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ABSTRACT

This paper presents a new approach to solving various
NP-hard problems in logic synth logic prc ing, graph
theory, and related areas. A problem to be solved is reduced to
solving one or several generic combinatorial problems, called
Generalized Propositional Formula (GPF) minimization. The
special massively parallel p hi for the GPF

inimization is di d. The archi is composed of a
Host computer and a data-flow tree (DFT) of processors
(Boolean Product Processor - BPP). Each BPP consists of a Pro-
duct Management Unit (PMU) and a Sorting and Absorbing
Architecture (SAPA).

1. INTRODUCTION

It is not well known that logic computers, i.e. devices to aid in verifying
sylogisms and solving other logic problems are older than the digital arith-
metic computers and date back to the Middle Age "computers” by Lullus. A
variety of such computers were built in the XIX and XX centuries before Von
Neumann [12). The first, to our knowledge, special computer to help in logic
synthesis was proposed by Antonin Svoboda in Czechoslovakia and then in
the United States [20, 21]. Svoboda’s group was actively working on them in
the early 70’s (8, 19, 3]. Some ideas on such computers are also in [10]. We
did not find other references on this subject untdl 1985 (18, 11], but there was
related research on the tre hing cc {23] and cc labeling
computers [9]. Since the hardware accelerators for simulation, design rule
checking, routing, placement, and other layout tasks are now available or pro-
posed, we believe that hardware accelerators for logic design will also be
incorporated into future CAE workstations for VLSI design because there is
an obvious and growing need for them. Since 1984, we have been designing,
analyzing, and simulating various architectures related to logic synthesis {11,
5, 41. We also work on the implementation of the respective algorithms on
parallel computers: on iPSC hypercube from Intel [13, 14], Sequent Balance
[15], and XTM from Cogent.

As it is shown in [10-14], many problems of logic, system, high-level
and physical VLSI design, as well as in graph theory, logic programming and
pattern recognition, can be reduced to one of the following two problems.

Given is a Boolean function of the form:

n = M x i@y, a’=%,x"=x).
' P.eT, jeP,

T, is the set of literals in the term t. This means that the function is a product
of sums of products of literals. The term (or sum) is a sum of products of
literals. We will use this kind of function in this paper since it is more gen-
eral than the decision functions from the literature (Product of Sums Form -
PSF of Petrick [16] or satisfiability formula [2]) and it is also more suitable
for our method of data coding in systolic flows. Because of the important role
of this function in many problems and since no name has been assigned to it,
we propose to call it a Generalized Propositional Formula (GPF).

Problem I (Satisfability): Answer Yes if there exist a product of literais
that satisfies all terms or No if such a product does not exist.

Problem 2 (Optimization): Find a product with a minimum number of
literals that satisfies all of the terms or prove that such a product does not
exist. Or, find the sum of all products (SPF) that satisfy the GPF.

The GPF also finds applications in Petri net analysis, expert systems,
pseudo-Boolean programming, data base consistency, CAD, operations
research, graph theory, search theory, and criptography. Many other reduc-
tions to the problems formulated above, as well as new problems of this class,
can be found in {2, 10-14]. {6] is a continuous source of interesting problems.
Needless to say, every NP-hard combinatorial problem can be theoreti-
cally reduced to GPF minimization, and such reductions for many prob-
lems are reasonable, also from the practical point of view. The algorithms
to solve the above problems can basically be divided into three categories:
tree searching algorithms, array algorithms, and transformational aigo-
rithms. In this paper, it is assumed that the first two types are executed by the
Host and the last one by the architecture discussed here.

B lly, we can distinguish rwo types of practical GPF problems. The
problems related to Boolean minimization, for instance, require a relatively
small (S 64) number of variables. Then, 128 literals (bits) are sufficient to
represent a product of a sum, ing, like in comp lizations of cube
calculus [22], two bits of the word for a variable. Such an approach is dis-
cussed in this paper, where we propose a GPF Solver (GPFS) architecture for
the two above and other similiar problems. When reducing other probiems of
this class, however, like, for instance, in the Petrick function minimization
approach to set covering for Boolean function ion {16], the b
of the variables (rows of the covering table) can be in the thousands. We
have developed her archi [S], similar to the one presented here,
that can effectively deal with such problems. The computer word is used in it
for a literal, not for a product of literals, as assumed here.

2. THE GPFS ARCHITECTURE

The product of literals is represented as a computer word, two bits per
variable. To focus our considerations, we assume 61 variables plus 6 bits
(LSB) for product cost. Then, 128 bits in a word. The encoding is as fol-
lows: x - 10, X - 01, don’t care - 11, contradiction - 00. In this notation, the
product of two products of literals simply corresponds to a bit-by-bit product
of the respective words. For instance, assuming 5 variables, (a, b, ¢, d, e), the
product is be - bed =[1110111110) - [11 10 1001 11}
=[11101001 10} = bede. When the opposite literals are multiplied, the
pair 00 is created from the bit-by-bit product and is detected in the next
stages: ab -gb =([1010111111]-{1001111111) ={1000111111]
= contradiction .

The GPFS architecture is shown in Fig. 1. It consists of the Host and
the, tightly coupled with it, convergent Data Flow Tree (DFT) of Boolean
Product Processors (BPP). Each BPP is composed of the Product Manage-
ment Unit (PMU) and the Sorting and Absorbing Architecture (SAPA). The
number of levels in DFT can be arbitrary, and the algorithms will not change
with the number of levels. Each PMU sub-system contains individual control
unit and local memory. They are operated asynchronously, and may coordi-
nate their processes by communicating with each other directly or through the
host computer by means of software semaphore/arbiter.

The Host does the partitioning of the larger problem to fit it to the con-
straints of the DFT, such as the length of the word (number of literals), the
sizes of memories in BPPs (the numbers of the terms and products), and oth-
ers. The partitioning can be done during the tree searching. In such a case,
the variables are systematically reduced and the formulas from the leafs of the
tree, with less than 61 variables are transmitted to the DFT. In another vari-
ant, partitioning is done with respect to smaller products of terms from the
GPF formula. Several well known algorithms can be adopted for these parti-
tionings and new algorithms have been written (1, 11, 12).
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The host also loads the memories of the leaf-processors of the DFT
(level 1 BPPs #1 and #2 in Fig. 1), whenever it gets the "load me" signal
from the respective processor. It also receives the partial resultant SPF
expression from the root of the DFT (level 2 BPP 43 in Fig. 1). SPFs are mul-
tiplied and locally simplified as they traverse from the Host to the root of the
DFT. From the external point of view, the whole process is analogous to the
parallel realization of the naive Boolean multiplication/simplification algo-
rithm for a product of terms. The most general and important aspect of this
architecture is the general formulation of the problem as asynchronous data
flow reduction architecture where both the Host and the DFT, as well as each
BPP in the DFT, take some part of the GPF, being again a smaller GPF, mul-
tiply it, and replace it with a corresponding SPF form which becomes a part
of a new GPF for the next phase of multiplication. All of these multiplica-
tions and repl. are done asynch ly, in parallel, and in a pipe-
lined mode inside the DFT. Each processor in the tree serves for Boolean
multiplication of the two input of data (C: Product Gen
CPG). Each such stream of data represents a Boolean SPF from the partial
multiplications. Additionally, there is massive parallelism inside each BPP
processor, both for Cartesian Product and Sorting/Absorbing as well.

Each BPP processor simplifies the intermediate SPF terms, created by
the Cartesian Product, by removing the products with contradiction (called
empty products ) and the repeated products, and sorting them (SAPA).
Whenever, after the simplification, the term is empty, this means that the total
GPF has no solution. For instance, if at anytime, the left and right SPF terms
given to a BPP are ab and (a + b), respectively, the multiplication result in
this BPP is an empty term. This is communicated to the Host and means that

b)  The Cartesian Product Generator:

* Receives data from the host computer into its array of shift regis-
ters through the micro-controller I/O Interface.

* Performes 128-bit logical AND on every two given products o
generate a new Cartesian Product to be processed by the SAPA.

¢) A local memory storage must be large enough to store the sum of pro-
ducts accummulated by iteratively multiplying the given terms.

Operational description:

At system initialization, the Host computer processes the given function, per-
forms the 1able reduction process, and sends 2r (2r = 4 for clarity here) terms
to each PMU. The CUs will allocate local memory storage to accomodate the
first three input terms in forms of linked-list structures. The fourth term will
be transferred to the CPG to be loaded into its array of registers, AR. The
data transmitted from the host computer must be in the format of 128-bit pro-
ducts. The terms are separated by an empty product.

Upon completion of receiving initial data from the host, the CU will
retrieve a product from the first term in its local memory, load it into register
R in the CPG, and de-allocate the memory storage preserved for this data
item. As the CPG completely multiply (ie. logical AND) the contents of R by
every item in AR, the CU fetches another data item (of the same term) into R
from the local memory, and the corresponding product node of this term’s
linked-list is removed from the local memory. As all possible products of the
first term (from local memory) and the second term (in AR) have been gen-
erated, the CU requests the Host or the other BPP to transmit a new term into
AR. The process continues with the elements of the second term

the entire GPF that includes ab (@ + ) has no solution, All BPP p
are cleared and a new problem can be started in the DFT.

Because the products with contradictions are removed from SPFs, the
sizes of the terms do not grow too quickly when both negated and positive
literals exist for the same variables. When all literals are positive, like in the
set covering problem, or when the GPF is an unate function (1), as in [15] for
prime implicant generation, the length of the terms grows. In such a case, if
we are not interested in all products from the final SPF, it can be assumed that
the term length size ints of each p are ded by the created
in it SPFs. Thanks to sorting, however, only the best (shortest) products are
accumulated in the sums and transmitted to the higher level BPPs. This
approach can mean losing the optimal cover or not generating all implicants
but this disadvantage is recompensated by the gain in speed and smaller
memories. In addition, the simulation results prove that, with the resonable
memory size ions in the BPP prc the op solution is gen-
erated for the covering problems in most cases. Since more processing is
executed in the processors at higher levels, and the SPFs are longer there, the
memory sizes on higher levels are larger and there is more parallelism in each
PMU to calculate the Cartesian Products.

In order to balance the processor loads and the communication among
them better, the result of each multiplication of two terms is either accumu-
lated in the internal memory and then muitiplied by the next term coming to
the second input, or it is transmitted through memory to the successor proces-
sor. The ALU in CPG is simple and is optimized for the operation of word
product and Sorting/Absorbing only.

3. PRODUCT MANAGEMENT UNIT (PMU).

Architectural description:
The overall intemnal structure of the PMU - as illustrated in Fig. 2 - includes:

a) A Micro-Controller Unit (CU).
b) A Cartesian Product Generator (CPG).
c) A local memory storage.
Functional description:
a) The Micro_Controller Unit:
* does I/O interfacing with the host computer and the associated

retrieved/, d sequentially from the local memory to R, to be bit-wise
ANDed to every element of the new term in AR. The results are sequentially

tputted to the panying SAPA. During this process, the PMU may
receive the output from the SAPA. The CU must allocate memory to store
these accummulated results in a new linked-list of product nodes in its local
memory. In one architecture variant (5] there are k registers R and k parts of
the Cartesian Product are calculated in paratlel.

4. SORTING AND ABSORBING PARALLEL ARCHITECTURE

Architectural and Functional description. The overall internal struc-
ture of the SAPA - as illustrated in Fig. 3 consists of:

a) A Product Absorption Unit (AU),

b) A Product Cost Evaluation Unit (PCEU),

¢)  AnEmpty Product Detection Unit (EPDU),
d) A Pipelined Parallel Quad-Tree Sorter (QTS).

A Product Absorption Unit (AU) detects and eliminates all dominating
products by applying the Absorption Law of Boolean Algebra (ab + a = a,
i.e. ab domii aand ab is d from the term). The AU consists of an
array of N Product Domination Detectors (PDD), and two arrays of 128-bit-
shift-registers, AR1 and AR2, of dimension N. The contents of the i-th regis-
ters in AR1 and AR2 (ie. AR1[i], and AR2(i)) are parallely loaded into the i-
th PDD (ie. PDDIi]) 1o be checked for the domination relation. Data in
ARI[i] can be copied into AR2[i]. Initially, all registers in AR and AR2 are
initialized to Empty Product with all bits equal 10 '0’. As the 128-bit-
products serially outputted from the PMU are fetched into the left end of
AR1, this array shifts all of its contents one location to the right and the data
in each register of AR1 and AR?2 are pairwise checked by the accompanying
PDD for the domination property. According to the results of the PDD execu-
tion, the contents of AR1 may be transfered into AR2 10 be evaluated before
entering the SAPA. The procedure executed by the AU is as follows.

For every register i-th in the range of (1 .. N-1) parallely do
Begin

step 1: AR1(i+1] = ARI1[i}

siep 2: Receive a 128-bit product into AR1(1]

step 3: Load AR1{i) and AR2(i] into PDDGi]

H ARZ1i] domi ]
SAPAs. BA:;Z:] dominates AR1[i) then

*  Dynamically all /de-all memory storages in the local AR2(i] := ARI1[i]
memory unit to accomodate new input data and remove all exist- AR1(i) := Empty Product (all bits = '0")
ing data items not further in use. End

®  Conuolls the Cartesian Product Generator operations, handling Else if AR1({i] dominates AR2(i] then
its input/output streams.
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Begin
AR1(i] := Empty Product
End
Else if NO DOMINATION DETECTED then
Begin
Skip, no operation
End
End.

As the AU processes all 128-bit-product of the current SPF received from the
PMU, it will parallely transfer the entire contents of the AR2 array into
another buffer. Each product in this buffer will be sequentially examined to
have its cost evaluated and be discarded if empty. During that interval, the
PMU is generating another SPF by forming the Cartesian product of another
terms (in its local memory) and a new term is inputted into the CPG. The
result products are serially outputted to the AR1 and AR2 arrays. The com-
plete process of the AU is performed while the QTS sorts the previous SPF.

A Product Cost Evaluation Unit (PCEU) computes the number of literals
existing in the given 128-bit product. The product cost is stored in the Cost-
field (the least 6 significant bits) of the input 128-bit storage.

An Empty Product Detection Unit (EPDU) detects the empty products, i.e.
those that include at least one empty field (ie. 00). The EPDU receives, and
examines the 128-bit products one by one, prior to entering them into the
two-level input buffer of the Quad-Tree-Sorter. All empty products are
removed.

A Pipelined Parallel Quad-Tree Sorter (QTS), as illustrated in Fig. 4, can be
classified as an 1/O Overlapped Parallel Input/Sequential Output sorting sys-
tem. It is created in the form of a multilevel, divergent, balanced quad-tree.
Given N as the number of data items to be sorted, the system consists of:

i) A two-level register array which buffers the input data items, ie. pro-
ducts from the PMUs, to be sorted. The product costs of the items in
different levels are pairwise c d, and swapped (if y) 1o
obtain the lower cost products at the level nearest to the processing ele-
ments at the leaf-level of the QTS.

ii) A TL level quad-tree which parallely receives input lists into the nodes
at the leaves and sequentiaily outputs every data item of the sorted lists
at the root node.

iii) TP Processing Elements (PE) which are located at the nodes of the tree.
As depicted in Fig. 4, each PE includes three comparators (C1, C2, and
C3), and a combinational control circuit. Data are fetched from four
PIPEs at the lower level (child nodes) of the tree into the cells of com-
parators C1 and C2. The Status signals (S1 and S2) generated by C1
and C2 are fed to the control circuit together with Enable (E) and For-
ward (F) input signals to determine whether the data item in the left or
right cells of the comparators C1 or C2 will be transferred to the left or
right cell of the third comparator C3. Signals S1 and S2 of the (j+1)-th
level are also fed back to the j-th level of the tree to control the entire
data flow in the QTS. At the same time, C3 performs its comparison
with the prefetched inputs and decides to push one of its cell contents
into its associative intermediate output PIPE. In this application, the
costs of any two products are compared and the product with smaller
cost is advanced toward the root of the quad-tree structure to be output-
ted first. If two products have the same cost, the one on the left has the
higher priority. Some basic design specifications are pointed out for the
sake of clarity:

* The comparator issues the Status signal, S[i], which is set or
reset, depending on the comparison of the comparator Ci. An'1’
if the left value is greated than the right one. '0’, otherwise.

* The contents in the left (or right) cell of a comparator is
transferred into the adjacent available register in a comparator or
a PIPE, if the Enable signal, E(i], is set to ’1’ (or "0’, respec-
tively).

* The left-most values cc d in the C1 cc s (of the PEs
on a tree level) are used for determining the status of the Forward
signal. F[i] is set to "0’ if the i-th level of the QTS is active, '1’,
otherwise.

iv) TQ FIFO queues are associated with each PE (PIPE). These First In
First Out queues, located at the output of each PE, have different length

based on their locations at different levels of the quad-tree, e.g. every
PIPE that exists at the j-th level of the tree must have (N/4’ -1) cells.
These PIPEs provide a2 means to accummulate and transfer partiaily
sorted lists of data from one to the next level in the tree hierarchy.

The formulas for computing the TL, TP, TQ, and TE parameters are: N
= Number of products in the unordered input list, TL = Number of tree levels
in the QTS, TP = Number of Processing Elements, TQ = Number of FIFO
queues required, TE = Number of execution steps required to complete the
sort, 17-51'1 = log,(N), -

TP= 34, TQ=TP, TE=N+TL-1 +z(l,+ 1).
i=0 i=i 4‘

Operational description. The unsorted data lists generated by the PMU are
parallely fetched into the nodes at the leaves of the tree through the m level
input buffer. Every four adjacent 128-bit products in the input list are loaded
in the left and right cells of the comparators C1 and C2 of a PE. At every exe-
cution step, all the comparators will compare their product costs and select
the one which has the smaller cost, to be passed to the comparators of the
next level, or to the pipeline of products in the associated PIPE. As the data
flow through a level of the tree, they are partially sorted and stored as parti-
tioned sorted lists in the intermediate ievel PIPEs. The products with smallest
costs will traverse toward the root of the tree first, in a sorted order. They will
be serially transferred to the indicated PMU to be further processed, or passed
back to the Host computer.

5. CONCLUSION AND EXTENSIONS TO GPFS

The architecture presented above as well as several of its variants and
derivatives were simulated using programs on an IBM PC AT computer (5,
7). The correctness of the architecture has been verified. It was also compared
to other architectures and the issues of communication/load balancing,
time/area trade-offs, memories and word sizes were analyzed.

The above architecture can also be used for very fast sorting,
sorting/absorbing or absorbing of Boolean functions or other vectors of binary
vectors which find applications to many problems. Replacing parailel opera-
tions on words to serial decreases essentially the cost of the architecture with
only linear decrease of its speed. The control becomes somewhat more com-
plicated. We have not discussed, therefore, the bit serial variant here. It is,
however, better suited for VLSI implementation.

The extension of the generality of this architecture can be done by
extending the number of bit-by-bit operations in ALUs of CPGs, from bit-
by-bit AND to include all 2-variable Boolean functions (which has applica-
tions to other cube calculus operations [22, 1]. For instance, the PMU can
easily be extended 1o solve the multiplication of type o [Tx" - To [x'
where Yo denotes EXOR function {4, 5]. Other extensions are obtained by
checking other relations on single arg; and pairs in the SAPA. Only the
detection of contradiction is executed above on single elements, and the rela-
tions of >, bit-by-bit inclusion and comparison of number of ones are checked
on two arguments. All problems discussed above can also easily be extended
to logic with multiple-valued inputs [17). In such a case, the positional nota-
tion is used for products. Assuming 3 values and 3 variables, (a, b, c), we
have a%'2. %% ¢! =[100- 011 - 111] - (101 - 110 - 010}
= (100 - 010 - 010] =a'c". A triple of zeros would mean a contradiction.
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