
SYSTOLIC ARCHITECTURE FOR SOLVING NP-HARD
COMBINATORIAL PROBLEMS OF LOGIC DESIGN AND

RELATED AREAS

Phuong Minh Ho, Marek A. Perkowski.

Department of Electrical Engineering, Pordand State University
P.O. Box 751, Portland. OR 97207, tel. (503) 464-3806

ABSTRACT

This paper presents a new approach to solving various
NP-hard problems in logic synthesis, logic programming. gmph
theory, and related areas. A problem to be solved is reduced to
solving one or several generic combinatorial problems, called
Generalized Propositional Formula (GPFJ minimization. The
special massively parallel complter architecture for the GPF
minimization is discussed. The architecture. is canposed of a
Host computer and a data-flow tree (DFT) of 7
(Boolean Product Prccessor - BPP). Each BPP consists of a Pro-
duct Management Unit (PMV and a S h g and Absorbing
Architecture (SAPA).

1. INTRODUCTION
It is not well known that logic computers, i.e. devices to aid in verifying

sylogisms and solving other logic problems are older than the digital arith-
metic computers and date back to the Middle Age "computers" by Lullus. A
variety of such computers were built in the XIX and XX centuries before Von
Neumann [12]. The first, to our knowledge, special cornputex to help in logic
synthesis was proposed by Antonin Svoboda in Czechoslovalria and then in
the United States [20,21]. Svoboda's group was actively working on them in
the early 70's [8. 19. 31. Some ideas on such computers are also in [IO]. We
did not find other references on this subject until 1985 (18, 111, but there was
related research on the aee-searching computers [23] and consistant labeling
computers [9]. Since the hardware accelerators for simulation, design rule
checking, routing, placement, and other layout tasks are now available or pro-
posed, we believe that hardware accelerators for logic design will also be
incorporated into future CAE workstations for VLSI design because there is
an obvious and growing need for them. Since 1984. we have been designing,
analyzing, and simulating various inchitecfures related to logic synthesis [11.
5.41. We also worL on the implementation of the respective algorithms on
parallel computers: on PSC hypercube from Intel [13, 141, Sequent Balance
1151, and XTM from Cogent.

As it is shown in [10-14]. many problems of logic. system, high-level
and physical VLSI design, as well as in gmph theory, logic programming and
pattern recognition, can be reduced to one of the following two problems.
Given is a Boolean function of the form:

T, is the set of literals in the term t. This means that thefunction is a product
of sums of products of literals. The term (or sum) is a sum of products of
literals. We will use this kind of function in this paper since it is more gen-
eral than the decision functions from the literature (Roduct of Sums Form -
PSF of Penick [I61 or satisfiabilify formula [2]) and it is also more suitable
for our method of data coding in systolic flows. Because of the important d e
of this function in many problems and since no name has been assigned to it,
we propose to call it a Generalized Propositional Formula (GPF).

The GPF also finds applications in Peb net analysis, expert systems,
pseudo-Boolean programming, data base consistency, CAD, o@ms
restarch, graph theory, m h t he~ry , and criptography. Many Other nduc-
tions to the problems formulated above, as well as new problems of this class,
can be found in [2,10-14]. [6] is a continuous source of intemthg problems.
Needless to say, every NP-hard combhatorial problem can be theoreti-
cally reduced to GPF minimization, and such reductions for many prob-
lems are reamnabk, also from the practical point of view. The algorithms
to solve the above problems can basically be divided into three categories:
tree searching algorithms, array algorirhms. and uamformarional algo-
rithm. In this paper, it is assumed that the first two types are executed by the
Host and the last one by the architechlrc discussed here.

Basically, we can distinguish two rypcs of practical GPF problems. The
problems related to Boolean minimization, for instance, require a relatively
small (5 64) number of variables. Then, 128 literals (bits) are sufficient to
represent a product of a sum, assuming, like in computer realizations of cube
calculus [22], two bits of the word for a variable. Such an approach is dis-
cussed in this paper, where we propose a GPF Solver (GPFS) architecture for
the two above and other simiiiar problems. When reducing other problems of
this class. however, like, for instance, in the Petxick function minimization
approixh to set covering for Boolean function minimintion [16], the number
of the variables (rows of the covering table) can be in the thousands. We
have developed another architecture 19, similar to the one presented here,
that can effectively deal with such problems. 'Ihe computer word is used in it
for a literal, not for a product of literals. as assumed here.

2. THE GPFS ARCHITECTURE
The product of literals is represented as a computer word, two bits per

variable. To focus our considerations, we assume 61 variables plus 6 bits
(LSB) for product cost. Then, 128 bits in a word. The encoding is as fol-
lows: x - 10, Z - 01, don't care - 11, contradiction - 00. In this notation, the
product of two products of literals simply c o m n d s to a bit-by-bit product
of the respective words. For instance, assuming 5 variables, (a b, c, d, e), the
product is .6cd = 111 10 11 11 101 , 111 10 1001 111
= [11 10 10 01 IO] = bcde. When the opposite literals are multiplied. the
pair 00 is crea-ted from the bit-by-bit product and is detected in the next
stages: ab.& =[10101111111~[1001111111) =[1000111111]
= comadiction.

The GPFS architecture is shown in Fig. 1. It consists of the Host and
the, tightly coupled with it, convergent Data Flow Tree @FT) of Boolean
Roduct Pmcesscrs (BPP). Each BPP is composed of the Product Manage-
ment Unit (F'MU) and the SOning and Absorbing Architecture (SAPA). The
number of levels in DFT can be arbitmy, and the algorithms will not change
with the number of levels. Each PMU subsystem contains individual conml
unit and local memory. They are operated asynchronously, and may coordi-
nate their pcesses by communicating with each other directly or through the
host computer by means of software semaphore/arbiter.

The Hosr does the partitioning of the larger problem to fit it to the con-
straints of the DFT, such as the length of the word (number of literals), the
sizes of memories in BPf3 (the numbers of the terms and products), and 0th-
en. The Dartitionina can be done during the tree searching. In such a case.

Problem I (Satiqiabilify): Answer Yes if there exist a product of literals the variabk are sys&aticaUy reduced &I the formulas fr;rm the leafs of the
me, with Itss than 61 variables are uansmitted to the DFT. In mother vari-

Problem 2 (Optimization); Find a product with a minimum number of ant. @timing is &ne with respect to smaller products of terms from the
we" known algorithms can be a*pted for these m-

that satisfies all terms or No if such a product Qcs not exist.

literals that satisfies all of the terms or prove that such a product does not Gm formula.
exist. Or, find the sum of all poducts (SPF) that satisfy the GPF. tionings and new algorithms have been written [l , 11,121.

1170
ISCAS '89 CH2692-2/89/0000-1170 $1.00 0 1989 IEEE

The host also loads the memories of the leaf-processors of the DFT
(level 1 BPPs #I and #2 in Fig. l), whenever it gets the "load me" signal
from the respective processor. It also receives the partial resultant SPF
expression from the m t of the DFT (level 2 BPP #3 in Fig. 1). SPFs are mul-
tiplied and locally simplfied as they traverse from the Host to the m t of the
DFT. From the external point of view, the whole process is analogous to the
parallel realization of the naive Boolean multiplication/shplification algo-
rithm for a product of terms. The most general and important aspect of this
architecture is the general formulation of the problem as asynchronous data
flow reduction architecture where both the Host and the D m . as well as each
BPP in the DFT, take some part of the GPF. being again a smaller GPF, mul-
tiply it, and replace it with a corresponding SPF form which becomes a part
of a new GPF for the next phase of multiplition. AU of these multiplica-
tions and replacements are done asynduonously, in parallel. and in a pipe-
lined mode inside the Dm. Each processor in the tree m e s for Boolean
multiplication of the two input sireams of data (canesian Product Ge-
CFG). Each such siream of data represents a Boolean SPF from the pamal
multiplications. Additionally, thne is massive padlelism inside each BPP
processor, both for Carusian Product and Soning/Absorbing as well.

Each BPP pmcessa simplies the intermediate SPF mms, created by
the Cartesian Product, by removing the poducts with conhadiction (called
emply products) and the repated products, and sorting them (SAPA).
Wheneva, after the simplification, the tenn is empty, this means that the total
GPF has no solution. For instance, if at anytime, the kft and right SPF teams
given to a BPP are ab and (ii + b), respectively, the multiplication result in
this BPP is an empty term. This is communicated to the Host and means that
the entire GPF that includes a b (E + b) has no solution. AU BPP processors
are cleared and a new problem can be started in the DFT.

Because the products with contradictions a?e m o v e d from SPFs, the
sizes of the tenns do not grow too quickly when both negated and positive
literals exist for the same variables. When all literals am positive, like in the
set cowing problem, M when the GPF is an unate function [I], as in [IS] for
prime implicant genemaon, the length of the tenns grows. In such a case, if
we are not interested in all products from the final SPF, it can be assumed that
the term length size constraints of each pmcasor arc exceeded by the crcatcd
in it SPFs. Thanks to sorting, however, only the best (shortest) products an:
accumulated in the sums and msmitted to the higher level BPR. lXis
approach can mean losing the Optimal cover or not generating all implicants
but this disadvantage is recompensated by the &n in speed and smaller
memories. In addition, the simulation results prove that, with the resonable
memory size reductions in the BPP processors, the optimum solution is gen-
erated for the covering problems in most cases. Since mace processing is
executed in the processors at higher levels, and the SPFs are longer there, the
memory sizes on higher levels are larger and there is more parallelism in each
PMU to calculate the Cartesian Products.

In cader to balance the processor W a n d the communication among
them better. the result of each multiplication of two terms is either accumu-
lated in the internal memory and then multiplied by the next tcrm coming to
the second input, or it is transmitted through memory to the SUCC~SSOT proces-
sor. The ALU in CPG is simpk and is optimized for the opexaoon of word
product and Sorting/Absorbiing only.

3. PRODUCT MANAGEMENT UNIT (PMU).
Architectural description:

The overall internal structure of the PMU - as illustrated in Fig. 2 - includes:
a) A MicroConmller Unit (cv).
b)
c) A local memory storage.

a) The. Micro-Conmller Unit
does YO interfacing with the host computer and the associated
SAPAS.
Dynamically allocatedde-abcates memory storages in the Local
memory unit to accomodatc new input data and remove all exist-
ing data items not further in use.
Controlls the Canesian Product Genmtor operations, handling
its input/output streams.

A Cartesian Product Generator (CPG).

Functional description:

*

*

b) The. Cartesian Product Generatoc
* Receives data from the host computer into its array of shift ngis-

ters through the micro-conuoller I/O Interface.
* Performes 128-bit logical AND on every two given products to

generate a new Canesian Product to be processed by the SAPA.
A local memory storage must be large enough to store the sum of pro-
ducts accummulated by iteratively multiplying the given terms.
Operational description:

c)

At system initialization, the Host computer processes the given function, per-
forms the table reduction process, and sends 2r (2r = 4 for clarity here) terms
to each PMU. The CUs will allocate local memory stomge to accomodate the
h t three input terms in forms of linked-list structures. The fourth term will
be m f e r r e d to the (3% to be loaded into its anay of registers, AR. The
data nansmiaed from the host computer must be in the format of 128-bit pro-
ducts. The terms are separated by an empty product.

Upon completion of receiving initial data from the host, the CU will
reuievea product from the first-tenn in its local memory, load it into register
R in the CPG, and de-allocate the memory storage preserved for this data
item. As the 13% completely multiply (ie. logical AND) the contents of R by
every item in AR, mC CUfetches anotherdam itan (of the same term) into R
from thc local memory, and the comsponding product node of this term's
linked-list is removed from the local meanory. As all possible products of the
first term (bm local memay) and the second tam (in AR) have been gen-
erated, the CU requests the Host or the other BPP to transmit a new term into
AR. The process continues with the elements of the second term
rehievWremoved sequentially from the local memory to R, to be bit-wise
ANDed to every element of the new term in AR. The results are sequentially
wtpuaed to the accompanying SAPA. During this process, the PMU may
receive the output from the SAPA. The CU must allocate memory to store
these accummulated results in a new linked-list of product nodes in its local
memory. In one architectun variant [5] there are k registers R and k parts of
thcCancsianRoductare calculated in paralld.

4. SORTING AND ABSORBING PARALLEL ARCHITECTURE

tllre of the SAPA - as illusbated in Fig. 3 consists oE
a) A Product Absorptwn Unit (AUJ.
b) A Product Cost Evaluation Unit (PCEU),
c) An Empry Proakt Detection Unit (EPDUJ.
d) A Pipelined Parallel Quad-Tree Sorter (QTSJ.

A Product Absorption Unit (AUJ detects and eliminates all dominating
products by applying the Absorplon Law of Boolean Algebra (ab + a = a.
i.e. ab dominares 0 and ab is removed from the tenn). The AU consists of an
array of N Product Domination Detectors (PDD). and two arrays of 128-bit-
shift-registers, ARl and AR2. OC dimension N. The contents of the i-th regis-
ters in AR1 and AR2 (ie. ARl[il. and AR2[i]) are parallely loaded into the i-
th PDD (ie. PDD[iI) to be checked for the domination relation. Data in
ARUiI c8n be Copied into M i l . Initially, all registers in AR1 and AR2 are
initialized to Empty Ekduct with all bits qual to '0'. As the 128-bit-
products serially outputted from the PMU are fetched into the left end of
ARl, this array shifts all of its contenrs one location to the right and the data
in each register of ARl and AR2 are painvise checked by the accompanying
PDD for the domination m a y . According to the results of the PDD execu-
tion, the contents of ARl may be transfered into AR2 to be evaluated before
entering the SAPA. The procedure executed by the AU is as follows.
Facveyrcgiwcri-chinthcrngcol(1 ..N-l)pnllelydo
Begin
step 1: ARl[i+ll= ARl[i]
ncp2:Rcceivei 12%bitpoduamloARl[l]
step 3: Lad ARlIil md M i l mu, PDD(i1
If ARZIil dominW ARlIi] lhen

Architectural and Functional &scription. The overall inwnal s m -

&ein
ARZIi] := ARI [il
ARlIi] s h p r y Roba (rll biu = '0')
End
Elre ifARlIi1 d0mina.r~ W [i] h n

1171

Beein
ARI[~] := Empy Product

End
&e if NO DOMINATION DETECTED lhen

&Bm
Skip, no apcnum
End

End.

As the AU processes all 128-bit-product of the current SPF received from the
PMU, it will parallely transfer the entire contents of the AR2 array into
another buffer. Each product in this buffer will be sequentially examined to
have its cost evaluated and be discarded if empty. During that interval, the
PMU is generating another SPF by forming the Cartesian product of another
terms (in its local memory) and a new term is inputted into the CPG. The
result products are serially outputted to the AR1 and AR2 arrays. The com-
plete process of the AU is performed while the QTS sorts the previous SPF.
A Producr Cosf Evaluation Unir (PCEU) computes the number of literals
existing in the given 128-bit product. The m u c t COM is stored in the Cost-
field (the least 6 signscant bits) of the input 128-bit storage.
An Empry Product Defection Unir (EPDU) detects the empty products, i.e.
those that include at least one empty field (ie. 00). The EPDU receives, and
examines the 128-bit products one by one. prior to entering them into the
two-level input buffer of the Quad-Tree-Soner. All empty products are
removed.
A Pipelined Parallel Quad-Tree Sorter (QTS), as illuswted in Fig. 4, can be
classified as an ID Overlapped Parallel InpuL/sequential Output sorting sys-
tem. It is created in the form of a multilevel, divergent, balanced quad-tree.
Given N as the number of data items to be sorted, the system consists of:
i) A two-level register array which buffers the input data items, ie. pro-

ducts from the PMUs, to be sorted. The product costs of the items in
different levels are painvise comparul. and swapped (if necessary) to
obtain the lower cost producu at the level nearest to the processing ele-
ments at the leaf-level of the QTS.
A TI. level quad-tree which parallely receives input lists into the nodes
at the leaves and sequentially outputs every data item of the SORed lists
at the root node.
TP Rocessing Elements (PE) which are located at the nodes of the tree.
As depicted in Fig. 4, each PE includes chne comparators (Cl. C2, and
C3). and a combinational control circuit. Data are fetched from four
PIPES at the lower level (child nodes) of the tree into the cells of com-
parators C1 and C2. The Status signals (S1 and S2) generated by C1
and C2 are fed to the control circuit together with Enable (E) and For-
ward 0 input signals to determine whether the data item in the left or
right cells of the comparators C1 or C2 will be transferred to the left or
right cell of the third comparator C3. Signals S1 and S2 of the (j+l)-th
level are also fed back to the j-th level of the tree to mml the entire
data flow in the QTS. At the same time, C3 performs its cornparison
with the prefetched inputs and decides to push one of its cell contents
into its associative intermediate output PIPE. In this application, the
costs of any two products are compared and the product with smaller
cost is advanced toward the mot of the quad-tree structure to be output-
ted first. If WO products have the same cost, the one on the left has the
higher priority. Some basic design specifications are pointed out for the
sake of clarity:
* The comparator issues the Status signal, S[il, which is set or

reset, depending on the comparison of the comparator Ci. An '1'
if the left value is greated than the right one. '0'. otherwise.
The contents in the left (or right) cell of a mpara tc r is
t r a n s f e d into the adjacent available register in a compllrator CR
a PIPE, if the Enable signal, E[i], is set to '1' (CR '0'. nspec-
tively).
The left-most values contained in the C1 comparators (of the PES
on a tree level) are used for determining the status of the Forward
signal. F[i] is set to '0' if the i-th level of the QTS is active, '1'.
OthenuiSe.

TQ FIFO queues are associated with each PE PIPE). These First In
Firsr Out queues, located at the output of each PE, have different length

ii)

iii)

*

*

iv)

based on their locations at different levels of the quad-tree. .e.g. every
PIPE that exists at the j-th level of the tree must have (N/4' -1) ceh.
These PIPES provide a means to accummulatc and transfer p a d d y
sorted lists of data from one to the next level in the tree hierarchy.
The formulas for computing the TL, TP, TQ, and TE parameters are: N

= Number of products in the unordered input list, TL = Number of tree levels
in the QTS, TP = Number of Processing Elements, TQ = Number of FIFO
queues required, TE = Number of execution steps required to complete the
sort, n%l = IO&@".

n N

id ,=I 4'
TP= 2 4 ' . TQ=TP, T E = N + T L - l + E (- + l) .

Operational description. The unsorted data lists generated by the PMU are.
parallely fetched into the nodes at the leaves of the tree through the m level
input buffer. Every four adjacent 128-bit products in the input list are loaded
in the left and right cells of the comparators C1 and CZ of a PE. At every exe-
cution step, all the c o m p m r s will compare their product costs and select
the one which has the smaller cost, to be passed to the comparators of the
next level, OT to the pipeline of products in the associated PIPE. As the data
flow through a level of the tree, they are paniaUy sorted and stored as parti-
tioned sorted lis in the intermediate. level PIPES. The products with smallest
costs will t r a v ~ s e toward the root of the tree Erst, in a SORed order. They will
be serially nansferred to the indicated PMU to be further procmd or passed
back to the Host computer.

5. CONCLUSION AND EXTENSIONS TO GPFS
The architecture presented above as well as several of its variants and

derivatives were simulated using programs on an IBM PC AT computer [5.
71. The correctness of the architecture. has been verified. It was also compared
to other architectures and the issues of communicatiowload balancing,
timdarea uadesffs, memories and word sizes were analyzed.

The above architecture can also be used for very fast soning,
somng/absorbing or absorbing of Boolean functions or other vectors of binary
vectors which find applications to many problems. Replacing parallel opera-
tions on words to said decreases essentially the cost of the architecture with
only linear deaease of its sped. The conml becomes somewhat more com-
plicated. We have not discussed, therefore, the bit serial variant here. It is,
however, b e ~ a suited fcr VLSI implementation.

The extension of the generality of this inchitecture can be done by
extending the number of bit-by-bit operations in ALUs of CPGs, from bit-
by-bit AND to include all 2-variable Boolean functions (which has applica-
tions to other cube calculus operations [22, 11. For instance, the PMU
easily be extended to solve the multiplication of type CO n x' . Eo n x'
where Eo denotes EXOR function 14, 51. Other extensions are obtained by
checking other relations on single arguments and pairs in the S U A . Only the
detection of conuadiction is executed above on single elements, and the rela-
tions of >, bit-by-bit inclusion and comparison of numbex of ones are checked
on two arguments. AU problems discussed above can also easily be extended
to logic with multiple-valued inputs [171. In such a cast, the positional nota-
tion is used for products. Assuming 3 values and 3 variables, (a, b. c), we
have aobl'.aozbo*lcl =[100-011-111]~[101-110-010]
= [100 - 010 - 0101 = aob IC I . A triple of zeros would mean a conIradiction.

6. LITERATURE
[I] Bnytas RK.. Huhtcl. G.D.. McMulkn. C.T.. Smgiwumi-Vinmtcllii A L . "Logic Minim- - Algciithmi for VLSI Sjnthuu". Kluwer Aedpnic Publishen. 1984. 121 G m y . MR.
Jdnm D.S.. "Gmpwen and h W i . A Cui& 10 the 'Ihsory of NPCanplctcners"'.
W.H. nd Canpay. SUI Fnacirco 1979. [31 Gencc. G.B. a .1 "TOPI-A Spccul-
Rupore compltcr for B m h A ~ i y s u and Syncharir". IEEE TC, Vol. C-20, pp 837-842. Aug.

1971. [41 Hcllircll. M.. Pekowslri. MA., "GAL-bwd H a d m Asalcrua 10 Fhd Exact
Mmimm SohUau for Mixed-PoLrity Reed Muller Forms". will h rubminod.
1989. [SI Ho. P.M., "Murivdy F'uaUel Rmrlar forsdvin8 Canbimiaml .nd snring Pmb-
I-". MSc. 'llesu, ponlrd Sure Univenny. PnrLad. OR. 1989. [61 Johnran. D.. TIC Np-

canplasul 'Zohunm An (kgoiag Cui&". Jwrrul of Abaithrm, Acdcmic Ru. uch hmr
[7 1 L e . H . V D . , ~ M . A . . T b i r p a k d m ~ 1 . [8lM.rin.M.A.."lnvatig*ionoftbFidd
of Roblcmi fa Ihe Bodua A d y a " . RLD. D i a d m . Univ. of Calif&% Lor Aq&.
1971. [91 M c C 4 J.T., Trau, J.G.. Cny, F.G.. Hualick. R.T., M-. W.M.. "PmM
CanpM A r d k u a u ~ u ud Roblan Solving Smgiu fa tk G m s u t s n L.bcliag Robhn".
IBEE TC. VOL C-34. No. 1 I. NOV. 1985. [IO] Rrlrmrki. MA.. "Gmcnl MetIda of Sdvinp

1172

... I

,
pj&j?Z,!

I S P A 2

I.. _. - --

'. ---7

-
From
SAPA

ARI

Quad- QTS Tree Sorter T

Contra/
Unit

I
L oca/ Memury 1

PMU

CaUtOl SlgllnIs
10 PE I .. 4

t

To
SAPA

1173

Figure 4

FIFO PIPELINE

kowski. MA.. Wu, P.. and K. Pirkl, lbir pmccedingr. 1161 Perridr. SR. "On thc Minimimion of
Boden Fuuuioni". Roe. Symp. m Switch. Th.. IFIP. Ma. June 1959. 110 S.W. T.. "Iop.1
V.ri.ble A u i i l and Ourp. ph.lc Oprimimim of PLA". IEEE TC. Vd. C-33. pp. 819-894.
On 1984. 1181 Suao. T. "HART A H u d m f a Logic Minimiutioa and Vnifiarion". Roe.
ICCD'85. OCr 7-10. 1985. I191 Shmakc. D.. "T~K MO5 Bmlun Adyzcr". MSc. Thesis,
UCLA. 1971. I201 Svobod.. A., "Boolun Andyzef, Momuuon R a a r i n g 68. Amnad.m.
N d - H ~ l l m d 1969. I211 Svobod. A.. " h d d Rmrshg in Bodun Alpcb.". IEEETC. V d
C-U. No. 9. pp. 848-851. S q t 1973. I221 thg . ME., Bowca. B.A.. "A U n l d l b x y of the
Algebnic Topolcgiul Muhodr for thc Synchcaia of Switching Syrms". IEEE TC. pp 255-267,
Mnch 1974. 1231 IWah 841 Wah. B.W.. Ma. Y.W.E., " M A " - A Multicanplur A r c h i m
for Solving Gmbmuorid Exuunum-Surch Roblrms". IEEE TC. VoL C-33. NO. 5. pp. 377 -
390. May 1984.

- ~~~~~

rurtiicr imvrmarivn can ~e mraineu morn ut-. w. hennern JenKins. -~
(217) 333-4789

