithm [4,19,20,15] is a general purpose algorithm, useful for a wide
class of matrix operations and especially suited for systolic implementation. It calculates

C A B +D from
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Since the underlying procedure to carry out Faddeev’s algorithm is matrix triangularization,
any systolic implementation of the algorithm should be based on a structure which can per-
form triangularization efficiently. The triangular systolic array developed by Gentleman and
Kung as a common platform for two dlfferem triangularization methods which is shown in
Fig. 2.1 can execute both G ian eli ion with pivoting or orthogonal tri-
angularization [6,11]. Triangular systolic array for matrix triangularization.

The array consists of two types of cells: the boundary cells (represented by circles) and the
internal cells (represented by squares). These cells are locally interconnected into a triangu-
lar mesh. Each cell stores a microprogram, enabling it to interact with its neighbors in such
a way that a triangularization procedure can be carried out. Changing the microprograms of
the cells will allow the array to execute different procedures. In the following discussion, the
term data row refers to a row of entries of matrix X where the term array row means a row
of cells of the array.

The triangular array of Fig. 2.1 can perform Gaussian elimination with neighbor pivot-
ing using the cells shown in Fig. 2.2. As its microcode reveals, the boundary cell generates
two modification factors: a multiplier M ,,, as well as a Boolean variable V ,,, which signals
a row interchange when it has a value of one. This occurs at every array cycle, the max-
imum length of time necessary for a cell to execute its microprogram once. The array can
perform orthogonal triangularization using the cells specified in Fig. 2.3.

3. THE DUAL MODE ARCHITECTURE

The new systolic implementation of Faddeev’s algorithm [18] is based on dual mode
array, which, in its basic form, reduces the I/O bandwidth requirement by half and the
number of cells needed by more than one third, comparing to the architectures from
[2,20,21]. It consists of a square array in which the cells are orthogonally connected (Fig.
3.1). Data bus interconnections between cells are indicated by arrows. Functionally. there

limi with pivoting to non-pivoting Gaussian elimination. This event is started with
C2, whose value is true for pivoting allowed and false for pivoting not allowed. Again, C2
is fed only to the top left diagonal cell and propagated through the array. Generated inter-
nally by diagonal cells when they are in T mode, C3 is the functional equivalent of M, of
the boundary cell from Fig. 3.2. It is thus used to direct square cells on the same row to
pivot incoming data when rue, or not 1o pivot when false. When switching between the T
and S modes of operation, it is essential that the X registers in each and every cell of the
array are cleared to zero before the new data elements arrive. If C4 is true, a cell will clear
its X register prior to receiving X;, from its northern neighbor. The X register remains
unchanged if C4 is faise. C4 is distributed throughout the array,

Data Flow Description

Again suppose that A, B, C and D of (2.1) are n X n matrices and the available
bandwidth is w = n. The input data flow, of width n and length 4n, will be continuous and
consists of matrices A, C, B and D, in that order, skewed as shown in Fig. 3.1. Note that the
control signals necessary for each step are displayed alongside the data fiow.

Processing will be as follows. Initially, A enters the array followed by C ; because C4
is true (for the duration of one cycle), all cells will clear their X register of values left from
any previous calculations. With C1 and C2 both true, cells of the upper triangle begin per-
forming Gaussian elimination (with neighbor pivoting ) 10 triangularize A as its data ele-
ments are upon them. As C1 reaches each diagonal cell, the array gradually switches to T
mode.

When entry ¢, of matrix C arrives at the top left cell, C2 becomes false which dis-
ables neighbor pivoting in the diagonal cells. Thus, only the ordinary Gaussian elimination
is performed to annul C. Throughout this period, C1 remains true, hence the array remains
in T mode.

Subsequently, as B reaches the array, C4 goes true again for the duration of one cycle
(step), long enough for the top left cell 1o store this value; the signal is then propagated to all
cells and clears their X registers. At the same time, C1 becomes false and remains so undl
the last row of D is in the array. As C1 reaches each diagonal cell, it turns it into a square
cell and thus gradually changes the array to S mode as the data elements of B are pipelined
through the array. The results, shown in Fig. 3.1, fully emerge from the bouom of the array
after 6n - 1steps for CA ™'B + D and 5n steps for the solution to a linear system.

Storage and Feedback of Modification Factors.

During the processing of matrices A and C, modification faciors M ,,, and pivoting
control bits C3 are generated by diagonal cells based on incoming values X ;,. They are then
sent to the right to the square cells on the same row to modify adjacent X ,, values. As it
reaches the edge of the array, this data stream to the right is stored in B, a FIFO queue of
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size w x w shown in Fig. 3.1. This queue acts as a delay mechanism that will recirculate its
contents to the left side of the array for the processing of B and D as they arrive at the array.
To reduce demands on available bandwidth between the host and the afray, B ; should
not be implemented using the conventional memory of the host. Instead, the queue should
be a dedicated buffer made up entirely of shift registers and run at the same clock rate as the
array. This represents the most efficient way to implement the horizontal feedback path.

4. MULTIPLE ARRAY CONFIGURATION

By using multiple arrays, the system of Fig. 4.1 gives better throughput than the single
array under the same J/O constraint, This is because each subarray effectively replaces one
iterarion, with partial results from one subarray immediately processed by the next, thereby
maximizing concurrency while eliminating the corresponding iteration. Such a system will
be called L - tuple arays system (L = 2 in Fig. 4.1), or L-subarrays system. Detailed
analysis of the Multiple Array Configuration and solving size independent problems is given
in [15).

5. EXTENSIONS TO FADDEEV’S ALGORITHM

In the previous sections, the reader has seen the ease with which the new systolic array
uscs massive parallelism to solve many types of matrix problems via Faddeev’s algorithm.
The actual size of the array, and therefore its throughput, is shown to be restricted only by
the available bandwidth between the host and the array. Even this restriction is effectively
circumvented when a number of such arrays are combined into a system to give a desired
level of performance. Such a multiple arrays system reaches its maximum throughput rate
when its pipeline is completely filled with data. By ensuring that the input data flow is con-
tinous, this maximum throughput rate is maintained at all times. It would seem then, algo-
rithmically speaking, that nothing further can be done to induce more parallelism into matrix
computations. However, that last observation is simply not true. We have found that, by
extending Faddeev's algorithm, the maximum throughput rate of a system can be nearly qua-
drupled. Furthermore, such a tremendous improvement in system throughput requires abso-
lutely no architectural modification to the system.

5.1. HORIZONTAL EXTENSION TO FADDEEV’S ALGORITHM

Before illustrating how we extend Faddeev’s algorithm, let us introduce the concept of
compatibility between matrix problems. Suppose we have matrices A, B and D of order »,
upon which we wish to perform the operations A ™!, A~ B, and A ~! + D . From basic pro-
perties of Faddeev algorithm, we can solve these matrix problems with this algorithm by for-
mulating them as:

[36}:;\" {flg}:A'lB [55]:A"+D
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where 1 is the identity matrix. These constructs reveals that they all have identical left
halves, i.e. they consist of the same matrix A in their top left quadrant and the same matrix -I
in their bottom left quadrant. When this is the case, we say that the problems are horizon-
tatly compatible.

Obviously, solving x horizontally compatible problems involves repeating the calcula-
tions for the same left side x number of times. In the case of (5.1) where x = 3, solving (1),
(2) and (3) requires repeating the process of triangularizing A and annulling -I three times. If
by some means the redundant iterations of this process are eliminated, nearly half of the cal-
culations necessary to solve (2) and (3) of (5.1) can be skipped. This would yield a large
savings in the computing time. To accomplish this, we extend Faddeev’s algorithm horizon-
tally to the right so that (5.1) is reformulated as

3.1

Al B I
- 00D
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Grouping (1), (2) and (3) together as in (5.2) allows us 10 triangularize A and annul -I only
once, and reuse the multipliers generated from that several times on the right. The results
will appear as:

(5.2)

A® &  p®
0 4 A7'B AT4D
n @ @

It is easy to see that the horizontal extension to Faddeev's algorithm maps particularly
well to a system using our systolic array design: it requires absolutely no architectural nor
algorithmic modification, either at the system level, subarray level or cell level. When the
available /O bandwidth is w, (5.2) is parallely decomposed into (x + 1)m input strips, each
2mw in length, as shown in Fig. 5.1.

As before, the L-subarrays system of Fig. 4.1 will process this input data flow in k
iterations, where the value of k depends on m and L. When m is an exact multiple of L, we
have k = m/L and the system will compute x horizontally compatible problems in

miL
(L+Dw=1+ 3 [(x+ Dm = k-1)L] [2m — (k- DLIw (5.3)
(=
cycles. In the above equation, the first product term of the summation represents the number
of input strips for each iteration, while the second term indicates the strips length. The solu-
tion to the first problem will come out after

L+Dw—1+ (MEH[(): +1)m—(k— DL 2m — (k- DLIw +(m +Lyw
k=1

cycles, with the second line of the equation indicating that only part of the k * jteration is
needed. Afterward, solutions to subsequent (x - 1) problems are transmitted to the output
one for every (m + L)n cycles. In the special case when m = L, we have k = 1 and the sys-
tem will solve the first problem in (4m + I)n + w - 1 cycles. As to subsequent problems, the
system will complete one every 2mn cycles. The difference between the two throughput
equations of the first problem is due to the fact that the input data flow for x horizontally
compatible problems consist of (x - 1)m more strips than that of a single problem. This
means that during each iteration, the system has that many more strips to process. Thus
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when k > 1, the previous iterations will delay the output of results whereas with k = 1, those
delays are non-existent,

‘When m is not an exact multiple.of L, the number of iterations required for the system
to process (5.2) isk =[ m/L] , with the k™ iteration involving only the first it,,q;, subarrays
of the system. The total throughput will be

imiL|
(Moar + Dw =1+ 3 [(c+ Dm — (k- 1)L [2m — (k = 1)L]w (5.4)
k=1

with solution to the first problem coming out after

tmiL |
(Mmoar + Dw =1+ T [(x + 1m ~ (k= DL] (2m — (k = DLIW + (7 + Mpog )W
k=1
cycles. Again, the second line of the above equation indicates that only part of the last itera-
tion is needed by the system to compute the first problem. Afterward, solutions to subse-
quent x - 1 problems will emerge one for every (m +m o 1 )n cycles.

Since the input data flow of x horizontally compatible problems consists of only (x +
1m strips, versus the 2xm strips required if they are not compatible, large saving in storage
space can be gained on the host side. On the other hand, the length of the FIFO buffer B .
s_hould be ((x + I)m - L) (2m - L)w - Lw since the intermediate results after the first itera-
tion have many more strips. Because the length of each strip is still 2mw, the capacity of the
buffers B 4 should remain unchanged.

To get an idea of how much the system throughput can be improved when horizontal
extension is applied, suppose that we have a system of L = 4 subarrays, with each array of
size w = 32. On this system, we wish to perform x = 50 operations with matrices of order n
=128. If these operations are not compatible, solving them one at a time without processing
overlaps will take a total of 110,350 steps, With processing overlaps, this number is reduced
to 102,559. However, if the operations are horizontally compatible, they can be processed
by the system in 52,383 steps. The improvement in throughput is

102,559

52,383
nearly by a factor of two. Of course, this number can vary depending on x. As x gets larger,
the improvement factor gets closer to two.

= 1.96,

5.2. VERTICAL EXTENSION TO FADDEEV’S ALGORITHM

. ’Even when a group of matrix problems are not horizontally compatible, they may
exhibit apother type of compatibility which can also be exploited to give an equivalent
speedgp in system throughput. To expand on this, let’s suppose that we have y = 3 matrix
operations to perform, namely CB, B + D and EB + D where B, C, D and E are of order n.
Like before, we can express these probiems as

I B 1 B
[—co] =CB [-11)] = B+D [_ng] = EB+D
(5.5)
) @ ©]

_Because the left §ide of problems (1), (2) and (3) of (5.5) are not the same, they are not hor-
uopvally compatible. However, it can be observed that they all have the identity matrix I in
their top left quadﬂ}nt and matrix B in their top right quadrant. To put it differently, these
problems all have identical top half. When this is the case, we say that the problems are
vertically compatible.

) To avoid repeating the same calculations on the identical top sides of vertically com-
patible problems, we exiend Faddeev’s vertically such that (5.5) becomes

¢
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When y vertically compatible problems aré grouped together as in (5.6), the common top
sld_e needs to be processed only once. This means that after the top left quadrant is triangu-
larized and the top right quadrant is modified with the generated multipliers, they can be
us;ed .repea(.edly to annul the left side of succeeding stages and transform their right side into
solutions.

In the case of (5.6), solving it involves only the annulment -C, -I and -E. This is
because the identity matrix I in the top left quadrant s, by its nature, already triangularized;
as a consequence, mairix B in the top row will remain unmodified. Annuifing -C, -I and -E
while extending the operations to the right will give

I

0 CB |
0 B+D| @
0 EB+D| (3)

which shows the solutions to (1), (2) and (3) in the right quadrants.

As with horizontal extension, systems using our array design can handle vertical
extension to Faddeev’s algorithm without any modification,

Shown in Fig, 5.2, the input data flow of y vertically compatible problems consists of 2m
strips, where each strip is (y + 1)m blocks long. The L-subarrays system of Fig. 4.1 will pro-
cess this data flow in k iterations. When m is an exact multiple of L, k = m/L and the pro-
cess will be completed in

m/L
L+Dw—1+ F[2m~ k- DL @ + Dm— (k— DLIw 5.7)
k=1

cycles. When m is not an exact multiple of L, k =[ m/L] and the throughput is computed as

ImiL}
(Mmoaz + Dw =1+ 3 2m— (k= 1DL] (y + m — (k ~ DLIw (5.8)
k=l
In throughput equations (5.7) and (5.8), the first product term within the summation
represents the number of input strips for each iteration. The length of each strip, on the other
hand, is indicated by the second product term. Even so, note that (5.7) and (5.8) are identical
to (5.3) and (5.4), respectively, save for the variables x and y. After the k " jteration, the set
of y solutions emerges in m output strips. As shown in Fig, 5.2, an output strip consists of y
segments, each of width w and length mw. Each segment i = 1, 2,..., y is part of the solution



to the i * problem. Because a solution is divided into m segments with each segment part of
an output strip, the solutions will not be completely out untl the last strip has emerged.
Thus, the number of steps needed for the first solution to come out is computed by subtract-
ing (y - 1)mw from (5.7) or (5.8). Each following solutions takes another mw steps.

Again, storage space needed on the host side is greatly reduced since the input data
flow of y vertically compatible problems is only 2(y + 1)m2w long, as opposed to 4y m 2w
were they not compatible. However, the length of the FIFO buffer B ¢ should be ((y + 1)m -
1)w to accommodate longer strips of modification factors. In addition, the length of B,
should be (2m - L)((x + 1)m - L)w - Lw to adequately hold intermediate results with longer
strips.

5.3. TWO-DIMENSIONAL EXTENSION TO FADDEEV’S ALGORITHM

‘While using either one of the previously described extensions yields substantial reduc-
tion in computing time, still greater improvement in throughput is possible when both tech-
niques are combined into a two-dimensional extension to Faddeev’s algorithm. To illustrate,
consider the matrix operations AB, AE + F, B + D and E + G. As before, A, B, D, E, F and
G are all matrices of order n. Formulating the operations as follow:

(L8 =as [LE = [12] =m0 [1E] =2
[¢)] @ 3 @ 69

reveals that (1) and (2) are horizontally compatible, as with (3) ana (4). Furthermore, (5.9)
also shows that (1) and (3) are vertically compatible, as with (2) and (4). Thus, using hor-
izontal extension, (5.9) becomes

e f 148
e 3@

Since both constructs of (5.10) have identical top halves, vertical extension can also be used
to further obtain:

(5.10)

I BE (5.11)
-AOQF| (1) and (2)

-IDG| (3) and (4)
This results in a two-dimensional extension to Faddeev’s algorithm. Annulling -A and -I in
(5.11) and extending the operations 10 its right prompt the solutions to (1), (2), (3) and (4) to
appear as

I B E ]

0 AB AE+F| (1) and (2)

0B+D E+G | (3) and (4)

As (5.11) reveals, the two-dimensional extension to Faddeev’s algorithm allows a compati-
ble matrix problem to share three of its quadrants with others, instead of two. This translates
into the elimination of a larger number of calculations per problem. The input data flow of
(5.11) for the L-subarrays systera is shown in Fig. 5.3. When the number of problems is x
across by y long, the input data flow is decomposed into (x + 1)m parallel strips, each (y +
1)mw in length. If m is an exact multiple of L, the total number of steps for the L-subarrays
system of Fig. 4.1 to process this data flow is

L+Dw=1 +m§';L[(x + m = (- DL [y + Dm — (k= DLIw (5.12)
k=1 -

If m is not an exact multiple of L, then the number of steps needed is computed as
|miL]
Mmoar + Dw =1+ 3 [(x+ Dm— (k= DL [y + Dm — (k= DLIw (5.13)
k=1

Subtracting [(x - )(ym + L) + (y - Dlmw from (5.12) or [x - I)ym +
M pog L)+ (¥ — 1)Imw  from (5.13) will, in both cases, give the number of steps elapsed
before the solution to the first problem is completely out. The interval between solutions to
problems on the same column is mw steps. Between problems on the same row, this interval
is computed as (ym + L)mw when m ;o4 1, = 0, OF (¥ + M g 1, )MW When M poq ¢, # 0.
Because of the increases in number of strips and in their length, the capacity of buffers B ¢
and B, should be expanded as previously indicated. To see how much of an improvement
over single dimension extensions this technique is capable of, let us again assume that we
have a system of L = 4 subarrays, with each array of size w = 32. With this system, 10000
operations are to be performed on a number of matrices of order n = 128. Solving the prob-
lems one at a time without processing overlaps will take a total of 22,070,000 steps. Maxim-
izing processing overlaps will reduce this number to 20,480,159, If single dimension exten-
sions can be used, the problems can be solved in 10,241,183 steps. The impiovement in
throughput is

20,480,159

10241183 = 20

However, if compatibilities between these problems are exploited such that the two-
dimensional extension can be used with x = 100 and y = 100, the total throughput will be
5,223,071 steps. The improvement factor is thus

20,480,159

5,223,071
almost doubling the speedup figure achieved with single dimension extension. As was noted
before, the improvement factor grows closer to four as x and y get larger. Another advantage
of the two-dimensional extension is that it further enhances the inherent programmability of
Faddeev’s algorithm. For example, should it be necessary to compute U, where

=392,

U=(AE +F)E +G)'(B +D)+AB, (5.14)
then the matrix from (5.11) can be rearranged to become
1 EB
L GD (5.15)
-AF 0

Solving (5.15), that is annulling -I and -A while extending the operations to the right will
give
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I E B
0 E+G B+D (5.16)
0 AE+F AB

Observe that within the box of (5.16), the necessary components of (5.14) are already
correctly positioned such that repeating the Faddeev's procedure on them will produce the
final result

[1

0 (E+G)Y® B+D)®
0 0

E B
(5.17)
U

In short, to compute U from matrix (5.15), one only needs to triangularize the augmented
matrix formed from I, E, -I and G, then annul the augmented matrix formed from -A and F
while extending both operations to the rightmost column of (5.15). Using the L-subarrays
system, U is computed from the input data flow of (5.15) in 2K iterations. The first k itera-
tions are needed to compute the matrices in the box of (5.16). This intermediate results is
immediately fed back into the system for another k iterations, after which U is forwarded to
the output.

6. CONCLUSION

By now, it is clearly obvious that the symbiosis of Faddeev’s algorithm and the new
systolic array system described here has given rise to a very powerful and versatile tool. The
algorithm itself provides a considerable generality of operation which should ailow the sys-
tem to have a large range of application in the scientific and industrial fields. In reqirn, the
system has brought massive parallelism to the multitude of matrix operations capable by the
algorithm. Furthermore, the system’s enormous potential for parallelism can now be fully
exploited to yield very high throughput with the Faddeev’s algorithm extensions. As com-
pared to other designs from the literature, this system does not suffer any of their drawbacks
while providing many practical advantages, some of which can be summarized as follows:

- The system provides identical performance using a smaller number of cells or arrays.
Indeed, given an equal number of arrays, its performance will be superior. When
taken into account the fact that its design is ideally suited for the extensions made to
Faddeev's algorithm, its throughput potential far outdistances any other systems previ-
ously considered.

- From a user point of view, operating the system is exceedingly simple: the input data
flow is fed only to the top array and system controls consist of a few signals to each
array top left cell.

- The design of the system is truly modular, with simple and regular interconnections
between cells and between modules. Hence it is very amenable to expansion: adding
extra blocks of shift registers will allow it to handle correspondingly larger problems,
while increasing the number of arrays will yield higher throughput.

- Since all modules are square blocks w * w in size, it is topologically more economical
and efficient in terms of PC board area. In conclusion, the system most important
advantage is that while its design is simple enough for implementation to be an easy
task, it is abundantly powerful and versatile to make that task worthwhile.
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