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ABSTRACT 

A MW logic minimizer called KUAI-EXACT has b&n 
designed to geneme the exxt  minimum solutions for multi- 

is to generate as few prime implicants as possible. A new algo- 

implicants in a time cbse to that for genaabg a prime impli- 
cant by the ESPRESSO-MV 'expansid process. We discuss 
how to generate. the secondary essential primes implicants in 
order to avoid setting up a covering table, and present the 
corresponding algorithms for non-cyclic functions. We also dis- 
cuss the case in which a covering table should be created for 
obtaining an exact minimum solution and d d e ?  how to use 
the parallel processing technique for the best spcedup. 

valued input logic expressions. The advantage of this niinimiza 

rithm is presented here for directly generating essential pr im 

1. INTRODUCTION 
After the "Expansion" process was first created by Hong [ l ]  in 1974, it 

was widely used in many well kmvm minimizers for logic minimization, usu- 
ally with some minor improvements, for exampk, McBOOLE 121, MINI-II 
[3]. ESPFESSO-II,-MV,-EXACT [4].[5l,[6]. The reason for this is that it is 
considexed to be the fastest pocess for g d g  primc implicants which BIC 

thenuscdtogenaatcthecssentialprhneimplicanaandsetupthecovaing 
table. Recently. therefore, with the number of input variables in VLSI circuits 
increasing, this process becomes more and more time consuming. This is 
because the number of all prime implicants can be of the order of 3"/n for 
two-valued input n-variable functions [l] and will be even largex for multi- 
valued input functions [3]. 'Ihercfon, it is urgent to design a new algorithm 
for directly generating essential prime implicants. In this papr. the algorithm 
for the above task will be presented and its time for genaating an essential 
prime implicant is close to that of gemming a prime impticant by the 
ESPRESSO-11 "expansion" process. 

The otha reason for -rating all prime implicants is to set up a cove?- 
ing table which will help to obtain an exact minimum solution [71, [81. [91. In 
ESPRESSO-II and ESPRESSOMV, a covering table, as well as the genera- 
tion of all prime implicants. is not needed because only the near minimum 
solutions are generared Usually, meSe solutions am. satisfactory for the 
design Rquirements but sometimes they are not. Also. it is hard to predict 
how far these solutions are from the minimal solutions. McBOOLE and 
ESPRESSO-EXACT, two resent typical algorithms for exact minimization, 
do not overcome the above problem of generating all prime implicants. In this 
paper, we avoid using a covering table, using the following principle: "for a 
noncyclic function, an exact minimum solution is formed by only the essen- 
lial and secondary essential prime implicants of the function". The algorithm 
will also be presented for generating the secondary essential prime implicantu 
without a covuing table. 

For acyclic function, we still need a covering table to aid in obtaining an 
exact minimum solution [lo]. Afm. bowmr, deleting all essential and 
secondary essential prime impticants from the original fimction, the reduced 
function will ayntain f e w  cubes in the ON-set and more cubes in DC-M 
(don't-care set). Thaefon, the number of all prime implicimts for the nduced 
function is much less than that for the Original function. Also. to the above 
reduced function with many don'tcare, we popose a new algorithm m gerr 
crate all prime bnplicana much fasta than the 'expension" proass of 
ESPRESSO-II. At the end of the papa, a padel algorithm is presented for 

solving the covering problanr This algarithm is especially very efficient for 
hurtions with many symmoies m cycles. 

In mxnt  years, a multi-valued input bgk expession is often employcd as 
inplt data to logic synthesis insted of a biiuy-valued input expression 1111- 
[IS].  he reason is that the silicoa au nxyued for the rralization of multi- 
valued input bgic @%A with inputdaxks) is smallex than one required for 
*valued input logic in PLA. Also, the multipleoutput minimization for 
pLA optimization can be manipulated as a spacial case of a multi-valued 
minimization. A detailed discwion of multi-valued input logic is presented 
in (17. [5]. [ l q .  In this paper, all considaatim will be applied to the multi- 
valued input logic functions. Also, the appn#rch presented here was espe- 
cially created to find CTDcl solutions with vay  good speed-ups on parallel 
canputen with many processors. The report [17] detailizes parallelization. 
2. THE DESCRIPTION OF KUAI-EXACT 

KUAI-EXACT. where "KUAI" is mla t ed  hwn Chinese by pronuncia- 
tion and means "fast", is an algorithm for multi-valued logic minimization. It 
can be applied both completely and incompktely specified logic functions. 
It can acwpt eithcr the 0N-W and OFF-set or the ON-sct and DC-set as input 

a) Svbminimol impliconu: This plocess g e m  the subminimal impli- 
cants from the initial ON-set of the function. The purpose of using the sub- 
minimal implicants instead of minterms as the input data of the next prccess 
is to save the execution time. Also, the purpose of using them instead of ini- 
tial ONcubes is to gmmtcc that all prime implicane can be generated 
which means o w i n g  an exact minimum solution. 
b) Essenntinl primes; Use a fast and efficient methcd to generate all essen- 
tial prime implicants without generating a l l  prime implicants. The time for an 
essential prime implicant generation is close to the time for generating a 
prime implicant by the " e q m i o n "  process in ESPRESSO-MV. 
c) Secondary essential primes; Generate all secondary essential prime 
implicants to obtain an exact minimum solution without solving the covering 
problem for noncyclic functions. This pocedlae is only applied to the 
r e d d  function which contain3 all nonessential primes of the original func- 
tion. 
d) Ezrensiun ; Use a fast and efficient algorithm to generate all prime impli- 
cants for the ranainmg cyclic function. 'Ihis process is d y  diffmnt from 
the "expansion" pmcess of ESPRESSOMV in its principle. 
e) Covm'ng seurch; Solve the covering problem by the p a d e l  search 
method. 
I. Subminimal implicants 
DeAnition 1. The d m a l  implicant of an ON-cube c. denoted by MI(c). is 
defined as the product of all prime implicanm covering the cube c. 
Delinition 2. The subminid implicant, denoted by SI, is defined as any 
implicant which is contained ina  minimal implicant 
T h e m  1. Starting fmm subminimal cubes. thae is a guarantee for generat- 
ing all prime impl iun~.  In the case of starting from arbitrary initial cubes. 
there isno gwmntec m gcnaa(c all prime @lima. (All proofs in [17l). 
Algorithm 1. (To6ndallsubmininul cubes for fimaion F) 
(1) F i  the set CONS(0N) of all ammmsm of cabes from the initial 
mer of the fuactioa: 
(2) Find the setPROD(F) of all poduzs of pairs of cubcs from an 

CONS(0N) and an ONO: 
PROD (F) = { ci n cj I ci E ON(F) Q cj E CONS (0N)J; 

data. The scqutncc of pocesses of KUAI-EXACT is described below: 

(3) wnd the set S I 0  of all subminimal cubes by 
SI (F)  = (ON (F) # CONS(0N)) U PROD : 
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Example 1. Consider function f = W + &-d to generate al-subminimal 
cubcs. step by step, by wing A l g r n i e  1. To ON(f) = (ZZ-d, &d),-(l) 
CONS(0N) = (2). (2) P R O W  = ( Z E d ,  &-d), and (3) S I 0  = (-&-d. 
&-d. abd. bcd]. The corresponding O N O ,  CONS(ON), PRODO, and 
S I 0  are shown in Fig. 1. 

ONO CONS(0N) mom slm 
R~UIC i.'rksnsforExrmplc 1 .  

11. EsPcntialRics 
&hition 3. The supercube SC of the set of cubes, (cl. c2, ......, ck), is 
defined as a smallest cube that coven all the cubes in this sa 
&hition 4. The owrexpaded cube of a cube c. denoted OC(c). is defined 
as the suprcube of ail primecubes which cow the cube c. 

According to the De6nih 4, a direct and efficient method. for generat- 
ing the ovmxpanded cube OC(c) of a cube c, is to first generate all prime 
cubes which cover the cube c. ?hen OC(c) wiU be the bit-by-bit OR of these 
prime cubes. Although this method is proper, it would talre much time to gen- 
erate all pime cubes, and would med much mwoy to stole them. A new 
method, which will avoid gcnaating all prime cubes, will be discussed below. 
Dthiiion 5. A single-variable-uponrion cube (SVE cube, for short) of cube 
c is de6ned as a cube which is obtained by expanding onlyone variable of the 
cubecuntilnomoree~canbeperformed.~Ihus, ifc=elx ?.....*, 
the expression of sin le-variableexpansion on variable i is as follows: 

Theorem 2. The overexpanded cube OC of a cube c can be generated by bit- 
by-bit OR of all single-variabk-expansb cubes of the cube c. 

F m  the Dc6nition 5, it is obvious that a SVE(c) cube may not be a 
prime cube. Then, by using the above theoran. to p u a t c  all pime cubes is 

In the expamion pnxess of ESPRESSOMV, a cube is expsnded to a 
primecubebyexpandingallvariablescontainedinthecubec.So,ifthatare 
m variables in a cube c, the time, for expanding the cube c to a prime cube, 
will be m times of the time for the singk-variableexpansion. Here, the time 
for genadting an ovenqanded cube is m times of the time for getting 
SVE(c) cubes plus the time for one union operation, and, thaefore, it is 
almost the same as the time for a prime implicant expansion. 
Algorithm 2. [To generate the ovaexpanded cube of a cube c J 
(1) find all signal-variable-expansion cubes by the "expansion" process. 
(2) find the overexpanded cube by: OC ( c )  = U W E  (cXi); 

Example 2. For a function with an ON-set as (X0*4)Y(123*4), X(23*4)Y(a3*4)]. 
Consider a subminimi cube c = ~ ~ ~ 0 3 ) .  then, SVE(C. X )  = x ~ Y ( ' " " * ~ ) ,  
SVE(c. Y) = X'""YoJ), and ovaexpended cube OC(c) = SVE(c, X )  U 

sa(,., Y) x(23.4y(133.4). 
AU of the subminimal cubes in S I 0  an listcd one by one hwn top to bot- 

tom. When the essential primes process is executed, the subminimal cube on 
the top of the list is taken Grsr, then tht next. For setting up thii kind of list, 
the set S I 0  is divided into three subsets. One is the set PRODO which con- 
tains the products of the initial cubes and consensus cubes, and is obtained by 
employing the step 2 of Algorithm 1. Another is the set REST0 which is 
equal to ONO # CONS(ON), and is obtained by using the step 3 of the 
Algorithm 1. The last one is the sa SEPCO which is empty before the pro- 
cess of essential prime implicants is executed, and will contaln thoJe sub 
minimal cubes that are adjacent to essential prime cubes. 

The ordering of these three subsets is that the set PROD@) is on the top 
0fthelisSthenthesetSEPCO.andlastisthesetRESTO.Alsoinsidethe 
.sets PRODO and SEPCO, the snaller cubes are put on the top of the @a 

are hard to mage  with others or. in other wordp, contain somecucntial va -  
t i c ~  [ll. on h e  top of the lisL This will result in €ust genuating those overex- 
panded cubes tbat have higher possibility to be essential prime cubes. Afta 
antssentialprime cube is found, all subminimaicubcscovd by thisessen- 
tial prime cube will be deleted. h f o r e ,  the number of iteantions can be 
raduced In the setREST0.M largacubes are put on the top of the s m a h  
cubes. Themson hae is Ihat.ifan essential pime cube is found, thistsserr 

SvE(cXi)=xs' ... Xii...X~: B WhereRi isthe maximalpossiblesetforXi. 

not necessary for genaating an ovaexpended cube. 

I- 

irl 

cubes. The mason for thiskindof ordering is to lad to put thosc cubes, that 

tial prime cube is expected to COV- as 
This would also reduce the number of itexationS. 
Theorem 3. To a given function F with a subminimal cover Slm, the 
ovaexpan&d cube OC(c) of a subminimal cube c is an essential prime cube. 
if it satisfies the condition: OC(c) c S I O .  
Algorithm 3. (To generate all essential prime cubes 1. 
(1) Take a subminimal CUI&- c, €mm the ordering list of SI@), and tind the 

~bminimal cubes ap possible. 

ovaexpanded cube OC(c,) by using the Algorithm 2. 
(2) If OC(c,) c SIO. thew 

Sharp OC(c,) €mm SIO,  replace it with don't- in SI@?). and put it 
to the 6nal solution set. 
Find all subminimal cubes which are adjacent to Oc(c,) in the set 
PRODO U RESTO. and move them into the set SEPCO. 

(3) Itcrate the above steps mtil all subminimal cubes in the set P R O W  U 

Example 3. Consida the funcuonf- XoY1  + X('*3)Y(1*3). The corresponding 
subminimal set is (XoY' .X(1 .3)Y1.X(1J)Y3) ,  the set PROD(n is ( X o y l ,  
X(1*3)Y1),  d the set ON(n#cONS(f, is (X(1e3)Y3).  By using the above des  

Andtheunrespondingthreeorderedsetsarc: 

REST0 havc_conSidered. 

for cubes &ring. the ordering list of S I 0  is (XOY', X"*3'Y'. X".3'Y31. 

The. sequarct of steps of applying Algorithm 3 is psealsented below. 
(1) Take thecube (X'Y') 6rstand obtain OC(XOY') =X'0'131Y'. 
(2) since OC(XOY') SIY). the cube X ( O * ~ ~ ) Y ~  is an essential prime cube. 
Then this cube is deleted from the set SIY) and put in the final solution. The 
cube X('.')Y3, which is adjacent to the above OC. is put in the set S E W .  
Now the status for the three sets is: 

PROD(n=O,SEPC(n = (X'1*3)Y3),andREST(n=e). 
(3) Take the cube X(1*3)Y3,  the overexpanded cube is OC =X('33)Y('*3). 
(4) since the cube oc = X ( ' ~ ) Y ( ' * ~ )  is also an essential prime cube, this cube 
is deleted from the subset of SI@ and put in the final solution. 
(5) Stop here, because the set of S I 0  is empty. 
m. seamdaryessentialprima 

After all essential primCS has been exDBcted from the set of S I 0  of the 
given function F, the cubes remaining in SI@) will cover a new function F 1. 
Obviously. the function F, is included m the function F and Contains only the 
secondary essential pimes and the cy& cubes. In thii section, it is discussed 
how to findall the secondary essatialprimes in the setSI(F,). 
Definition 6. A redudant prime implicant, denoted e,, is defined as a prime 
implicant which contains only the subminimal cubes included in other prim 
implicants and possible don't-. 
Definition 1. A secondory essential prime implicant, denoted e,. is defined as 
a prime implicant which will become an essential prime implicant after all 
redundant prime implicants which intersect with e, are deleted 

A secondary essential prime is actually not an essential prime. It will 
become the essential prime only after the essential primes, which are adjacent 
to it, are 6rst all deleted. 'Ihenfm, secardary essential primes a r ~  always 
adjacent to the essential primes. 

After all cucntial primes are exaacted from the function, the sets 
P R O W  and SEPCO are maged into one set denoted by SEPC(F1). The 
set REST0 now becomes the set REST(F1). The ordering for SEFC(FI) is 
that the set S E X 0  is on the topof the set PRODO. The reason is that the 
cubes in the set SEPCO have more possibility to be the secondary essential 
primes than the cubes in the set P R O W  because they are all adjacent to the 
essential primeS. In the set PROD@), only those cubes which are actually the 
essential primes but are sunuunded by some don'tcares will be the secondary 
essential primes. The inside ordering of the sets SEPCO and PROD@) is 
kept the same as before because the property of the secondary essential 
primes is the same as that of the essential prunes. The secondary essential 
primes found are still expected to cover more subminimal cubes. 

Only the set SEPC(F 1) is ordered and considered for generating all secon- 
dary esswltial pimeS and the set REST(Fl) will be i g n d .  The reason is 
that no cubes which are ad-t toesscntial prime cubes will exist in the set 
REST(F1). AU cubes which are adjacent to the essential primes have been put 
into set SEPCO in Algorithm 3 M y .  The set REST(F,) is only con- 
sidered at the time when the set SI(Fl) = SEPC(Fl) U REST(F,) is con- 
sidered. Afta a secondary essential prime is found, all cubes that are ad& 
cent to this secondary primeandae included in SI(FI) will be appended to 
the bomnn ofthe list of the ordaed so S m ( F , ) .  

PRODO= (X0Y1.X""Y'] .  SEPCY)=O,andRESTY)= (X(1 '3 )Y3J .  
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From Delhitions 6 and 7, a direct and efficient method to generate the 
secondary essential implicants from the subminimal cubes is to geneaate the 
set PI(c,) of all prime cubes which cover the specified subminimal cube c,. 
Then, check which prime cubes in PI(c,) are the redundant pnme cubes and 
delete them from PI(c,). If there exist two or more remaining prime cubes in 
PI@,), no secondary essential primes will exist in PI&). If then is only one 
prime cube left in PI(c,), this prime cube is a secondary essential prime. 
Algorithm 4. (To generate all secondary essential prime cubes). 
(1) Take lint subminimal cube c, from the ordered set S E ( F  I )  and gen- 
erate all prime cubes PI@,) which all cover c,. 
(2.1) Take the largest prime cube Pi from PI(c,), and sharp c, h m  Pi. If 
(P, # c,) E D C ( F , ) ,  then, sharp Pi from the set PI(c,). 
(2.2) Take the current largest prime cube, and iterate the step 2.1) until one 
of two following cases will happen. 

a) If then exist two prime cubes which have been checked not to be 
the redundant prime cubes, then go to step 3). 
b) If thae is only one prime cube left in PI(c,), move it in the final 
solution. Find all subminimal cubes. which arc adjacent to Pi, in the 

(3) Take another subminimal cube fmm the current top of SEPC(F 1), iterate 
step 2 until the set SEPC(F,) is empty or all subminimal cubes in the set are 
checked not to be the secondary ascntial prima. 
Example 4. Considex a function shown in Fig. 2 a  Afm all subminimal 
cubes are generated, the set PRODO contains all subminimal cubes and both 
REST0 and SEPC0 are empty. 

After the essential cube h- is found and deleted from the set S I O ,  the 
new K-map is shown in Fig. 2.b. Now the set SEPC(Fl) contains the c u e  
f t l .  and 13 shown in Fig. 2.c. 'Ihe PROWFI) bccomes the set [ S I 0  #ob- 
# r , ] ,  where i=(1,2,3), and REST(Fl) is still empty. 

T+e-the cu&-fl, and genetate all prime cubes which cover il: 
c 1  =&d. c*=bZiZ.  Sinccthecubeczisaredundantprimecubeandthe 
cube c I  is not, c I  is a secondary essential cube. It is put in the final solution 
and the cube &&!e, which is adjacent to c I .  is appended to the boaom ofthe 
set SEPC(F1). And, similarly. the cube r 2  is a secondary essential cube and 
the cube &?de is appended to the set SEpC(F1).  

p2=(Icdc, and p3=&&. 
Sincepl is redundant cube and bothpz andp3 are mt the redundant cubcs. 
r is not a secondary esx.ntial cube. 

Repeat the above pmccdure for the new S E ,  the final results are shown 
in Fig. 2.d There exists a covexing cycle. 

SI(F1). and append them to the bottom Of the list SEPC(F1). 

TO t 3 ,  all prime cubes  at^ pi=clbcd. 

lnirial ON-set. 

1 euamd L _ _ _ _ - - - -  2 
1 L - - - - - - - - - - A  

C . R u x t S E P c ( F , ) .  d.'IhcmRsUlls. 

figure 2. The poccdurrr for Exrmplc 4. 

N. Extension 
AAtrthepmuxsesdcsaibedin laatwosection$amexecutcQalluperr 

tial and secondary essential primes have bem extracted If the set S I 0  is 
empty, KUAI-EXACT will stop here and the 6nel ~01ution all cscw 
tial and secondary csscntkdprims. If the S I 0  isnotanpty, it will contain 
only the cyclic cubes which cwer a new function. denoted byf. To 6nd an 
optind s o h ~ h  for the functim f. a covering a l e  sbould be d 'Ibae- 
forc, all @me implicanu should be gemated. 

All cubes left in the sets SEPC(F1) and REST(F1) IMJW mergrd inP 
the set ccy). The list of ccy) is sorted so that the b e s t  cube is put on the 

4(l 

top of it. and the smallest one is at the boaom. The reason is that the largest 
cube may c o v d  by more prime cubes or by h'ga prime cubes. T h e  
larga prime cubes wiU have more possibility to completely cova  otha prime 
cubes. which will then be generated from otkr subminimal cubes./Ihen the 
c o v d  (completely) prime cubes are removed before they are put in the cov- 
ering table. This will reduce the numbas of rows in the covering table. 
Dehition 8. For a multi-valued input Boolean function, the acsociare primes 
of c are defined as those prime cubes which cover one specific subminimal 
cube c I .  An associate cover of c 1  is the set of all associate primes of c1. 

F m  the current top of the ordering list of CCO. a subminimal cube c, is 
taken. All associate primes of c, will be generated and will be compared to 
the prime cubes which have been put in the covering table already. If my 
prime cube c,, in PI(c,) is the same as or is contained in other prime cube in 
the covering table, cp is deled. ?he remaining cubes from PI(c,) are added 
to the covering table whae the subminimal cube will be added as a new 
column and the prime cube will be added as anew row. Also, some ones are 
en& to repmsent the relatiomhip between the new TOWS and all the 
columns. This procedure will be repeated until the set CCy) becomes empty. 
hiinition 9. Consider two cubes c1 and c2, where C ~ = X ~ ~ ~ X ~ . . . I . ~  and 
cZ=xlR~xZR* ...I>. ~ n ~ s y m m c n i c ~ l  Union of c and c2 is defineii as: 

e, ifsi n Ri #Si, (i=1,2 ..., n )  
~ m ( c 1 . c 2 ) =  cz  si .-Ri 

.ict 

{ 
I f t i s  an array of cubes, then, anun (c I ,  ?PU am (c I ,e,). 

Theorem 4. Assume that an n-variable multi-valued input Boolean function f 
contains m cubes, ri ( i = 1. 2, ...... m ), in the OFF-set. An associate cover 

H(cl), where c I  E SIy), can be geneI;ued by: H(c I )  = n acum(c,. 7J 

When an associate cover is gemted by the above Theorem, some redun- 
dant cubes are generated as well, particularly, for multi-valued logic. To 
reduce the number of those redundant cubes, two considerations are dis- 
cussed. Firs& the cubes in the OFF-sa should be rearranged at the beginning 
of the process "extensid so that the number of the cubes in the OFF-set 
could be d e c d  as much as possible and the sizes of the cubes in the 
OFF-set could be as large as possible. A detailed discussion and cornspond- 
ing algorithms are presented in UT]. Seam14 if two or more cubes of the 
OFF-set overlap, the assso'ciate COVQ would contain many redundant cubcs. 
To d u c e  this kind of redundancy, we choose the largest OFFtube to do the 
Asymmepical Union with the subminimal cube. Then a Sharp operator is 
employed to cancel all other cubes from the result of the Asymmemcal 
Union. Because the number of the overlapped cubes is small, a Sharp opera- 
tcx will MI rake toomuch time here. 
Algorithm 5. (To generate an associate cova for a subminimal cube) 
(1) Take the 6rst subminimal cube c, from the ordcred set CCy) and com- 

(2) To the OFF-cubes which have one or more pans covering the 
comspaKLing pam of cl, Esbe them to the Asymmetrical Union with c,. 
(3) To the rest of O F F a k .  6nd the. cubes which are dispint with all of the 
other OFFabes. Take them to the Asymmancal ' union with c,.. 
(4) In the rrmaining OFF-st. Wthe d i s j o i l l t ~ a n d  Q: 

. 

c( 

,=I 

pare every part of c, to the comspondlll . g pert of all the OFFCUbes. 

a) F i  the largest cube in thc each group, and compute Asymmetrical 
Union of this cube and c,. If no single largest cube exists, choose any of 
them. 
b) Sharp all of the otha OFF-cubes in the group from the result of the 
above step. 

(5) Compute the Intersection of the rcsulu in the steps 2). 3), and 4.b). 
Example 5. Consider a multi-valued function with an OFF-set as follows: 

XI xz 

I3 



and aSum(x1, T I )  =TI, = (1 11 1-1 1101 11 1). 
To 12.  because R I a SI,, Rz a Sh, and the cube 12 is dispint to the cubes 13 

and r 4 ,  thmfore; 

and a ~ u m  (xl, iz) = T,, = (1 1 1 1-1 1001 1 1 1). 
To 1 3 ,  becauseR1 a St,. Rz a Sa. but S1, cS1,, which means the cubes r 3  
and r4 are overlapped. Then it is not necessary to compute the asymmemcd 
union for both the cube I 3 and cube r4. Since the cube t 3 is not Larger than the 
cube and vice versa, the cube t 3  is chosen randomly, 

- 1101-11111111 
1 3  = [1111-11111aoJ 

andarum(x,, T3)=T,. 
Sharp the cube t 4  from the set a w n  (xl, T3). 

V. Coveringsearch 
search methods are the good approaches for solving a covering 

table. but they are usually time consuming. We are inwrested in using parallel 
prowsing for the desigrt of a fast search method. The uhautiw uchniqw.  
to semh every possible combination of the problem, is easily improved for 
the above reason. Other parailel algarithm in [HI. 

In the set covering problem, from a given covering anay and costs d 
rows. the lows must be selected to COVCI all the columns and minimize & 
total Cat  of sel~cted rows. HUE is an example of the covering m y  in & 
form of a list 

1 2 3 4 5 6 7 8 9  
A 1 3 5 7  A. 1 0 1 0 1 0 1 0 0 
B . 4 6 9 7  B.OOO1O1lO1 
C . 8 3 2  e=> c . 0 1 1 0 0 0 0 1 0  
D. 6 1 4  5 7 8 D. 1 0 0  1 1 1 1 1 0  
E . 9 3 5  E. 00  1 0  1 0 0 0  1 

A takddon't take parallel method is represented by a binary string which 
means using a five digit binary number to represent all possible combinations 
of rows as candidates for a solution. For example, if we take the saing OolOt 
and the string 11010, the selection processes wwld look like this: 

The 

I 2 3 4 5 6 7 8 4  I 2 3 4 5 6 7 8 3  
A Dont take------- I O 1 0 1  0 1 0 0  
B. Dont take------- 0 I I000000 
t. 0 I I 0000 I 0 . Dont take------- 
3. Dont take------- 1 0 0 1  I 1  I IO 
:. 0 0 1 0 1 0 0 0 1  Dont take------- 

(Strlng 00101) (Strlng 11010) 
The strings describe candidates--each 1 means the selected TOW, and the 

cast of the string is the number of ones. So, it is possible to test the string by 
Boolean (bit by bit) addition of the rows selected (marked 1) in this suing to 
verify whether it is a complete solution. If it is a sohion. its cost is calcu- 
lated. If the new solution costs more than some solution already found (has 
more ones in the smng), then it is discarded The actual minimal cost is a glo- 
bal variable known to all proccssots. If we try to obtain the exact minimum 
soluticm, the set of all strings m m  be generated. 

Let us obsct.vc that this method does not qu i re  time consuming and 
complicated array copying, but htead replaces it with fast binary word 
operations that would be even faam on s p e d  vector processo~ A 

myid to 2- - 1 step ( n u m b  O f p n x r s s o A  e- 
s i m p l i s e d ~ o d c f o r t h e ~ l a l ~ t h m i s :  

PARALLEL 
DO a c m t  

clear tempsolution : storage ofarray 
test [each bit of count1 

(ifbitset  

test [ tempsolution for complete coverage ] 
[ add row [indexed by bit] to tempsolution I 1 

[ if coverage 
[ test [ if solution is better than best I 
( set best to beaer than best 

set goodsolutim to count : aunt  was an index I I I 
endcount 

The program was written in C for Sequent Balance" computer. and runs 
both as serial and as parallel. The speed-up 10.2 was achieved on 11  proces- 

seEEuU2 
sors (see Fig. 3). 
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Figure 3. Sample output rime seconds. 
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