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ABSTRACT 
This paper presents a short description of the high level and logic synthesis 
stages in the digital design automation system DIADES. High level design, 
namely data path synthesis and control unit synthesis start han a peralkl 
program-graph, the form of descriplon that includes both the control-flow 
and the data-flow graph. While the data path is allocated and scheduled, the 
control unit is designed to be composed of either a microprogrammed units or 
Finite State Machines. The FSMs are minimized in two dimensions (states 
and inputs), assigned and realized in logic. Several logic synthesis pro- 
cedures, respective to various design styles and methodologies, can be used to 
design combinational pans of state machines, microprogrammed units and 
data path logic. 

1. INTRODUCTION 
The VLSI technology with which modan digital systems are designed 

has advanced at such a tremendous pace within the past few years that the 
engineer is being outsuipped of his ability to design complex state-of-the-art 
systems. Initially, various CAD tools (circuit analysis. logic minimization, 
IayouS etc.) were made available to aid the designa in concurring such 
increasingly more difficult design tasks. Technology has now reached a pla- 
teau, however, that calls for the realization of design automation systems in 
which high-level synthesis is integrated with logic synthesis. 

The main objective of this paper is to present one way in which such 
integration can be achieved. We would also like to present the new, exciting 
practical opportm'ties for CAD given by theoretical research in some adja- 
cent research areas (microprogramming, scheduling, Reed Muller Forms, 
spectral methods). The DIADES design automation system includes four 
design stages: system level design, high-level design. logic synthesis andphy- 
sical design. The first one, as well as the entire system and the example of its 
application are discussed in the companion paper [221. In this paper, we will. 
therefore, concentrate only on the high-level and logic synthesis in DIADES. 
The High-Level Synthesis in DIADES includes two stages: Data Path Syn- 
thesis and Control Unit Design. 

2. DATA PATH SYNTHESIS 
The DIADES data path generam, IMPLEM, assumes that there an no 

resource restrictions. The descriptive program graph (pgraph) in language 
GRAPH88 is, therefore, mapped to a hardware structure in the abstract netlist 
language STRUm, exactly as it is Written in ADL language [12-14]. or BS it 
results from the previous high-level pgraph transformations [lq. It also 
does not try to increase the concurrency of operations. The designer, how- 
ever, can do this manually by modifying his description. 

The new version of DIADES includes a sckduling tool. After the descrip- 
tive format has been convaed to pgraph format, the operations in the graph 
are scheduled for execution in specific conad steps. The scheduling tool 
mes to make use of rtsou~ces and increase the concumncy of the pgraph. 
The pgraph is analyzed and the or& of execution of operations in it is dem- 
mined. Those operations that can be executed at thc same time are identified. 
If the r e s o m s  are constrained them the maximum concurrency is not possi- 
ble and some trade-offs are investigated. The Scheduler looks for the best 
sequence of operations, resulting in the sharest ovedl c m 1  program. 

The DIADES Scheduler rakes a global approach. A program is divided 
into blocks of stmight-line code separated by conad points. The conml 

points include if-thenelse and while statements. While the local scheduling 
looks only at single blocks of code (so called linear program ), the global 
scheduler can move operations from one block to other blocks. The DIADES 
Scheduler first consmcts an operation/data dependency graph with the help 
of data synchronization statements contained in the high-level program. Then 
a classical stare minimizarwn technque [21, 25. 161 is used to determine the 
M a x i m  Compatible Groups of Operarions. The hemistic rules are applied 
to limit the number of compatible p u p s  as well as their size. The next step 
uses more heuristic rules to develop a tree of possible schedules. The tree is 
then searched using classical tree searching methods to determine the opimal 
schedule. We are currently investigating the heuristic NI- to determine 
which of them give the best results. The output of the Scheduler, as the out- 
put of other High-Level Transformers. is still in the pgraph notarion. AU 
nodes of the p-graph are now assigned to the specific control steps that satisfy 
some constraints. 

The current Allmaror of DIADES does not do intelligent allocation. It 
rather allocates variables to regmen and detects only few paners of other 
units such as adders. When necessary, multiplexers are used to implement the 
communication channels between the units. The improved Auouuor version 
includes a sophisticated allocation ability. After scheduling. DIADES assigns 
variables to registers and operations to specific functional units. A lifetime 
analysis is done on the pgraph variables. The Variable Partitioner program 
selects the best mapping of variables to registers. Another partitioning algo- 
rithm, Operation Partitioner, maps the operations to the functional units. The 
other objective is to minimize the cost of multiplexers that connect register 
outputs to functional unit inputs. 

After allocation, the design process splits into two separate processes. The 
data path unit is generated in program IMPLEM and then in MGEN. 
Specification of detailed connections between the elements is created. The 
output of IMF'LEM is in STRUCT. This format is based on the pgraph. The 
functional units, registers, and inmt/output ports are repmented by nodes, 
while the connections are represented by arrows. The STRUCT description is 
detalized by the p r o w  MGEN, which means that abstrilct descriptions of 
stnrtural blocks are replaced with lower level descriptions of blocks and their 
connections. The wtput format is in netlist format called M-language (TM 
SCS Systems). For instance, the STRUCT description specifies the "abstract 
block" BLOCK1 - COUivTER modulo 5 with loading input A. and clock CL. 
The equivalent M-language description will specify all flip-flops and NAM) 
gates of this counter and how they an connected, with an accuracy to each 
wire and gatc input. 

3. CONTROL UNLT SYNTHESIS 
Two design styles are used in DIADES to design the control unit the 

Microprogmnmed Units [32, 81. and the Finite Statc Machines (FSMs) [a, 
25, 4, 5, 11, 16, 261. Both of them are designed starting from @arallel or 
serial) program Braphs in the language GRAPH88 [al. the main intemal data 
representation language in DIADES. 

T k  Microprogrammd Unit Synthesizer. MICUS. generates first SIMC 
(Symbolic Intermediate MicroCode) language description for retargetability. 
Microinsauction compaction and optimization are necessary for efficient 
microcode. To translate SIMC hyther into object miaocode a micmasem- 
bler is used. Ultimately. a .'IT formaaed truth table of Control Memory for 
logic minimization is generated. Until now, a simple scheme to genaate 
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single-way branching vertical microcode was implemented, but parallel 
micmprogrammed/nanopmgrammed scheme @aha) with multi-way branch- 
ing, loop counters, stacks and address arithmetic is under implementation. 

The block diagram of the FSM Synthesizer is presented on Fig. 1. The p 
graph includes the control-flow graph (cf-graph) and some data path 
specification. The cf-graph can either be mapped to a network of FSMs or 
microprogrammed units, or converted to a single FSM or microprogrammed 
unit. 

High Lmel Program Graph TrMsfonnotwns can be optionally executed 
(sec [IS, 32. 241). They sfme to optimize the description, investigate 
area/speed tradeoffs, and also aid in don’t care. generation from invariants 
[23]. The state machines generated in the well-known design automation sys- 
tems are either completely specified or ( d y )  have few don’t cares. They 
do not have all of the don’t cares of transitions and outputs that could be gen- 
erated from the knowledge of the system being designed. We inaoduced, 
therefore. a method of generating don’t cares in FSMs from their high level 
specifications. The method generates many more don’t cares than other 
methods using umsuaints that exist on the values of predicate signals and 
come to the control unit from the data path. For some design examples, OUT 
invariant analysis methad evaluates the invorionu and finds combinations of 

unit) that have consuained values for s~llc of the umtrol unit states. Such 
invariants are then used to replace the corresponding next-state hamsitions in 
the control unit’s state table with the don’t care transitions. This is beneficial 
because a table composed of a large number of don’t m facilitates state 
minimization, state assignment, and logic minimization [26,6]. 

Conversion/decompodtion. One of aprnoaches to design the control unit is 
a conversion of patallel cf-graphs to equivalent sequential Braphs and next 
state machines, assuming their synchronous interpretation [61. We use an 
algorithm that reduces the number of internal states gawated. This problem 
is not automatically solved in the existing systems as well. The conversion of 
a parallel cf-graph to a sequential cf-graph can be used for the vaification of 
the former [6.26]. Some other methods for the verification of such programs 
are in [24]. In the general case, however, the ADL programmer is responsible 
for avoiding all deadlocks, variable conflicts, and other undesired phenomena 
characteristic to parallel programs. Various methods can be used to realize 
parallel cf-graphs as sequential circuits. The conventional FSM methods, 
however, such as minimization. assignment, and realization of excitation 
functions, can only be applied when the parallel cf-graph has either been con- 
verted to an equivalent sequential cf-graph or has been decomposed to a 
sequential cf-graph. The cf-graphs are lhcn converted to FSMs and FSM- 
based design ptucduw are followed. Rogram FGEN generates nmdispint 
formats of FSMS: .KISS transitions format of the well-known Kiss program, 
.STAB format of state tables. and .LISS serial cf-graph format for compatibil- 
ity with sane control unit tools unda design. All those formats are nondis- 
joint, which means that cubes can be overlapping. Convasion from nondis- 
joint to disjoint fromat is done by program FDISC. 

Two-dim&~l state minimization is done by pvgram FMINI. Since we 
can describe or gcnaate an FSM with many don’t cares. we are able to inves- 
tigate m e  new design methodologies that have not yet been proposed The 
minimization of the number of intemal states of an incompletely specified 
FSM, for example. is a well known tspk but it has not yet been mupomed 
in the commensive design automation systems. We have f d  it to be use- 

predicate values (predicates are the signals from the data path to the control 

ful in some applications. Moreover, this appmch can be extended for the 
minimization of the number of input symbols [25]. Input minimization and 
state minimization are iterated until no further state joining is possible. We 
implemented two efficient programs for state minimization. One of them IS 
used for complwly specified machines and uses the well known algorithm of 
UllmanlHOpcroft. The other one, for incompletely specified machines, solves 
the covexing/closure problem [16, 251. Such a problem is the generalization 
of the well-known covering p b l e m .  The method of two-dimesional minimi- 
zation of FSM, applied in our system generates an FSM with the combina- 
tional input encoder [25l. As any other combinational logic, this encoder is 
minimized with any of the existing in DIADES logic synthesizers. 

MealylMoore TrMsformnrions. Sinw we want the user to have some deci- 
sions regarding trade-offs between spced and area, as well as shape of the 
FSMs, we give him additional tools to transform the machincs (FTRAN). 
Each Mealy machine can be convdted to an equivalent Moore machine. 
Similarly, each Moon machine can be convened to an equivalent Moore 
machine [19]. 

S t m  Assignment. ‘Ihae are several algorithms for state assignment in 
DWDES, included in pmgmn FASS. Some of them make design with out- 
put decoder possible. In orda to solve the dilemma between time of design 
and the quality of the design better, we give the designex several algorithms 
again, so he can use some of them for exaCt optimization of small machines, 
and another one for large ones [26,4.5,111. One of the algorithms is rule- 
based, one is based onquadratic assignment and one on graph embedding to a 
hypercube. The last one was used for machines with more than 100 states, 
inputs and outpuu. 

Evaluation. To evaluate the variants of the design, several evaluation func- 
tions are used that do some approximate measurements on the resultant data 
of the minimizers as truth tables, netlists or logic equations. It is interesting 
to observe how much each of the stages contributes to area minimization, as 
well the symbiosis and the connadiction of the various minimizers. 

4. LOGIC SYNTHESIS 
A logic design component exists in any of the comprehensive design 

automation systtms, although in some of them (W.C. Berlteley. IBM) it is 
more developed than in the others. It was the DIADES assumption from the 
v a y  beginning to include various tools for logic design. Thenfore, the TANT 
design, multi-level networks and Ashenhurst decomposition were used, even 
in the earliest versions of the system, togerher with various heuristic and 
optimal PLA minimizers [9-141. The logic design tools have been modified 
many times, improved, and replaced in the past as the system was growing 
and crossing the Atlantic ocean. 

The logic design subsystem of the currcnt version of DIADES is shown in 
Fig. 2. Its inputs, coming from the conad unit and data path design subsys- 

language netlists composed of only logic gates. 

system pfm the following functions: 

tuns, are n ~ t h  tabks (.TT format), logic equations (HQN format) and M- 

From the point of view of the entire DIADES system the logic design sub- 

1. 

2. 

3. 

4. 

5. 
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Logic minimization. Various logic minimization algorithms are used 
that minimize two-, duce-, and multi- level networks from various 
kinds of gates, independently on the circuit’s technology applied at the 
next stages. 
Decomposition and partitioning of logii. Since logic minimization 
algorithms, especially those that attempt to find the exact minimum 
solutions. can be used only for a limited number of 
inpWoutpuWtem, various means are used in DIADES to partitionate 
i n p t  logic to functions of smaller dimensions. Another method is to 
panitionate the logic (array of cubes oc netlist) accordiig to some 
heuristic graph theoretic and other criteria. 
Linking various descriptions. pitccs of logic description can come 
from control unit design, statc machines embedded in data path, data 
path, or glue logic. They need to be l i  togaha, and possibly 
redesigned, to improve a m  cost, speed, testability, or other criteria. 
Format changes. Interfacing various formats, to make our tods mum- 
ally compatible, to make them compatible to outside took (V.C. BerkG 
ley. U. Washington), and to allow for redesign. 
Rcdaign. To improve logic descriptions by ndesigning 
lhked&mitiWmacrogenated descriptions using other tools. 

~ ~~ 
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6. Technology mapping. To map to the CMOS library cells used for the 
given technology (SCS). 

t i  ~ el+- 
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Tmth tables (arrays of cubes) are used as inpurs and outputs to pro- 
grams for PLA minimization, Currently Espresso from U.C. Berkeley is 
used, together with PalMini [7]. Umini [l], and KUAI-Exact [31. 231. The 
last program permits to design PLAs with input and output decoders. and will 
use new input pairing scheme, where primary inputs can be shared between 
the two-input, four-output decoders and three-input. eight-output d d e r s .  
The decomposition program Decomp uses mth tables as input and generates 
decomposed mth  tables [20]. We use both Ashenhurst and generalized 
(Sasao's like) decomposition, that we generalized for the case of multi-output 
functions with don't cares. State assignment methods are used for encoding 
minimized multi-valued symbols of connections be twm decOmposed PLAs. 
Each of the PLAs generated in decomposition or partitioning can be realized 
with any logic design p r o p  discussed below, or mapped to M-language 
standard cells. We found that conversion h m  nondisjoint cube format to a 
disjoint one is an useful pre-processing step for many algorithms (program 
Disjoint). 

Truth tables are also inputs to three programs that realize various multi- 
level cucuits. TantMini [IO] minimizes the TANT networks. Classical TANT 
networks, introduced by Mc Cluskey and Gimpel were single output, three- 
level NAND (NOR) networks where all primary inputs were. positive. Our 
algorithm assumes certain extensions to the classical model: the TANT net- 
work can have an arbitmy subset of inputs positive or negative, the network 
is multi-output and don't cares are allowed. The algorithm generates the 
exact minimum solution, so functions with not more than six inputdoutputs 
are allowed. We are currently working on a new program that will apply 
Espresso-like expansion/reduction/reshaping loop to generate TANT- 
impticants, which will allow for obtaining minimal solutions (not exact) for 
larger functions. 

Program NegMini [17] minimizes two-level networks from negative gates 
(negative unate functions). It has the same drawbacks as TantMini. so its new 
version is needed in the future as well. It see.ms to us now that exact minimi- 
zation is impossible to achieve for networks of m m  than six variables, using 
more than two levels of AND and OR gates. 

Another internal form of Boolean function representation is a Generalized 
Reed Muller Form (GRM) (it is an array of cubes as well, but represents 
EXOR of products of literals). The program Exorcism 131 finds minimal (not 
exact) solutions f a  networks up to 30 inputs/outpuu. It generates Mixed- 
Polarity Generalized Reed Muller Forms. Such networks are very good with 
respect to their testability. The new p g r a m  of Helliwell, Rmini, genemm an 

exact minimum solution for Mixed-Polarity Generalized Reed Muller Forms 
(can be applied to 6 variables). A program to generate exxt  optimum Fixed- 
Polarity Generalized Reed Muller F m s  as well as quasi-opmal fixed- 
polarity forms, Fm, is also under preparation 1271. RM2M translates GRM 
forms to M netlist. 

Yet another general purpose format for Boolean functions is Walsh spec- 
trum [2]. which is created here for incompletely specified multiple-valued 
inputfunctions. Program tt2Walsh does forward and program Walsh2tt does 
the inverse spectral transform. Again, disjoint cube represenation of SPF was 
found useful, and even fundamental. Spectrum is then used by the p r o p  
Spede to find generalized spectral-based decomposition for selected types of 
standard cells. 

The netlist in M includes gates that result from macrogeneration of data- 
path segments of higher level descriptions in language STRUCT. Such gates 
can have inputs equal logic 0 or logic 1. This calls for applying to them 
recursive logic transformations based on Boolean algebra, like. A * 1 = A, or 
A + 1 = 1. Such transformations are executed in program Implem3, being a 
part of EXPO. The optimized network can then be optimized or redesigned 

Linking is performed by the program Link, while partitioning using pro- 
gram Partition. Program E4n2n translates EQN format files to .lT format 
files, program Tt2.eqn translates .lT format files to EQN format files. Ro- 
gram Eqn2m l r a n s b  EQN format files to .M format files, program M2eqn 
translates .M format fiks to .EQN format files. Such format conversion pro- 
grams enable linking, partitioning, and redesign of any kind of logic files. 

The technology mapping is done by the heuristic. m-searching. rule- 
based program EXPO [18,29,30]. 

M language format. together with truth tables and logic equations embed- 
ded in it is an input to SCS layout system, and related cell and macrocell 
design tools. 

5. SYSTEM INTEGRATION 

while designing the system. 

with other programs. 

There are several basic principles of integration that we wanted to obey 
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Communication of all programs is through user-readable and editable 
ASCII files. All formats are relatively easy to learn. 
In order to understand trade-offs betta'there are several algoritlvnr for 
the same design/optimization problems. 
The standard languages and the organization of the system permit not 
only for the variant driven synthesis mentioned in p.2, but they also 
permit the user to select one of several paths through the design flow in 
order to create his own methodologies. For instance, he can hy or 
avoid some design stages, like Mealy-Moore or other pgraph or FSM 
uansformations. 
There are several interface formars. both on the input, on the output, 
and inside the system, in order for easier interfacing DIADES to other 
systems as well as to exchange examples with other systems. Several 
internal formats, like GRM forms or Waish spectrum. allow for 
efficient implementations of new methodologies. 
To provide some consistency, for most of the design tasks, the multi- 
purpose behavioraVfunctiodsmctural language ADL has been 
created. It is, however, not considered to be an "HDL language 
achievement" in itself, but rather a flexible and powerful notation for 
quick prototyping of description notations as they become useful for the 
synthesis programs when they are being added to DIADES. 
The role of don't cmes and multiple-valued input functions is systemat- 
ically emphasized on all design stages. An attempt to execute all stages 
for all kinds of machines, and integrate these stages required solving 
many problems that are not known from the titeaamre. For instance, 
how to minimize state tables with nondisjoint columns [19, q. 
It is our belief that powerful andflexible control m't design techniques 
are the key to the futurc sucwsses of comprehensive design automation 
systems. It is there, in the conaol unit design, w h a e  evaything: the 
system level design, microprogramming. miao-architecture design, 
state machine design, data path synthesis, and logic design comes 
together, and also in the most compkx and mutually related ways. 
Control unit design takes most of the design time. Therefore. DIADES 
considers conml unit design to be the most important immediate and 



long-term W. 
Other issues are design for speed and design for testability. We are 
working on several ways of achieving these goals in DIADES, few of 
them are implemented now. They include algorithms to design logic 
networks with few levels, but other than F'LAs. This goal also causes 
our interest in designs that have many EXOR gates, like fixed or mixed 
Reed Muller Forms. 
For such complex systems as DIADES. the teaching of the potential 
users is a key issue. As one of the industrial CAD authorities men- 
tioned: "teaching the engineer how to iue rhese fools is becoming a 
mosi important issuefrom the practical point of view". In the DIADES 
Group we are hying to address this problem by developing a 
Hypercard-based HelflutoriavCAI environment to teach about 
DIADES for Macintosh Ii [26], as well as video taped tutorials. 

8. 

9. 
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