
INTEGRATION OF LOGIC SYNTHESIS AND HIGH-LEVEL
SYNTHESIS INTO THE DIADES DESIGN AUTOMATION

SYSTEM

M. Perkowski 81, M. Driscoll, J. Liu + *, D. Smith + *, J. Brown *, L. Yang +, A. Shamsapour, M. Hel-
liwell *, B. Falkowski *, P. Wu * +. M. Ciesielski #, and A. Sarabi,
Department of Electrical Engineering, Portland Stare University P.O. Box 751, Portland, Oregon 97207,
rei. (503) 464-3806 x 23. # Department of Electrical and Computer Engineering, University of Mas-
sachusetts. Amherst. MA OIcO3. tel. (413) 545-0401.
+ Partinlly supported by Sharp Microelectronics Technology 1988 Research Contract. * Partially sup-
ported by 1986. 1987. or 1988 Design Automarion Scholarship Award. & Diades was also funded from
various other sources including Warsaw Technical Univ.. Polish Acad. of Sci.. NSF, and Honeywell SSED.

ABSTRACT
This paper presents a short description of the high level and logic synthesis
stages in the digital design automation system DIADES. High level design,
namely data path synthesis and control unit synthesis start han a peralkl
program-graph, the form of descriplon that includes both the control-flow
and the data-flow graph. While the data path is allocated and scheduled, the
control unit is designed to be composed of either a microprogrammed units or
Finite State Machines. The FSMs are minimized in two dimensions (states
and inputs), assigned and realized in logic. Several logic synthesis pro-
cedures, respective to various design styles and methodologies, can be used to
design combinational pans of state machines, microprogrammed units and
data path logic.

1. INTRODUCTION
The VLSI technology with which modan digital systems are designed

has advanced at such a tremendous pace within the past few years that the
engineer is being outsuipped of his ability to design complex state-of-the-art
systems. Initially, various CAD tools (circuit analysis. logic minimization,
IayouS etc.) were made available to aid the designa in concurring such
increasingly more difficult design tasks. Technology has now reached a pla-
teau, however, that calls for the realization of design automation systems in
which high-level synthesis is integrated with logic synthesis.

The main objective of this paper is to present one way in which such
integration can be achieved. We would also like to present the new, exciting
practical opportm'ties for CAD given by theoretical research in some adja-
cent research areas (microprogramming, scheduling, Reed Muller Forms,
spectral methods). The DIADES design automation system includes four
design stages: system level design, high-level design. logic synthesis andphy-
sical design. The first one, as well as the entire system and the example of its
application are discussed in the companion paper [221. In this paper, we will.
therefore, concentrate only on the high-level and logic synthesis in DIADES.
The High-Level Synthesis in DIADES includes two stages: Data Path Syn-
thesis and Control Unit Design.

2. DATA PATH SYNTHESIS
The DIADES data path generam, IMPLEM, assumes that there an no

resource restrictions. The descriptive program graph (pgraph) in language
GRAPH88 is, therefore, mapped to a hardware structure in the abstract netlist
language STRUm, exactly as it is Written in ADL language [12-14]. or BS it
results from the previous high-level pgraph transformations [lq. It also
does not try to increase the concurrency of operations. The designer, how-
ever, can do this manually by modifying his description.

The new version of DIADES includes a sckduling tool. After the descrip-
tive format has been convaed to pgraph format, the operations in the graph
are scheduled for execution in specific conad steps. The scheduling tool
mes to make use of rtsou~ces and increase the concumncy of the pgraph.
The pgraph is analyzed and the or& of execution of operations in it is dem-
mined. Those operations that can be executed at thc same time are identified.
If the r e s o m s are constrained them the maximum concurrency is not possi-
ble and some trade-offs are investigated. The Scheduler looks for the best
sequence of operations, resulting in the sharest ovedl c m 1 program.

The DIADES Scheduler rakes a global approach. A program is divided
into blocks of stmight-line code separated by conad points. The conml

points include if-thenelse and while statements. While the local scheduling
looks only at single blocks of code (so called linear program), the global
scheduler can move operations from one block to other blocks. The DIADES
Scheduler first consmcts an operation/data dependency graph with the help
of data synchronization statements contained in the high-level program. Then
a classical stare minimizarwn technque [21, 25. 161 is used to determine the
M a x i m Compatible Groups of Operarions. The hemistic rules are applied
to limit the number of compatible p u p s as well as their size. The next step
uses more heuristic rules to develop a tree of possible schedules. The tree is
then searched using classical tree searching methods to determine the opimal
schedule. We are currently investigating the heuristic NI- to determine
which of them give the best results. The output of the Scheduler, as the out-
put of other High-Level Transformers. is still in the pgraph notarion. AU
nodes of the p-graph are now assigned to the specific control steps that satisfy
some constraints.

The current Allmaror of DIADES does not do intelligent allocation. It
rather allocates variables to regmen and detects only few paners of other
units such as adders. When necessary, multiplexers are used to implement the
communication channels between the units. The improved Auouuor version
includes a sophisticated allocation ability. After scheduling. DIADES assigns
variables to registers and operations to specific functional units. A lifetime
analysis is done on the pgraph variables. The Variable Partitioner program
selects the best mapping of variables to registers. Another partitioning algo-
rithm, Operation Partitioner, maps the operations to the functional units. The
other objective is to minimize the cost of multiplexers that connect register
outputs to functional unit inputs.

After allocation, the design process splits into two separate processes. The
data path unit is generated in program IMPLEM and then in MGEN.
Specification of detailed connections between the elements is created. The
output of IMF'LEM is in STRUCT. This format is based on the pgraph. The
functional units, registers, and inmt/output ports are repmented by nodes,
while the connections are represented by arrows. The STRUCT description is
detalized by the p r o w MGEN, which means that abstrilct descriptions of
stnrtural blocks are replaced with lower level descriptions of blocks and their
connections. The wtput format is in netlist format called M-language (TM
SCS Systems). For instance, the STRUCT description specifies the "abstract
block" BLOCK1 - COUivTER modulo 5 with loading input A. and clock CL.
The equivalent M-language description will specify all flip-flops and NAM)
gates of this counter and how they an connected, with an accuracy to each
wire and gatc input.

3. CONTROL UNLT SYNTHESIS
Two design styles are used in DIADES to design the control unit the

Microprogmnmed Units [32, 81. and the Finite Statc Machines (FSMs) [a,
25, 4, 5, 11, 16, 261. Both of them are designed starting from @arallel or
serial) program Braphs in the language GRAPH88 [al. the main intemal data
representation language in DIADES.

T k Microprogrammd Unit Synthesizer. MICUS. generates first SIMC
(Symbolic Intermediate MicroCode) language description for retargetability.
Microinsauction compaction and optimization are necessary for efficient
microcode. To translate SIMC hyther into object miaocode a micmasem-
bler is used. Ultimately. a .'IT formaaed truth table of Control Memory for
logic minimization is generated. Until now, a simple scheme to genaate

ISCAS '89
748

CH2692-2/89/0000-0748 $1.00 0 1989 IEEE

single-way branching vertical microcode was implemented, but parallel
micmprogrammed/nanopmgrammed scheme @aha) with multi-way branch-
ing, loop counters, stacks and address arithmetic is under implementation.

The block diagram of the FSM Synthesizer is presented on Fig. 1. The p
graph includes the control-flow graph (cf-graph) and some data path
specification. The cf-graph can either be mapped to a network of FSMs or
microprogrammed units, or converted to a single FSM or microprogrammed
unit.

High Lmel Program Graph TrMsfonnotwns can be optionally executed
(sec [IS, 32. 241). They sfme to optimize the description, investigate
area/speed tradeoffs, and also aid in don’t care. generation from invariants
[23]. The state machines generated in the well-known design automation sys-
tems are either completely specified or (d y) have few don’t cares. They
do not have all of the don’t cares of transitions and outputs that could be gen-
erated from the knowledge of the system being designed. We inaoduced,
therefore. a method of generating don’t cares in FSMs from their high level
specifications. The method generates many more don’t cares than other
methods using umsuaints that exist on the values of predicate signals and
come to the control unit from the data path. For some design examples, OUT
invariant analysis methad evaluates the invorionu and finds combinations of

unit) that have consuained values for s~llc of the umtrol unit states. Such
invariants are then used to replace the corresponding next-state hamsitions in
the control unit’s state table with the don’t care transitions. This is beneficial
because a table composed of a large number of don’t m facilitates state
minimization, state assignment, and logic minimization [26,6].

Conversion/decompodtion. One of aprnoaches to design the control unit is
a conversion of patallel cf-graphs to equivalent sequential Braphs and next
state machines, assuming their synchronous interpretation [61. We use an
algorithm that reduces the number of internal states gawated. This problem
is not automatically solved in the existing systems as well. The conversion of
a parallel cf-graph to a sequential cf-graph can be used for the vaification of
the former [6.26]. Some other methods for the verification of such programs
are in [24]. In the general case, however, the ADL programmer is responsible
for avoiding all deadlocks, variable conflicts, and other undesired phenomena
characteristic to parallel programs. Various methods can be used to realize
parallel cf-graphs as sequential circuits. The conventional FSM methods,
however, such as minimization. assignment, and realization of excitation
functions, can only be applied when the parallel cf-graph has either been con-
verted to an equivalent sequential cf-graph or has been decomposed to a
sequential cf-graph. The cf-graphs are lhcn converted to FSMs and FSM-
based design ptucduw are followed. Rogram FGEN generates nmdispint
formats of FSMS: .KISS transitions format of the well-known Kiss program,
.STAB format of state tables. and .LISS serial cf-graph format for compatibil-
ity with sane control unit tools unda design. All those formats are nondis-
joint, which means that cubes can be overlapping. Convasion from nondis-
joint to disjoint fromat is done by program FDISC.

Two-dim&~l state minimization is done by pvgram FMINI. Since we
can describe or gcnaate an FSM with many don’t cares. we are able to inves-
tigate m e new design methodologies that have not yet been proposed The
minimization of the number of intemal states of an incompletely specified
FSM, for example. is a well known tspk but it has not yet been mupomed
in the commensive design automation systems. We have f d it to be use-

predicate values (predicates are the signals from the data path to the control

ful in some applications. Moreover, this appmch can be extended for the
minimization of the number of input symbols [25]. Input minimization and
state minimization are iterated until no further state joining is possible. We
implemented two efficient programs for state minimization. One of them IS
used for complwly specified machines and uses the well known algorithm of
UllmanlHOpcroft. The other one, for incompletely specified machines, solves
the covexing/closure problem [16, 251. Such a problem is the generalization
of the well-known covering p b l e m . The method of two-dimesional minimi-
zation of FSM, applied in our system generates an FSM with the combina-
tional input encoder [25l. As any other combinational logic, this encoder is
minimized with any of the existing in DIADES logic synthesizers.

MealylMoore TrMsformnrions. Sinw we want the user to have some deci-
sions regarding trade-offs between spced and area, as well as shape of the
FSMs, we give him additional tools to transform the machincs (FTRAN).
Each Mealy machine can be convdted to an equivalent Moore machine.
Similarly, each Moon machine can be convened to an equivalent Moore
machine [19].

S t m Assignment. ‘Ihae are several algorithms for state assignment in
DWDES, included in pmgmn FASS. Some of them make design with out-
put decoder possible. In orda to solve the dilemma between time of design
and the quality of the design better, we give the designex several algorithms
again, so he can use some of them for exaCt optimization of small machines,
and another one for large ones [26,4.5,111. One of the algorithms is rule-
based, one is based onquadratic assignment and one on graph embedding to a
hypercube. The last one was used for machines with more than 100 states,
inputs and outpuu.

Evaluation. To evaluate the variants of the design, several evaluation func-
tions are used that do some approximate measurements on the resultant data
of the minimizers as truth tables, netlists or logic equations. It is interesting
to observe how much each of the stages contributes to area minimization, as
well the symbiosis and the connadiction of the various minimizers.

4. LOGIC SYNTHESIS
A logic design component exists in any of the comprehensive design

automation systtms, although in some of them (W.C. Berlteley. IBM) it is
more developed than in the others. It was the DIADES assumption from the
v a y beginning to include various tools for logic design. Thenfore, the TANT
design, multi-level networks and Ashenhurst decomposition were used, even
in the earliest versions of the system, togerher with various heuristic and
optimal PLA minimizers [9-141. The logic design tools have been modified
many times, improved, and replaced in the past as the system was growing
and crossing the Atlantic ocean.

The logic design subsystem of the currcnt version of DIADES is shown in
Fig. 2. Its inputs, coming from the conad unit and data path design subsys-

language netlists composed of only logic gates.

system pfm the following functions:

tuns, are n ~ t h tabks (.TT format), logic equations (HQN format) and M-

From the point of view of the entire DIADES system the logic design sub-

1.

2.

3.

4.

5.

749

Logic minimization. Various logic minimization algorithms are used
that minimize two-, duce-, and multi- level networks from various
kinds of gates, independently on the circuit’s technology applied at the
next stages.
Decomposition and partitioning of logii. Since logic minimization
algorithms, especially those that attempt to find the exact minimum
solutions. can be used only for a limited number of
inpWoutpuWtem, various means are used in DIADES to partitionate
i n p t logic to functions of smaller dimensions. Another method is to
panitionate the logic (array of cubes oc netlist) accordiig to some
heuristic graph theoretic and other criteria.
Linking various descriptions. pitccs of logic description can come
from control unit design, statc machines embedded in data path, data
path, or glue logic. They need to be l i togaha, and possibly
redesigned, to improve a m cost, speed, testability, or other criteria.
Format changes. Interfacing various formats, to make our tods mum-
ally compatible, to make them compatible to outside took (V.C. BerkG
ley. U. Washington), and to allow for redesign.
Rcdaign. To improve logic descriptions by ndesigning
lhked&mitiWmacrogenated descriptions using other tools.

~ ~~
~ -~

rurtiicr imvrmarivn can ~e mraineu morn ut-. w. hennern JenKins. -~
(217) 333-4789

6. Technology mapping. To map to the CMOS library cells used for the
given technology (SCS).

t i ~ el+-

1 I

\
L E
- . ,

Tmth tables (arrays of cubes) are used as inpurs and outputs to pro-
grams for PLA minimization, Currently Espresso from U.C. Berkeley is
used, together with PalMini [7]. Umini [l], and KUAI-Exact [31. 231. The
last program permits to design PLAs with input and output decoders. and will
use new input pairing scheme, where primary inputs can be shared between
the two-input, four-output decoders and three-input. eight-output d d e r s .
The decomposition program Decomp uses mth tables as input and generates
decomposed mth tables [20]. We use both Ashenhurst and generalized
(Sasao's like) decomposition, that we generalized for the case of multi-output
functions with don't cares. State assignment methods are used for encoding
minimized multi-valued symbols of connections be twm decOmposed PLAs.
Each of the PLAs generated in decomposition or partitioning can be realized
with any logic design p r o p discussed below, or mapped to M-language
standard cells. We found that conversion h m nondisjoint cube format to a
disjoint one is an useful pre-processing step for many algorithms (program
Disjoint).

Truth tables are also inputs to three programs that realize various multi-
level cucuits. TantMini [IO] minimizes the TANT networks. Classical TANT
networks, introduced by Mc Cluskey and Gimpel were single output, three-
level NAND (NOR) networks where all primary inputs were. positive. Our
algorithm assumes certain extensions to the classical model: the TANT net-
work can have an arbitmy subset of inputs positive or negative, the network
is multi-output and don't cares are allowed. The algorithm generates the
exact minimum solution, so functions with not more than six inputdoutputs
are allowed. We are currently working on a new program that will apply
Espresso-like expansion/reduction/reshaping loop to generate TANT-
impticants, which will allow for obtaining minimal solutions (not exact) for
larger functions.

Program NegMini [17] minimizes two-level networks from negative gates
(negative unate functions). It has the same drawbacks as TantMini. so its new
version is needed in the future as well. It see.ms to us now that exact minimi-
zation is impossible to achieve for networks of m m than six variables, using
more than two levels of AND and OR gates.

Another internal form of Boolean function representation is a Generalized
Reed Muller Form (GRM) (it is an array of cubes as well, but represents
EXOR of products of literals). The program Exorcism 131 finds minimal (not
exact) solutions f a networks up to 30 inputs/outpuu. It generates Mixed-
Polarity Generalized Reed Muller Forms. Such networks are very good with
respect to their testability. The new p g r a m of Helliwell, Rmini, genemm an

exact minimum solution for Mixed-Polarity Generalized Reed Muller Forms
(can be applied to 6 variables). A program to generate exxt optimum Fixed-
Polarity Generalized Reed Muller F m s as well as quasi-opmal fixed-
polarity forms, Fm, is also under preparation 1271. RM2M translates GRM
forms to M netlist.

Yet another general purpose format for Boolean functions is Walsh spec-
trum [2]. which is created here for incompletely specified multiple-valued
inputfunctions. Program tt2Walsh does forward and program Walsh2tt does
the inverse spectral transform. Again, disjoint cube represenation of SPF was
found useful, and even fundamental. Spectrum is then used by the p r o p
Spede to find generalized spectral-based decomposition for selected types of
standard cells.

The netlist in M includes gates that result from macrogeneration of data-
path segments of higher level descriptions in language STRUCT. Such gates
can have inputs equal logic 0 or logic 1. This calls for applying to them
recursive logic transformations based on Boolean algebra, like. A * 1 = A, or
A + 1 = 1. Such transformations are executed in program Implem3, being a
part of EXPO. The optimized network can then be optimized or redesigned

Linking is performed by the program Link, while partitioning using pro-
gram Partition. Program E4n2n translates EQN format files to .lT format
files, program Tt2.eqn translates .lT format files to EQN format files. Ro-
gram Eqn2m l r a n s b EQN format files to .M format files, program M2eqn
translates .M format fiks to .EQN format files. Such format conversion pro-
grams enable linking, partitioning, and redesign of any kind of logic files.

The technology mapping is done by the heuristic. m-searching. rule-
based program EXPO [18,29,30].

M language format. together with truth tables and logic equations embed-
ded in it is an input to SCS layout system, and related cell and macrocell
design tools.

5. SYSTEM INTEGRATION

while designing the system.

with other programs.

There are several basic principles of integration that we wanted to obey

1.

2.

3.

4.

5 .

6 .

7.

750

Communication of all programs is through user-readable and editable
ASCII files. All formats are relatively easy to learn.
In order to understand trade-offs betta'there are several algoritlvnr for
the same design/optimization problems.
The standard languages and the organization of the system permit not
only for the variant driven synthesis mentioned in p.2, but they also
permit the user to select one of several paths through the design flow in
order to create his own methodologies. For instance, he can hy or
avoid some design stages, like Mealy-Moore or other pgraph or FSM
uansformations.
There are several interface formars. both on the input, on the output,
and inside the system, in order for easier interfacing DIADES to other
systems as well as to exchange examples with other systems. Several
internal formats, like GRM forms or Waish spectrum. allow for
efficient implementations of new methodologies.
To provide some consistency, for most of the design tasks, the multi-
purpose behavioraVfunctiodsmctural language ADL has been
created. It is, however, not considered to be an "HDL language
achievement" in itself, but rather a flexible and powerful notation for
quick prototyping of description notations as they become useful for the
synthesis programs when they are being added to DIADES.
The role of don't cmes and multiple-valued input functions is systemat-
ically emphasized on all design stages. An attempt to execute all stages
for all kinds of machines, and integrate these stages required solving
many problems that are not known from the titeaamre. For instance,
how to minimize state tables with nondisjoint columns [19, q.
It is our belief that powerful andflexible control m't design techniques
are the key to the futurc sucwsses of comprehensive design automation
systems. It is there, in the conaol unit design, w h a e evaything: the
system level design, microprogramming. miao-architecture design,
state machine design, data path synthesis, and logic design comes
together, and also in the most compkx and mutually related ways.
Control unit design takes most of the design time. Therefore. DIADES
considers conml unit design to be the most important immediate and

long-term W.
Other issues are design for speed and design for testability. We are
working on several ways of achieving these goals in DIADES, few of
them are implemented now. They include algorithms to design logic
networks with few levels, but other than F'LAs. This goal also causes
our interest in designs that have many EXOR gates, like fixed or mixed
Reed Muller Forms.
For such complex systems as DIADES. the teaching of the potential
users is a key issue. As one of the industrial CAD authorities men-
tioned: "teaching the engineer how to iue rhese fools is becoming a
mosi important issuefrom the practical point of view". In the DIADES
Group we are hying to address this problem by developing a
Hypercard-based HelflutoriavCAI environment to teach about
DIADES for Macintosh Ii [26], as well as video taped tutorials.

8.

9.

6. LITERATURE

Ciesielski. MJ,, Perkowski, M.A., and S. Yang, "Multiple-valued
Minmization Based on Graph Coloring", submitted to DAC'89.
Falkowski, BJ., "Spectral Methods for Synthesis of Easily Testable
Multiple-Valued Input Logic Circuits", Ph.D. DissertattOn proposal
PSU, 1989.

Helliwell, M.. and M. Perkowski. "Fast Algorithm for Minimization of
Mixed-Polarity Generalized Reed-Muller Forms", RUC. 25th DAC,
1988.
Lee, E.B.. and M. Perkowski, "A New Approach to Structural Syn-
thesis of Automata" Univ. MinnesoIa, EE Depr. Repofi. 1982.
Lee, E.B.. and M.A. Perkowski, "Concumnt Minimization and State
Assignment of Finite State Machines", RUC. 1984 Intern. Conf. on

Liu, J.. and M.A. Perkowski, "Generation of Finite State Machines
from Parallel F'rogmn Graphs in DIADES", submitted to DAC'89.

Boolean minimizer for pasonal computers", Roc. 2 4 4 DAC. pp.
615-621, June 28 -July 1.1987.
Perkowski, M., "A system for automatic design of digital systems".
Proc. FCIP Symp. INFORMATICA 74, Bled, Yugoslavia, 7-12 Oct.
1974. paper 4.4.
M. Perkowski: "An example of heuristic programmiig application in
the three-level combinational logic design". Roc. 3rd Symp. on
Heuristic Methods. Polish Cybem. Soc., Warsaw, 25 Sew. 1976. Vol.
1 . pp. 105-132.

Syst Man, and Cyb., IEEE. Halifax, Oct. 9-12.1984.

Nguyen. L.B ... perkowski, M.A.. and N.B. Goldstein, "PALMINI - fast

[17] Perkowski, M., "Minimization of Two-Level Networks from Negative
Gates", Roc. Midwest 86 Symp. C k . Syst. Lincoln, Nebraska, 1- 12
Aug. 1986.

[18] Perkowski, M., Ming, LJ., and A. Wieclawski: "An Expen System for
Optimization of Multi-Level Logic", IASTED Conference, Appl. Sim.
and Modeling, ASM '87, Santa Barbara, CA. May 26 - 29.1987.

[19] Perkowski, M., Uong, H., and H. Uong: "Automatic Design of Finite
State Machines with Electronically Programmable Devices", Nonhcon
'87, M a n d 1987. paw 13/4.

[201 M. F'exkowski, J.E. Brown: "An Unified Approach to Designs Imple-
mented with Multiplexas and to the Decomposition of Boolean Func-
tions", Roc. ASEE Nat. Conf., Portland, Oregon, June 19-23,1988.

[211 Perkowski, M., Liu, J., and J. Brown. "Quick So- Rototyping:
CAD Design of Digital CAD Algorithms". In G. zobrist (ed.), "Pro-
greas in Computer Aided VLSI &sign". Ablex Publishing Corp., 1989
in print.

[221 Perkowski. M.A., Smith, D., Driscoll, M., Liu, J.. and JE. Brown,
"DIADES - A High-Level Synthesis System". Roc. 1989 ISCAS.

U31 Perkowski, MA., Wu, P.. and K. Pirkl. "KUAI-EXACT: A New
Approach for Multi-Valued Logic Minimization in VLSI Synthesis",
Proc. 1989 ISCAS.

1241 Perkowski, M.A., and J.E. Brown. Automatic Generation of Don't
Cans for the Controlling Finite State Machine from the Corresponding
Behavioral Description, submitted to DAC'89.

[251 Perkowski, M.A.. and W. Zhao, Two-Dimensional Minimization of
Controlling Finite State Machines: Input State and I n t a d State
Minimization, submitted to DAC'89.

[261 Perkowski. M.A.. Brown, J.E., Liu, J., and Zhao, W., "Design of Con-
a01 Units as N e t w ~ ~ k s of Finite State Machines in the High-Level
Design Automation System DIADES," submitted to "Progress in Com-
puter Aided VLSI Design," 1989.

[271 Sarabi, A., "ApplicatjOn of AI Muhods for Fixed Polarity Reed Muller
Forms Minimization". M. Sc. Th.. Dept EE.. PSU, 1989.

[281 shamsapour. A.. "Hypercard Baed Environment to Teach about
High-Level VLSI Design Automation System", M.Sc. Thesis, Dept.
EE, PSU, 1989.

[291 Wieclawsk A., and M. Perkowski, "Opimization of Negative Gate
Networks R e a l i d in Weinbergex-like Layout in a Boolean Level Sili-
con Compiler". Roc. 23rd DAC, Albuquuque. June 25-27.1984.

[301 Wieclawski. A., and M. Perkowski. "A Cost Function for Layout in A
Boolean Level Siliion Compiler". Roc. Midwest 86 Symo. C k . Syst.. . _

[lo] Perkowski, M., "Synthesis of multioutput three level NAND networls". Lincoln. Nebrash 1- 12 August 1986.
Roc. on the Seminar on Comp. Aided Design., Budapest 3-5. NOV.
1976, pp.238-265.

[l l] Perkowski. M.A., and A. Z~SO- "Minimal MOS a s y r l c ~
automata". Roc. Intern. Symp. Applied Aspects of Automata Theory,

[12] M. Perkowski. "Automtischer Entwurf von MOS-LSI-digitalen Schal-
tungen in System DIADES". Messen. S t e m , Regeln. No. 6, 1979,
pp. 346-350 (in Gaman).

[13] M. Perkowski, "Automatic design of digital MOS LSI circuits in sys-
tem DIADES", Measurunent. Automatics, Control, Nr. 6, pp. 226-228,
1979 (in Polish).

[I41 Perkowski, M, "A system for automatic design of digital systems."
Magyar Tudananyos Akademia. Szamirastechnikai Es Automatizalesi

gary. 1979 (in Russian).
[l5] Perkowski, M, "Digital Devices Design by problem-Solving Transfor-

mations", J. Cornput. Art Intell. (pocitace a Umela Int.). Vol. 1. No. 4..

[161 Perkowski, M.. and N. Nguyen, "Minimization of Fmite State Machines
in Supexpeg". Roc. M i d m Symp. C i Sysr, Luisville. Kentucky.

[311 WU, P., "Minimization of Multi-valutd Inplc Multi-kvel Boolean
Functions", Ph.D. Th. in preparation.

[321 Ymg. L.. Perkowski. M., and D. Smith, "Automated Synthesis of
Microprogrammed Control Units in DIADES". submitted to DAC'89.

V m , Bulgaria, 14-19 May 1979, p ~ . 284-298.

KUW In te~te . Budapest TanulmSnyOk 9911979, p ~ . 93-112 Hun-

1982. p ~ . 343-365.

22-24 Aug. 1985.

75 1

-

rurtiicr imvrmarivn can ~e mraineu morn ut-. w. hennern JenKins. -~
(217) 333-4789

