
REALIZATION OF EXTENSIONS TO FADDEEV ALGORITHM
ON ARRAY OF SIMD PROCESSORS.

Hai Van Dinh Le
Marek A. Perkowski

Department of Electrical Engineering,
Portland State University,
Portland. Oregon 97207,
tel. (503) 464-3806 x 23.

ABSTRACT

The paper presents three types of extensions: venical, horizontal, and
two-dimensional to the new, Faddeev algorithm based, systolic architecture
for mamx computations, presented in: H.VD. Le, M A . Perkowski. ”A New
General Purpose Sysrolic Archirecrure for Matrix Computationr”. Proc.
Intern. Con$ on Computing and Information, ICC1’89, Ontario, Canada,
1989. It has essential advantages over previous architectures of this type and
Ends various applications: extensions to Faddeev algorithm can be used in
many problems, including Karmarkar algorithm. The extensions described in
this paper not only increase a system throughput from two to four fold but
also enhance the inherent programmability of Faddeev’s algorithm. This
allows our architecture to perform very complex matrix calculations.

1. INTRODUCTION.
It has been conservatively estimated that 75 percent of all scientific applications

involve some form of matrix computations. In general. matrix computations are very
expensive in term of processing time. For real time operation, required by such applications
as robotics, signal processing, computer vision, computer graphics animation, simulation and
modeling, Computer Aided design, and many other, the processing power of serial comput-
ers is simply inadequate. Other applications. that are of special interest to our research group
are related to designing specialized co-processor architectures [22,8] for solving NP-
complete, combinatorial and other problems related to high-level and logic level synthesis of
digital circuits (also multi-valued). They include extremely fast solving of linear program-
ming problems (also using the Karmarkar algorithm that is particularly well suited for archi-
tecture presented in this paper), as well as spectral transforms and other modem approaches
to logic synthesis. AU these problems require fast matrix computations composed of various
sequences of inversion, uanspsition, multiplication, and addition.

In [181 a new systolic architecture for Faddev algorithm was proposed, that has essen-
tial advantages over the well known architectures of this type [2,20.211. Because Faddeev’s
algorithm is inherenrly general purpose, our architecture is able to perform a wide class of
manix computations. And since the architecture is systolic based, it brings massive parallel-
ism to all of its computations. As a resuls many matrix operations including addition. multi-
plication. inversion. LU-decomposirion, transpose. solurions ro linear systems of equations.
convolution. ZD-polynomial operations, and other, can be now performed extremely fasr
This architecture has several other advantages as well: better performnce for smaller cosr.
easy reconfrgurability, size independence ~ problem decomposirion. processing of sparse
arrays, and increased throughpur [15-15]. Our design can be re-configured during run time
to perform different functions with the uses of various control signals that are propagated
throughout the arrays. It alldws also for madmum overlaps of processing between consecu-
tive computations. thereby increasing system throughput.

In this paper only the new extensions are described, the reader is assumed to be fami-
liar with [%I.

2. FADDEEV’S ALGORITHM AND MATRIX TRIANGULARIZATION

class of matrix operations and especially suited for systolic implementation. It calculates
CA-’ B + D from

Faddeev’s algorithm [4,19,20,151 is a general purpose algorrthm, useful for a wide

Since the underlying procedure to carry out Faddeev’s algorithm is matrix m’angulanzation,
any systolic implementation of the algorithm should be based on a smcture which can per-
form hiangularization efficiently. The triangular systolic array developed by Gentleman and
Kung as a common platform for two different hiangularization methods which is shown in
Fig. 2.1 can execute both Gaussian elimination with neighbor pivoring or orthogonal Pi-
angularizarion [6,1 ll. Triangular systolic array for matrix triangularization.
The array consists of two types of cells: the boundary cells (represented by circles) and the
inrernd cells (represented by squares). These cells are locally interconnected into a triangu-
lar mesh. Each cell stores a microprogram, enabling it to interact with its neighbors in such
a way that a hiangularization procedure can be carried out. Changing the microprograms of
rhe cells will allow the array to execute different procedures. In the following discussion, the
term data row refers to a row of enmes of matrix X where the term array row means a row
of cells of the array.

The hiangular array of Fig. 2.1 can perform Gaussian elimination with neighbor pivot-
ing using the cells shown in Fig. 2.2. As its microcode reveals, the boundary cell generates
two modification factors: a multiplier M, as well as a Boolean variable V oyI which signals
a row interchange when it has a value of one. This occurs at every array cycle, the max-
imum length of time necessary for a cell to execute its microprogram once. The array can
perform orthogonal triangularization using the cells specified in Fig. 2.3.

3. THE DUAL MODE ARCHITECTURE
The new systotic implementation of Faddeev’s algorithm [I81 is based on dual mode

m a y . which, in its basic form, reduces the YO bandwidth requirement by half and the
number of cells needed by more than one third, comparing to the architectures from
[220211. It consists of a square array in which the cells are orthogonally connected (Fig.
3.1). Data bus interconnections between cells are indicated by arrows. Functionallv. there

are two types of cells. The Krst type consists of all the diagonal cells (denoted by circles) of
the array and the second type of all the non-diagonal cells (denoted by squares). Depending
on the actual processing phase, the array functions in one of the two modes : the T (rriangu-
lar) mode or the S (square) mode. Together, these two modes implement Faddeev’s algo-
rithm to compute C A “ B + D from (2.1). When the array is in T mode, cells of rows i
where i = 1,2, .., w and columns j where j L i, form a triangular sub-array which is based on
Gentlemen and Kung’s array of Fig. 2.1. It performs Gaussian elimination wirh neighbor
pivoring on A, and ordinary Gaussian elimination on C. During this mode of operation. the
circular and square cells essentially carry out the same functions speciiied by Fig. 2.2 boun-
dary and internal cells, respectively. When in S mode, the entire array is used to process B
and D. In this mode, every cell of the array acts similarly to the internal cell of Fig. 2.2, i.e.
circular cells functionally become square cells. In order to switch the array from one mode
to another, it is only necessary to change the program of the diagonal cells. This is accom-
plished using the cell microprograms listed in Fig. 3.2.

The careful reader may observe 1151 that by alternating between the two operauonal
modes T and S, our array essentially simulates the one-T and one4 system of Chuang and
He [21 to solve (2.1) with a smaller number of cells and haf rhe bandwidth requirement.
Naturally. the input data flow will have to be slightly modif,ed because of the differences in
the array’s topology.

The circular and square cells, as shown in Fig. 3.2, have identical VO and conuol
bandwidth: two n -bit data input ports, two n -bit data output pons, four one-bit control
input ports and four one-bit control output pons, for a total bandwidth of 4n+8. In facs this
number is comparable to the actual pin count that the Chuang and He internal cell would
need, since their cell does requue exua control capabilities to work properly.
Control Signals Interconnections.

As shown in Fig. 3.1, the circular cell relies on three external control signals C1, C2.
and C4 for internal computation and itself generates signal C3, all of which it broadcasts
Iccally to its neighbors for correct operation of the entire array. The square cell uses only C3
and C4. and passes all control signals it receives to neighboring cells unchanged. C1. C2.
C3. and C4 are all one-bit boolean values whose functions and interconnecuon pauerns are
described below. C l controls the behavior of diagonal cells and consequently selects the
operation mode of the array. When C1 1s true. the diagonal cells execute the portion of theu
code that enables them to function like Kung’s boundary cells from Fig. 2.1. thus changing
the m a y into T mode. Otherwise, with C1 false, diagonal cells function like square cells,
and the array is in S mode. Because of the strict timing required, mode switching should
occur as enuies of the Krst row of B reach each cell, i.e. the switching sweeps across the
array in skewed waves as the transition between C and B flows through the cells. This can
be accomplished without the need to address separate control signals to each individual diag-
onal cell. In fact, C1 needs to be fed only to the top left diagonal cell of the array and will be
pipelined through the array to reach every diagonal cell. As the data flow changes from
matrix A to matrix C, T mode processing in the array gradually switches from Gauoan
eliminarion ivirh pivoring to non-pivoting Gawsian elimnation. This event is started with
C2. whose value is nue for pivoting allowed and false for pivoting not allowed. Again, C2
is fed only to the top left diagonal cell and propagated through the array. Generated inter-
nally by diagonal cells when they are iq T mode, C3 is the functional equivalent of MO, of
the boundary cell from Fig. 3.2. It is thus used to direct square cells on the same row to
pivot incoming data when r r u , or not to pivot when false. When switching between the T
and S modes of operation, it is essential that the X registers in each and every cell of the
m a y are cleared to zero before the new data elements arrive. If C4 is nue, a cell will clear
its X register prior to receiving Xi,, from its nonhern neighbor. The X register remains
unchanged d C4 is false. C4 is distributed throughout the array.

Data Flow Description
Again suppose that A, B, C and D of (2.1) are n x n matrices and the available

bandwidth is w = n. The input data flow, of width n and length 4n, will be continuous and
consisa of matrices A, C, B and D, in that order, skewed as shown in Fig. 3.1. Note that the
control signals necessary for each step are displayed alongside the data Bow.

Processing will be as follows. Initially, A enters the array followed by C : because C4
is true (for the duration of one cycle), all cells will clear their X register of values left from
any previous calculations. With C1 and C2 both true, cells of the upper triangle begin per-
forming Gaussian elimination (with neighbor pivoting) to riangularize A as its data ele-
ments are upon them. As C1 reaches each diagonal cell, the array gradually switches to T
mode.

When entry c 1 l of mauix C arrives at the top left cell, C2 becomes false which dis-
ables neighbor pivoting in the diagonal cells. Thus. only the ordinary Gaussian elimination
is performed to annul C. Throughout this period, C1 remains m e , hence the array remains
in T mode.

Subsequently, as B reaches the array, C4 goes nue again for the duration of one cycle
(step), long enough for the top left cell to store this value: the signal is then propagated to all
cells and clears their X registers. At the Same time, C1 becomes false and remains so until
the last row of D is in the array. As C1 reaches each diagonal cell, it turns it into a square
cell and thus gradually changes the array to S mode as the data elements of B are pipelined
through the array. The results, shown in Fig. 3.1, fully emerge from the bottom of the array
after 6n - 1 steps for C A -‘B + D and 5n steps for the solution to a linear system.
Storage and Feedback of Modification Factors.

During the procbsing of matrices A and C, modifrcationfacrors MO, and pivoting
control birs C3 are generated by diagonal cells based on incoming values X ,“. They are then
sent to the right to the square cells on the same row to modify adjacent X,. values. As it
reaches the edge of the array, this data stream to the right is stored in B,, a FE0 queue of

CH2868-S/sO/oooO-2312$1.00 0 1990 IEEE

sue w x w shown in Fig. 3.1. This queue acts as a delay mechanism that will recirculate its
contents to the left side of the array for the processing of B and D as they arrive at the array.

To reduce demands on available bandwidth between the host and the atray, B should
not be implemented using the conventional memory of the host. Instead, the queue should
be a dcdicalcd buffer made up entirely of shift registers and run at the Same clock rate as the
may. This represents the most efficient way to imp!ement the horizontal feedback path.

4. MULTIPLE ARRAY CONFIGURATION
By using mu1tiplean;iys. the system of Fig. 4.1 gives better throughput than the single

array under the same 110 consmint. This is because each subarray effectively replaces one
iteraiion. with partial results from one subarray immediately processed by the next, thereby
maximizing concurrency while eliminating the corresponding iteration. Such a system will
bc called L - tuple arrays system (L = 2 in Fig. 4.1). or L-subarrays system. Oetailed
analysis of the Multiple Array Configuration and solving size independent problems is given
in [IS].

5. EXTENSIONS TO FADDEEV'S ALGORITHM
In the previous sections. the reader has seen the ease with which the new systolic m a y

uses massive parallelism to solve many types of matrix problems via Faddeev's algorithm.
The actual size of the array, and therefore its throughput, is shown to be restricted only by
the available bandwidth between the host and the array. Even this restriction is effectively
circumvented when a number of such arrays are combined into a system to give a desired
level of performance. Such a multiple arrays system reaches its maximum throughput rate
when its pipeline is completely filled with data. By ensuring that the input data flow is con-
tinous. this maximum throughput rate is maintained at all times. It would seem then, algo-
rithmically speaking, that nothing further can be done to induce more parallelism into matrix
computations. However, that last observation is simply not m e . We have found that, by
extending Faddeev's algorithm. the maximum throughput rate of a system can be nearly qua-
drupled. Furthermore, such a mmendous improvement in system throughput requires abso-
lutely no architectural modification to the system.

5.1. HORIZONTAL EXTENSION TO FADDEEV'S ALGORITHM
Before illushating how we extend Faddeev's algorithm, let us introduce the concept of

compatibility between matrix problems. Suppose we have matrices A, B and D of order n.
upon which we wish to perform the operations A -I, A + D . From basic pro-
perues of Faddeev algorithm, we can solve these matrix problems with this algorithm by for-
mulating them as:

E , and A

[!,;I = , A - ' [!,{I = , A - ~ B [!/;I - A - I + D

(5.1)

where I is the identity matrix. These constructs reveals that they all have identical left
halves, i.e. they consist of the same matrix A in their top left quadrant and the same matrix -I
in their bottom left quadrant When this is the case, we say that the problems are horiron-
rally compaable.

Obviously, solving x horizontally compatible problems involves repeating the calcula-
tions for the same left side x number of times. In the case of (5.1) where x = 3, solving (l) ,
(2) and (3) requires repeating the process of triangularizing A and annulling -I three times. If
by some means the redundant iterations of this process are eliminated, nearly half of the cal-
culations necessary to solve (2) and (3) of (5.1) can be skipped. This would yield a large
savings in the computing time. To accomplish this. we extend Faddeev's algorithm borizon-
tally to the right so that (5.1) is reformulated as

(1) (2) (3)

Grouping (I) , (2) and (3) together as in (5.2) allows us to triangularize A and annul -I only
once, and reuse the multipliers generated from that several times on the right The results
will appear as: [~ (k) / (k) / (k)]

0 A-' A-IB A-'+D

(1) (2) (3)

It is easy to see that the horizontal extension to Faddeev's algorithm maps particularly
well to a system using OUT systolic anay design: ir requires absolutely M archiieciural nor
algoriihmic modificaiion, either at the system level, subarray level or cell level. When the
available I/O bandwidth is w, (5.2) is parallely decomposed into (x + 1)m input ships, each
2mw in length. as shown in Fig. 5.1.

As before, the L-subarrays system of Fig. 4.1 will process this input data flow in k
itcrations. where the value of k depends on m and L. When m is an exact multiple of L, we
have k = m/L and the system will compute x horizontally compatible problems in

"dL
(L + 1)w - 1 + C [(x + l)m - (k -1)Ll [2m - (k - 1)Llw (5.3)

k = i

cycles. In the above equation. the 6rst product term of the summation represents the number
of input strips for each iteration, while the second term indicates the strips length. The solu-
tion to the first problem will come out after

(",,L)-l
(L + 1)w - 1 + c [(x + 1)m - (k - I)LI [2m - (k - 1) ~ I w + (m +L)*w

k=i

cycles, with the second line of the equation indicating that only part of the k ' iteration is
needed. Afterward, solutions to subsequent (x - 1) problems are transmitted to the output
one for every (m + L)n cycles. In the special case when m = L, we have k = 1 and the sys-
tem will solve the 6rst problem in (4m + l)n + w - 1 cycles. As to subsequent problems, the
system will complete one every 2mn cycles. The difference between the two throughput
equations of the first problem is due 10 the fact that the input data flow for x horizontally
compatible problems consist of (x - l)m more strips than that of a single problem. This
means that during each iterauon, the system has that many more strips to process. Thus

when k > 1, the previous iterations will delay the output of results whereas with k = 1, those
delays are non-existent

When m is not an exact multiple.of L, the number of iterations required for the system
to process (5.2) is k = r m/L1, with the k" iteration involving only the hrst mmdL subaxrays
of the system. The total throughput will be

IdLI
(mmdL + 1)w - 1 + 2 [(x + 1)m - (k - 1)Ll [2m - (k - 1) L . l ~ (5.4)

k=1

with solution to the iirst problem coming out after
IdLI

(mmodL + I)W - 1 + [(x + 1)m - (k - ~) L I [2m - (k - I)L]W + (m + mmdL)*w
k=I

cycles. Again, the second line of the above equation indicates that only part of the last itera-
tion is needed by the system tu compute the hrst problem. Afterward, solutions to subse-
quent x - 1 problems will emerge one for every (m + m mod ~) n cycles.

Since the input data flow of x horizontally compatible problems consists of only (x +
I)m strips, versus the Zxm strips required if they are not compatible, large saving in storage
space can be gained on the host side. On the other hand, the length of the FIFO buffer B I
should be ((x + l)m - L) (2m - L)w - Lw since the intermediate results after the 6rst itera-
tion have many more strips. Because the length of each strip is still Zmw, the capacity of the
buffers B should remain unchanged.

To get an idea of bow much the system throughput can be improved when horizontal
extension is applied, suppose that we have a system of L = 4 subarrays, with each array of
size w = 32. On this system, we wish to perform x = 50 operations with matrices of order n
= 128. If these operations are not compatible, solving them one at a time without processing
overlaps will take a total of 110,350 steps. With processing overlaps, this number is reduced
to 102,559. However, if the operations are horizontally compatible, they can be processed
by the system in 52,383 steps. The improvement in throughput is

-- 102'559 - 1.96,
52,383

nearly by a factor of two. Of courge, this number can v a q depending on x. As x gets larger,
the improvement factor gets closer to two.

5.2. VERTICAL EXTENSION TO FADDEEV'S ALGORITHM
Even when a group of matrix problems are not horizontally compatible. they may

exhibit another type of compatibility which can also be exploited to give an equivalent
speedup in system throughput To expand on this, let's suppose that we have y = 3 matrix
operations to perform, namely CB, B + D and EB + D where B, C, D and E are of order n.
Like before, we can express these problems as [$:I a C E [!,:I = B + D [-;:I = E E + D

(5.5)

Because the left side of problems (1). (2) and (3) of (5.3 are not the same, they are not hor-
izontally compatible. However, it can be observed that they all have the identity matrix I in
their top left quadrant and matrix B in their top right quadrant To put it differently. these
problems all have identical top half. When this is the case, we say that the problems are
veriically compaiible.

To avoid repeating the same calculations on the identical top sides of vertically com-
patible problems, we extend Faddeev's vertically such that (5.5) becomes

[:: 4 $1 (5.6)

When y vertically compatible problems are grouped together as in (5.6), the common top
side needs to be processed only once. This means that after the top left quadrant is triangu-
larized and the top right quadrant is modified with the generated multipliers, they can be
used repeatedly to annul the left side of succeeding stages and uansform their right side into
solutions.

In the case of (5.6). solving it involves only the annulment -C, -I and -E. This is
because the identity matrix I in the top left quadrant is, by its nature, already triangularized;
as a consequence, matrix B in the top row will remain unmodified. Annulling -C, -I and -E
while extending the operations to the right will give

(1) (2) (31

-E D (3)

[yJ 11
which shows the solutions to (1). (2) and (3) in the right quadrants.

As with horizontal extension. systems using our array design can handle vertical
extension to Faddeev's algorithm without any modification.
Shown in Fig. 5.2, the input data flow of y vertically compatible problems consists of 2m
ships, where each strip is (y + 1)m blocks long. The L-subarrays system of Fig. 4.1 will pro-
cess this data flow in k iterations. When m is an exact multiple of L, k = m/L and the pro-
cess will be completed in

d L

k=l
(5.7) (L + 1)w - 1 + 2 [2 m -(k- 1)L] [(y + 1) m - (k - 1)Llw

cycles. When m is not an exact multiple of L, k = rmlL1 and the throughput is computed as

(5.8)

In throughput equations (5.7) and (5.8). the first product term within the summation
represents the number of input strips for each iteration. The length of each strip, on the other
hand, is indicated by the second product term. Even so. note that (5.7) and (5.8) are identical
to (5.3) and (5.4). respectively. save for the variables x and y. After the k iteration, the set
of y solutions emerges in m output strips. As shown in Fig. 5.2, an output snip consists of y
segments, each of width w and length mw. Each segment i = 1,2, ..., y is part of the solution

I d L I

k=l
(mmodL + 1)w - 1 + C [2m - (k - 1)L.l [Q + 1)m - (k - 1)Llw

2313

to the i * problem. Because a solution is divided inm m segments with each segment part of
an output strip, the solutions will not be completely out until the last strip has emerged.
Thus, the number of steps needed for the first solution to come out is computed by subuact-

[I E 0 E+G B + D] B

O A E + F AB
(5.16)

Observe that within the box of (5.16). the necessary components of (5.14) are already
correctly positioned such that repeating the Faddeev's procedure on them will produce the
final result

ing (y - 1)mw from (5.7) or (5.8). Each following solutions takes another mw steps.
Again, storage space needed on the host side is greatly reduced Since the input data

flow of y vertically compatible problems is only Z(y + l) m 2 w long, as opposed to 4y m 2w
were they not compatible. However, the length of the FIFO buffer B ~ should be ((y + 1)m -
l) w to accommodate longer strips of modification factors. In addition, the length of B I

should be (2m - L)((x + 1)m - L)w - Lw to adequately hold intermediate results with longer
(5.17) strips.

5.3. TWO-DIMENSIONAL EXTENSION TO FADDEEV'S ALGORITHM
While using either one of the previously described extensions yields substantial reduc-

tion in computing time, still greater improvement in throughput is possible when both tech-
niques are combined into a two-dimensional extension to Faddeev's algorithm. To illusuate.
consider the matrix operations AB, AE + F, B + D and E + G. As before, A, B, D, E, F and
G are all matrices of order n. Formulating the operations as follow:

[-i E] * A B [-a ;] 3 AE+F [!;I B+D =) E+G

(5.9)

reveals that (1) and (2) are horizontally compatible, as with (3) ana (4). Furthermore, (5.9)
also shows that (1) and (3) are vertically compatible, as with (2) and (4). Thus, using hor-
izontal extension, (5.9) becomes

(1) (2) (3) (4)

I B E I B E
[-A 0 F] [-I D G]

(1) 12) (3) (4)
Since both consttucts of (5.10) have identical top halves, vertical extension can also be used
to further obtain:

(5.1 1)

In short, to compute U from matrix (5.15). one only needs to triangularize the augmented
matrix formed from I, E, -I and G, then annul the augmented matrix formed from -A and F
while extending both operations to the rightmost column of (5.15). Using the L-subarrays
system, U is computed from the input data flow of (5.15) in Zk iterations. The 6rst k ttera-
tions are needed to compute the matrices in the box of (5.16). This intermediate results is
immediately fed back into the system for another k iterations, after which U is forwarded to
the output.

6. CONCLUSION
By now, it is clearly obvious that the symbiosis of Faddeev's algorithm and the new

systolic array system described here has given rise to a very powerful and versatile tool. The
algorithm itself provides a considerable generali:y of operation which should allow the sys-
tem to have a large range of application in the scientific and industrial fields. In r e m . the
system has brought massive parallelism to the multitude of matrix operations capable by the
algorithm. Furthermore, the system's enormous potential for parallelism can now be fully
exploited to yield very high throughput w+h the Faddeev's algorihm extensions. As com-
pared to other designs from the literature, this system does not suffer any of their drawbacks
while providing many practical advantages, some of which can be summarized as follows:
- The system provides identical performance using a smaller number of cells or arrays.

Indeed, given an equal number of amys, its performance will be superior. When
taken into account the fact that its design is ideally suited for the extensions made to
Faddeev's algorithm, its throughput potential far outdistances any other systems previ-
ously considered.

- From a user point of view, operating the system is exceedingly simple: the input data
flow is fed only to the top array and system controls consist of a few signals to wch
array top left cell.

This results in a two-dimensional extension to Faddeev's algorithm. A M u l b g -A and -I in
(5.11) and extending the operations to its right prompt the solutions to (1). (2), (3) and (4) to
auoear as

As (5.11) reveals, the two-dimensional extension to Faddeev's algorithm allows a compati-
ble matrix problem to share lhree of its quadrants with others, instead of two. This trans!ates
into the elimination of a larger number of calculations per problem. The input data flow of
(5.11) for the L-subarrays system is shown in Fig. 5.3. When the number of problems is x
across by y long, the input data flow is decomposed into (x + 1)m parallel strips, each (y +
1)mw in length. If m is an exact multiple of L, the total number of steps for the L-subarrays
system of Fig. 4.1 to process this data flow is

"IiL

k=l
(L + 1)w 7 1 + C [(x + 1)m - (k - 1)L] [(y t I)m - (k - 1)Llw (5.12)

If m is not an exact multiple of L, then the number of steps needed is computed as

(mmdL + 1)w - 1 + C [(x + 1)m - (k - 1)Ll [(y + l)m - (k - l) L] w
l d L l

(5.13)

Subwcting [(x - 1)bm + L) + (y . l)]mw from (5.12) or [(x - I)(ym +
m mod ,,) + (y - I)]mw hom (5.13) will, in both cases, give the number of steps elapsed
before the solution to the first problem is completely out The interval between solutions to
problems on the m e column is mw steps. Between problems on the same row, this interval
is computed as (ym + L)mw when m mod # 0.
Because of the increases in number of strips and in their length, the capacity of buffers B ~

and B I should be expanded as previously indicated. To see how much of an improvement
over single dimension extensions this technique is capable of, let us again assume that we
have a system of L = 4 subarrays. with each anay of size w = 32. With this system, 10000
operations are to be performed on a number of matrices of order n = 128. Solving the prob-
lems one at a time without processing overlaps will take a total of 22,070,M)o steps. Maxim-
izing processing overlaps will reduce this number to 20,480,159. If single dimension exten-
sions can be used, the problems can be solved in 10,241,183 steps. The impiovement in
throughput is

k=I

= 0, or b m + m mod L)mw when m mod

20,480,159 - 2,0
10,241,183

However, if compatibilities between these problems are exploited such that the two-
dimensional extension can be used with x = 100 and y = 100, the tool throughput will be
5,223,071 steps. The improvement factor is thus

- The design of the system is truly modular, with simple and regular interconnections
between cells and between modules. Hence it is very amenable to expansion: addmg
extra blocks of shift registers will allow it to handle correspondingly larger problems.
while increasing the number of arrays will yield higher throughput
Since all modules are square blocks w * w in m e , it is topologically more economical
and efficient in terms of PC board area. In conclusion, the system most important
advantage is that while its design is simple enough for implementation to be an easy
task. it is abundantly powerful and versatile to make that task wonhwhile.

-

7. LITERATURE
[I] R. L. Burden et al. Numerical Analysis, PWS Publishers, Boston, MA, 1981, pp. 289-
294. [2] H. Y. H. Chuang and G. He, "A Versatile Systolic Array For Manix Computa-
tions,'' The International Symposium on Computer Architecture, 1985, pp. 315-322. [31 P.
M. Dew, "VLSI Architectures for Problems in Numerical Computation," in Supercomputers
and Parallel Computation. ed. by D. J. Paddon, Oxford University Press, New York, 1984,
pp. 2-21. [4] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Alge-
bra, W. H . Freeman and Company. 1963, pp. 150-158. [SI W. M. Genrleman, "Error
Analysis of QR Decompositions by Givens Transformations," in "Linear Algebra and Its
Applications", Americun Elsevier Publishing Company, New York, 1975, pp. 189-197 161
W. W. Gentleman and H. T. Kung, "Matrix Triangularization by Systolic Arrays." Proc.
SPIE, The 1nternatior.al Society of Optical Engineering, Vol. 298, 1981, pp. 19-26. [71 W.
Handler, "Innovative Computer Architecme - How to Increase Parallehsm but Nor Com-
plexity." in Parollel Processing System, ed. by David J. Evans, Cambridge University Press,
Cambndge, MA, 1982, pp.23-32. [SI P. M. Ho, and M. A. Perkowski, "Systolic Architecture
for Solving NF-hard Combinatorial Problems of Logic Design and Related Areas", Proc. of
ISCAS89. IEEE Internanonal Symposium on Circuits and Sysrems, May 9-12, Portland,
Oregon 1989. [9] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Process-
ing, McGraw-Hill. New York, 1984, pp. 768-774. [lo] H. T. Kung and C. E. Leiserson,
"Systolic Arrays (for VLST)." Sparse Matrix Proc.. 1978, Society for Industrial and Applied
Mathematics, 1979, pp. 256-282. [ll] H. T. Kung, "Systolic Array for Orthogonal Triangu-
larization." Proc. SPIE. San Diego, CA, 1981, pp. 19-26. I121 H. T. Kung. "Why Systohc
Architectures?", IEEE Computer Magazine, Vol. 15, No. 1, January 1982, pp. 3746. [131 H.
T. Kung, "Notes on VLS! Computation," in Parallel Processing System, e d by David J.
Evans, Cambridge University Press, Cambridge, MA, 1982, pp.339-356. [I41 S. Y. Kung,
"VLSI Array Processors," IEEE ASSP Magazine. Vol. 2, No. 3, July 1985, pp. 4-22. [lj] H.
V. D. Le, A New General Purpose Systolic Array for Matrix Computations, M. Sc T h e m
Department of Electrical Engmeering, Portland State University, 1988. 1161 H. V. D. Le,
and M. A. Perkowski, "New General Purpose Systolic Array Architecture for Extended Fad-
deev Algorithm for Manix Computations", Su5mitred to IEEE Transactions on Compuiers
[171 H. V. D. Le, and M. A. Perkowski, "Real Time Graphical Simulation of Systolic

ahostdoubling the swdup figure achieved with single dimension extension. As was
before, the improvement factor grows closer to four as x and y get larger. Another advantage

Faddeev's algorithm. For example, should it be necessary to compute U, where

Arrays". Proceedings of IEEE ISCAS'89, lnternarional Symposium on Circuirs and Sysrem.
May 9-12' 19y9' Oregon. [I8] H' V. D. and M. A. perkowski, "A New Gen-
eral Purpose Systo1ic Architecture for Matrix Computations". Proc. Inrernational Confer-
ence on Computing andlnformtion, ICCI'89, Ontario. Canada, 1989. [191 H. V. D. Le, and
M. A. Perkowski, "Size Independent Implementation of Matrix 13perations on TASA - A

of the two.dimension~ extension is that it further enhances the programmability of

U = (A E + F) (E + G) - ' (B + D) + A B . (5.14) Two-Dimesional Array Matrix Architecture", Proc. of Inrern. Phoenix Con/. on Compurers
and Comm., IPCCC-90, Phoenix, Arizona, March 1990. [20] J. G. Nash and S. Hansen.
"Modified Faddeev Algorithm for Matrix Manipulation," Proc. SPIE. Vol. 495, August
1954, pp. 39-46. I211 J. G. Nash, "A Systolic/Cellular Computer Architecture for Linear
Algebraic Operations," Proc. 1985 IEEE International Conference on Robotics and Autom-
non. March 1985, pp. 779-784. [22] M. A. Perkowski. "Systolic Architecture for the Logic
Design Machine", Proc. 1985 IEEE International Conference on Computer Aided Design.

then the matrix from (5.1 1) can be rearranged to become

[' E ;] (5.15)
-A F 0

Solving (5.15). that is annulling -I and -A while extending the operations 10 the right Will
give pp. 133-135.

2314

feedback io l e f t
slde OF Q P P ' L ~

