KUAI-EXACT: A NEW APPROACH FOR MULTI-VALUED
" LOGIC MINIMIZATION IN VLSI SYNTHESIS

Marek A. Perkowski, Pan Wu, Keith A. Pirkl

Deparmment of Electrical Engineering, Portland State University
Portland, Oregon 97207, tel. (503)464-3806x23.

ABSTRACT

A new logic minimizer called KUAI-EXACT has been
designed to generate the exact minimum solutions for multi-
valued input logic expressions. The advantage of this minimizer
is to generate as few prime implicants as possible. A new algo-
rithm is presented here for directly generating essential prime
implicants in a time close to that for generating a prime impli-
cant by the ESPRFSSO—MV expansxon process. We discuss
how to g the Y primes implicants in
order to avoid setting up a covering table, and present the
corresponding algorithms for non-cyclic functions. We also dis-
cuss the case in which a covering table should be created for
obtaining an exact minimum solution and consider how w0 use
the parallel processing techniques for the best speedup

1. INTRODUCTION

After the "Expansion” process was first created by Hong [1] in 1974, it
was widely used in many well known minimizem for logic minimization, usu-
ally with some minor impro for , MCBOOLE (2], MINI-II
[3), ESPRESSO-II,-MV,-EXACT {4],{5,(6]. m-, reason for this is that it is
considered to be the fastest p for g g prime impli which are
then -used to generate the mml pnme lmphcama and set up the covering
table. R ly, therefore, with the ber of input variables in VLSI circuits
increasing, this process becomes more and more time consuming. This is
because the number of all prime implicants can be of the order of 3*/n for
two-valued input n-variable functions 1] and will be even larger for multi-
valued input functions (3]. Therefore, it is urgent to design a new algorithm
for directly generating essential prime implicants. In this paper, the algorithm
for the above task will be presented and its time for generating an essential
prime implicant is close to that of g g a prime impli by the
ESPRESSO-II "expansion” process.

The other reason for generating all prime implicants is to set up a cover-
ing table which will help to obtain an exact minimum solution (7], (8], [9}. In
ESPRESSO-II and ESPRESSO-MV, a covering table, as well as the genera-

solving the covering problems. This algorithm is especially very efficient for
functions with many symmetries in cycles.

In recent years, a multi-valued input logic expression is often employed as
input data to logic synthesis instead of a binary-valued input expression [11]-
[15]. The reason is that the silicon area required for the realization of multi-
valued mputloglc(PLAmdlmpmdecodas) is smaller than one required for
two-valued input logic in PLA. Also, the multiple-output minimization for
PLA ization can be pulated as a special case of a multi-valued
mm:mmuon A detailed discussion of muiti-valued input logic is presented
in (17], {51, [16]. In this paper, all considerations will be applied to the multi-
valued input logic functions. Also, the approach presented here was espe-
cially created to find exact solutions with very good speed-ups on parailel
computers with many processors. The report [17)] detailizes parallelization.

2. THE DESCRIPTION OF KUAI-EXACT

KUAI-EXACT, where "KUAT" is translated from Chinese by pronuncia-
tion and means "fast”, is an algorithm for multi-valued logic minimization. It
can be applied to both completely and incompletely specified logic functions.
It can accept either the ON-set and OFF-set or the ON-set and DC-set as input
data. ﬂwseqwnccofpmesofKUAl -EXACT is described below:

a) Submi l This p the subminimal impli-
cants from the mmal ON-set oflhc funcuorL The purpose of using the sub-
minimal implicants instead of minterms as the input data of the next process
is to save the execution time. Also, the purpose of using them instead of ini-
tial ON-cubes is to guarantec that all prime implicants can be generated
which means obtaining an exact minimum solution.

b) Essential primes; Use a fast and efficient method to generate all essen-
tial prime impl; without g g all prime impli The time for an
essential prime implicant generation is close to the time for generating a
prime implicant by the "erpansion” process in ESPRESSO-MV.

¢) Secondary ial primes; G all secondary essential prime
implicants to obtain an exact minimum solution without solving the covering
problem for non-cyclic fi This p is only applied to the
reduced function which contains all non-essential primes of the original func-
tion.

d) Exension; Use a fast and efficient algorithm to generate all prime impli-
cants for the remaining cyclic function. This process is totally different from

tion of all prime implicants, is not needed because only the near
solutions are generated. Usually, these solutions are satisfactory for the
design requi but i they are not. Also, it is hard to predict
how far these solutions are from the minimal solutions. McCBOOLE and
ESPRESSO-EXACT, two recent typical algorithms for exact minimization,
do not overcome the above problem of generating all prime implicants. In this
paper, we avoid using a covering table, using the following principle: "for a
non-cyclic function, an exact minimum solution is formed by only the essen-
tial and secondary ial prime impli of the fu ". The algorithm
will also be presented for generating the secondary essential prime implicants
without a covering table.
For a cyclic function, wesn]lneedawmmgmbleloudmobtammgm
exact minimum solution {10]. After, b s all 1 and
d: ial prime impli fmmt.heongmalﬁmmmeredmed
funcuonwxllcontamfewercubesmmeONsetandnmwbumDCsa
(don’t-care set). Therefore, the ber of all prime impli for the reduced
function is much less than that for the original function. Also, to the above
reduced function with many don’t-care, we propose a new algorithm to gen-
crate all prime implicants much faster than the "expansion™ process of
ESPRESSO-II. At the end of the paper, a parallel algorithm is presented for

the " ion” p of ESPRESSO-MYV in its principle.
e) Covenng search; Solve the covering problem by the parallel search
method.

L Subminimal implicants

Definition 1. The minimal implicant of an ON-cube c, denoted by MI(c), is
defined as the product of all prime implicants covering the cube c.
Definition 2. The subminimal implicant, denoted by SI, is defined as any
implicant which is contained in a minimal implicant.
Theorem 1. Starting from subminimal cubes, there is a guarantee for generat-
ing all prime implicants. In the case of starting from arbitrary initial cubes,
there is no guarantee to generate ail prime implicants. (All proofs in [17]).
Algorithm 1. {To find ail subminimal cubes for function F)
(1) Find the set CONS(ON) of all consensuses of cubes from the initial
cover of the function;
(2) Find the set PROD(F) of all products of pairs of cubes from an
CONS(ON) and an ON(F):
PROD (F)={c;in¢j | cie ON(F) & c; € CONS(ON)};
(3) Find the et SIF) of all subminimal
SI(F)=(ON(F)# CONS(ON)) L PROD;

cubes by:

401

ISCAS 89

CH2692-2/89/0000-0401 $1.00 © 1989 IEEE

Example 1. Consider function f = bd +abcd to generate all subminimal
cubes, step by step, by using Algorithm 1. To ON(f) = (@bcd, bd), (1)
CONS(ON) = (adz}, (2) PROD(F) = {abed, abed), and (3) SI(F) = (abcd,
abcd, abd, bed). The comresponding ON(F), CONS(ON), PROD(F), and
SI(F) are shown in Fig. 1.

cd)

- 8000111 10 911110 ot1110 Kdooo111 10

00[0 (37010 %g q 00[0K1] 010}

01 0ATNO| o1 AL a[(1 o1 oKy]

n[oNIo] 1 1 1{0 91

10{0] 0[0]0] 10 10 10[0[0[010
ONG CONS(ON) PROD(F) B

Figure 1. The sets for Exampie 1.
1. Essential Primes

Definition 3. The supercube SC of the set of cubes, (¢4, ¢z, Ci)s 1S
defined as a smallest cube that covers all the cubes in this set.

Definition 4. The overexpanded cube of a cube ¢, denoted OC(c), is defined
as the supercube of ail prime cubes which cover the cube c.

According to the Definition 4, a direct and efficient method, for generat-
ing the overexpanded cube OC(c) of a cube c, is to first generate all prime
cubes which cover the cube c. Then OC(c) will be the bit-by-bit OR of these
prime cubes. Although this method is proper, it would take much time to gen-
erate all prime cubes, and would need much memory to store them. A new
method, which will avoid generating all prime cubes, will be discussed below.
Definition 5. A single-variable-expansion cube (SVE cube, for short) of cube
¢ is defined as a cube which is obtained by ding only one variable of the
cube ¢ until no more expansion can be performed. Thus, if ¢ =X‘,"X§’.....X,s.'.
the expression of sinﬁle-vaﬂable-expmsim on variable i is as follows:
SVE(cX)=X3'.. X" ..X™; Where R; is the maximal possible set for X;.
Theorem 2. The overexpanded cube OC of a cube ¢ can be generated by bit-
by-bit OR of all single-variable-expansion cubes of the cube c.

From the Definition 5, it is obvious that a SVE(c) cube may not be a
prime cube. Then, by using the above theorem, to generate all prime cubes is
not y for g ing an o panded cube.

In the expansion process of ESPRESSO-MV, a cube is expanded o a
prime cube by expanding all variables contained in the cube c. So, if there are
m variables in a cube c, the time, for expanding the cube ¢ to a prime cube,
will be m times of the time for the single-variable-expansion, Here, the time
for generating an overexpanded cube is m times of the time for getting
SVE(c) cubes plus the time for one union operation, and, therefore, it is
almost the same as the time for a prime implicant expansion.

Algorithm 2, {To generate the overexpanded cube of a cube c)
(1) find all signal-variable-expansion cubes by_v.he "expansion” process.

(2) find the overexpanded cube by: OC (c) = 'U SVE (c.X;);

il
Example 2. For a function with an ON-set as [X ®9y(1:234) x(234)y234))
Consider a subminimal cube ¢ = XY@, then, SVE(c, X) = X*y(1:234),
SVE(c, Y) = XY@ and overexpanded cube OC(c) = SVE(c, X) U
SVE(, V) = X@349yt.234 .

All of the subminimal cubes in SI(F) are listed one by one from top to bot-
tom. When the ial primes p is d, the subminimal cube on
the top of the list is taken first, then the next. For setting up this kind of list,
the set SI(F) is divided into three subsets. One is the set PROD(F) which con-
tains the products of the initial cubes and consensus cubes, and is obtained by
employing the step 2 of Algorithm 1. Another is the set REST(F) which is
equal 1o ON(F) # CONS(ON), and is obtained by using the step 3 of the
Algorithm 1. The last one is the set SEPC(F) which is empty before the pro-
cess of ial prime impli i8 and will in those sub-
minimal cubes that are adjacent to essential prime cubes.

TheordcringofmesemreesubsetsismauhesetPROD(F)ismﬂwmp
of the list, then the set SEPC(F), and last is the set REST(F), Also inside the
sets PROD(F) and SEPC(F), the smaller cubes are put on the top of the larger
cubes. The reason for this kind of ordering is to tend to put those cubes, that
are hard to merge with others or, in other words, contain some essential ver-
tices (1}, on the top of the list. This will result in first generating those overex-
panded cubes that have higher possibility to be essential prime cubes. After
an essential prime cube is found, all subminimal cubes covered by this essen-
tial prime cube will be deleted. Therefore, the ber of iterations can be
reduced. In the set REST(F), the larger cubes are put on the top of the smaller
cubes. The reason here is that, if an essential prime cube is found, this essen-

Y

bminimal cubes as possible.

tial prime cube is expected to cover as many
This would also reduce the number of iterations.
Theorem 3. To a given function F with a subminimal cover §I(F), the
overexpanded cube OC(c) of a subminimal cube ¢ is an essential prime cube,
if it satisfies the condition: OC(c) < SI(F).
Algorithm 3. (To generate ail essential prime cubes}.
(1) Take a subminimal cube c, from the ordering list of SI(F), and find the
overexpanded cube OC(c,) by using the Algorithm 2.
(2) I OC(c,) < SI(F), then; .
Sharp OC(c,) from SI(F), replace it with don’t-cares in SI(F), and put it
to the final solution set .
Find all subminimal cubes which are adjacent to OC(c,) in the set
PROD(F) U REST(F), and move them into the set SEPC(F).
(3) Iterate the above steps until all subminimal cubes in the set PROD(F) v
REST(F) have considered.)
Example 3. Consider the function f= X°Y! + X1-2y(:»_ The corresponding
subminimal set is (X°Y!, X4y, XDy}, the set PROD(p) is (X°Y',
XY}, and the set ON(H#CONS() is (X ">Y). By using the above m§¢s
for cubes ordering, the ordering list of SI(f) is (X°Y!, X@2y!, x93},
And the ing three ordered sets are:

PROD(/) = (X°r!, XY}, SEPC(f) = @, and REST(f) = (X-?¥?}.

The sequence of steps of applying Algorithm 3 is presented below.

(1) Take the cube (X°Y") first and obtain OC(X°Y') = X @13y!,)

2) Since OCXY!) < SI(), the cube X©!PY? is an essential prime cube.
Then this cube is deleted from the set SI(f) and put in the final solution. The
cube X4PY?, which is adjacent to the above OC, is put in the set SEPC(f).
Now the status for the three sets is:

PROD(f) = @, SEPC(f) = (X*¥¥?), and REST(f) = @.

(3) Take the cube X-9Y?, the overexpanded cube is OC =X Dy,

(4) Since the cube OC = X #?Y®? is also an essential prime cube, this cube
is deleted from the subset of SI(f) and put in the final solution.

(5) Stop here, because the set of SI(f) is empty.

III. Secondary essential primes

After all essential primes has been extracted from the set of SI(F) of the

given function F, the cubes remaining in SI(F) will cover a new function F ;.
Obviously, the fi F, is included in the function F and o only the
secondary essential primes and the cyclic cubes. In this section, it is discussed
how to find all the secondary essential primes in the set SI(F).)
Definition 6. A redundant prime impli : d e,, is defined as a prime
implicant which ¢ only the subminimal cubes included in other prime
implicants and possible don’t-cares.

Definition 7. A secondary essential prime implicant, denoted ¢, is defined as
a prime implicant which will become an essential prime implicant after all
prime impl which i with e, are deleted.

A secondary essential prime is actually not an essential prime. It will
become the essential prime only after the essential primes, which are adjacent
to it, are first all deleted. Therefore, secondary essential primes are always
adjacent to the essential primes.

After all essential primes are extracted from the function, the sets
PROD(F) and SEPC(F) arc merged into one set denoted by SEPC(F,). The
set REST(F) now becomes the set REST(F). The ordering for SEPC(F,) is
that the set SEPC(F) is on the top of the set PROD(F). The reason is that the
cubes in the set SEPC(F) have more possibility to be the secondary essential
primes than the cubes in the set PROD(F) because they are all adjacent to the
essential primes. In the set PROD(F), only those cubes which are actually the
essential primes but are surrounded by some don’t-cares will be the secondary
essential primes. The inside ordering of the sets SEPC(F) and PROD(F) is
kept the same as before because the property of the secondary essential
primes is the same as that of the essential primes. The secondary essential
primes found are still expected to cover more subminimal cubes.

Only the set SEPC(F) is ordered and considered for generating all secon-
dary essential primes and the set REST(F;) will be ignored. The reason is
that no cubes which are adjacent to essential prime cubes will exist in the set
REST(F ;). All cubes which are adjacent to the essential primes have been put
into set SEPC(F) in Algorithm 3 already. The set REST(F,) is only con-
sidered at the time when the set SI(F,) = SEPC(F;) U REST(F,) is con-

idered. After a dary ial prime is found, all cubes that are adja-
cent to this secondary prime and are included in SI(F,) will be appended to
the bottom of the list of the ordered set SEPC(F ;).

402

From Definitions 6 and 7, a direct and efficient method to generate the
secondary ial impli from the sub | cubes is to generate the
set Pl(c,) of all prime cubes which cover the specified subminimal cube c,.
Then, check which prime cubes in PI(c,) are the redundant prime cubes and
delete them from Pl(c,). If there exist two or more remaining prime cubes in
PI(c,), no secondary essential primes will exist in Pl(c,). If there is only one
prime cube left in PI(c,), this prime cube is a secondary essential prime.
Algorithm 4. {To generate all secondary essential prime cubes).

(1) Take first subminimal cube ¢, from the ordered set SEPC(F,) and gen-
erate all prime cubes PI(c,) which all cover c,.

(2.1) Take the largest prime cube P; from PI(c,), and sharp c, from P;. If

(P; # ¢,) ¢ DC(F,), then, sharp P; from the set PI(c,).
(2.2) Take the current largest prime cube, and iterate the step 2.1) until one
of two following cases will happen.
a) If there exist two prime cubes which have been checked not to be
the redundant prime cubes, then go to step 3).
b) If there is only one prime cube left in PI(c,), move it in the final
lution. Find all subminimal cubes, which are adjacent to P;, in the
SI(F), and append them to the bottom of the list SEPC(F ;).
(3) Take another subminimal cube from the current top of SEPC(F), iterate
step 2 until the set SEPC(F) is empty or all subminimal cubes in the set are
checked not to be the secondary essential primes.
Example 4. Consider a function shown in Fig. 2.a. After all subminimal
cubes are generated, the set PROD(F) contains all subminimal cubes and both
REST(F) and SEPC(F) are empty.

After the essential cube abe is found and deleted from the set SI(F), the
new K-map is shown in Fig. 2.b. Now the set SEPC(F) contains the cubes
t,, 12, and ¢y shown in Fig. 2.c. The PROD(F) becomes the set [SI(F) # abe
#t,], where i=(1,2,3), and REST(F) is still empty.

Take the cube _f,, and generate all prime cubes which cover f;:

=abcd, ¢, =bcde. Since the cube ¢, is a redundant prime cube and the
cube ¢ is not, ¢, is a secondary essential cube. It is put in the final solution
and the cube abcde, which is adjacent to ¢, is appended to the botom of the
set SEPC(F (). And, similarly, the cube ¢, is a secondary essential cube and
the cube abcde is appended to the set SEPC(F). _

To t,, all prime cubes are p, =abcd, p,=acde, and p,=bcde.
Since p, 1sre¢mdantmbemdbod\p;andpg are not the redundant cubes,
t5 is not a secondary essential cube.

Repeat the above procedure for the new SEPC, the final results are shown
in Fig. 2.d. There exists a covering cycle.

Secondary Essential cubes
cd cde
Sot00 01210 10 0f ® oo 1b1011011 101100
00 1 00! 1)1
01 1 o[\]i[d 1
1 pEAY, 1 N1
1007 1 10{~ C N
Essential (EC) cubes
a Initial ON-set. b‘mesu(ON(F)ﬁZC)
I e .
’ 01 lll 100
aD\0OMO101101G1 1011 1101100 pb 000 01 °no '1
00T 1 1001 | © 1 '
o1] KDL 101] K11 !
n O] ol 5t AP N ;
A '
10| 10 - 1101 - -1- KL “dt
7 .

1 ty \ w Covering cycld
¢ oessentiall Laeoooeo- Pl
! L 4

c. The set SEPC(F). d. The final resuits.

Figure 2. The procedures for Example 4.

IV. Extension

Aﬁcrmepxmmesdsmbedmlasttwosecnonsmcxecuwd,aum
tial and secondary essential primes have been extracted. If the set SIF) is
empty.KUAIEXACYwulstq)manddwﬁmlsoluuoncmmnsaﬂessew
tial and secondary essential primes. If the SI(F) is not empty, it will contain
only the cyclic cubes which cover a new function, denoted by f. To find an
optimal solution for the function f, a covering table should be used. There-
fore, all prime implicants shouid be generated.

All cubes left in the sets SEPC(F,) and REST(F,) are now merged into
the set CC(f). The list of CC(f) is sorted so that the largest cube is put on the

403

mofmanduwsmallcstone-salmebomm The reason is that the largest
cube may covered by more prime cubes or by larger prime cubes. These
larger prime cubes will have more possibility to completely cover other prime
cubes, which will then be generated from other subminimal cubes.”Then the
covered (completely) prime cubes are removed before they are put in the cov-
ering table. This will reduce the numbers of rows in the covering table.
Definition 8. For a multi-valued input Boolean function, the associate primes
of ¢, are defined as those prime cubes which cover one specific subminimal
cube ¢ . An associate cover of ¢, is the set of all associate primes of ¢ .
From the current top of the ordering list of CC(f), a subminimal cube c; is
taken. All associate primes of ¢, will be generated and will be compared o
the prime cubes which have been put in the covering table already. If any
prime cube ¢, in PI(c,) is the same as or is contained in other prime cube in
the covering (able, cp is deleted. The remaining cubes from Pl(c,) are added
to the covering table where the subminimal cube will be added as a new
calumnandthemmembewdlbeaﬂdedasanewmw Also, some ones are
o the the new rows and all the
columns. This pmcedu:c will be mpeawd until the set CC(f) becomes empty
Definition 9. Consxdcr two cubes ¢; and ¢, where cl—x,S xzs
Cg=Xy ‘X3 '..Xy . AnAsymmetrical Unionofc, and c; lsd.eﬁned as.
@ ifSinR =S, (i=1,2..,n)

ﬂm(01,01)={52 S: CR;

If ?is an array of cubes, then, asum (¢, Py=_j asum (c ,¢;).

7
Theorem 4. Assume that an n-variable multi-valued input Boolean function f
contains m cubes, ; (i =1, 2, m), in the OFF- sel. An associate cover

H(c,), where ¢, € SI(f), can be generated by: H(c,) = masum(cl,r)

When an associate cover is generated by the above ‘I‘lworem some redun-
dant cubes are generated as well, particularly, for multi-valued logic. To
reduce the ber of those redundant cubes, two considerations are dis-
cussed. First, the cubes in the OFF-set should be rearranged at the beginning
of the process "extension” so that the number of the cubes in the OFF-set
could be decreased as much as possible and the sizes of the cubes in the
OFF-set could be as large as possible. A d ion and correspond-
ing algorithms are presented in [17]. Second, if two or more cubes of the
OFF-set overlap, the associate cover would contain many redundant cubes.
To reduce this kind of redundancy, we choose the largest OFF-cube to do the
Asymmetrical Union with the subminimal cube. Then a Sharp operator is
employed to cancel all other cubes from the result of the Asymmetrical
Union. Because the number of the overlapped cubes is small, a Sharp opera-
tor will not take too much time here.

Algorithm 5. {To generate an associate cover for a subminimal cube}
(1) Take the first subminimal cube c¢; from the ordered set CC(f) and com-
pare every part of ¢; 10 the corresponding part of all the OFF-cubes.
(2) To the OFF-cubes which have one or more parts covering the
corresponding parts of c;, take them to the Asymmetricai Union with ¢;.
(3) To the rest of OFF-cubes, find the cubes which are disjoint with all of the
other OFF-cubes. Take them to the Asymmetrical Union with ¢;..
(4) In the remaining OFF-set, find the disjoint groups and do:
a) Find the largest cube in the each group, and compute Asymmetrical
Union of this cube and ¢;. If no single largest cube exists, choose any of
them.
b) Sharp all of the other OFF-cubes in the group from the resuit of the
above step.
(5) Compute the Intersection of the results in the steps 2), 3), and 4.b).
Example 5. Consider a multi-valued function with an OFF-set as follows:

stad di

X, X,
. $y—S2al ry100-0001 f
OFF (F) = 5 52| _|0100-0011000q _ |¢
s —s,, 0010~000001101 = |¢
$1—Sa, 0011-000001 t

And, the ON-cube: x; = (R,—R>) = (1100-10000000),
To ¢y, because Ry c §,,, therefore:

7, = [0011-1111111 -t
1111-11101111

and asum(x;, 7,)=T), =(1111-11101111).
To t;, because Ry & §y,, R @ §3,, and the cube ¢, is disjoint to the cubes 74
and ¢4, therefore;

7, = [1011-11111111 -
1111-11001111

and asum (xy, T;) =Ty, =(1111-11001111).
To 13, because Ry & §y,, R2 @ Sy, but §y, < §,, which means the cubes ¢3
and ¢4 are overlapped. Then it is not necessary to compute the asymmetrical
union for both the cube ¢5 and cube ¢,. Since the cube ¢5 is not larger than the
cube ¢4 and vice versa, the cube ¢5 is chosen randomly,
Ta= 1101-1111111]]
37 [1111-11111001
and asum(xy, T3)=Ts.
Sharp the cube ¢, from the set asum(x,, 73).
110011111111
(asum(xy, T3)) # 14 = {1101-11111011
1111-11111001

At last, compute the intersection for final result:
H (xy) = (asum (x1, 1)) N (asum (x1, T2)) N (asum(x,y, T3) # (14))

1100~1100111 St
= (1101-1100101 s
1111-11001001

V. Covering search

The tree search methods are the good approaches for solving a covering
table, but they are usually time consuming. We are interested in usmg pamllel
processing for the design of a fast search method. The exh
to search every possible bination of the problem, is easily 1mpr0ved for
the above reason. Other parallel algorithm in {18].

In the set covering problem, from a given covering amray and costs of
rows, the rows must be selected to cover all the columns and minimize the
total cost of selected rows, Here is an example of the covering array in the
form of a list.

53|

123456789
A.1357 A.101010100
B.4697 B.000101101
C.832 <=> C.011000010
D.614578 D.100111110
E.935 E.001010001

A take/don’t take parallel method is rep dbya bmary smng Whlch
means using a five dlgn binary ber to all p
of rows as candidates for a solution. For example if we uke l.hc string 00101
and the string 11010, the selection processes would look like this:

123456789 123456789
A Dont take==~=--- 101010100
B. Dont ‘take-=====-- 011000000
C. 011000010 Dont take=-=----
0. Dont take-----== 1001 Ht1t10
. 001010001 Dont take-—-----

(String 00101) (String 11010)

The strings describe candidates--each 1 means the selected row, and the
cost of the string is the number of ones. So, it is possible to test the string by
Boolean (bit by bit) addition of the rows selected (marked 1) in this string to
verify whether it is a complete solution. If it is a solution, its cost is calcu-
lated. If the new solution costs more than some solution already found (has
more ones in the string), then it is discarded. The actual minimal cost is a glo-
bal variable known to all processors. If we try 10 obtain the exact minimum
solution, the set of all strings must be generated.

Let us observe that this method does not require time consuming and
complicated array copying, but instead replaces it with fast binary word
operations that would be even faster on special vector processors. A
simplified pseudo-code for the paralle! algorithm is:

PARALLEL
Do a count from myid to 2™ - 1 step (number of processors work-
ing)
clear tempsolution : storage of array
test [each bit of count]

(if bit set
[add row [indexed by bit] to tempsolution] }
test [tempsolution for complete coverage]
[if coverage

[test [if solution is better than best]
{ set best to better than best
set goodsolution to count : count was an index } } }
endcount
The program was written in C for Sequent Balance™ computer, and runs
both as serial and as parallel. The speed-up 10.2 was achieved on 11 proces-
sors (see Fig. 3).

SPEED UP
[] [
£ Paratieirn i
é [serrairun
i Pt i
&]
&]
E -
2
T i : ! H H
] 0 <0 L) aw
secongs
‘Progrem R manoer of Lines of Sata
7 12 14 13 "
Sertal 99 1498 7906 16057 &N
Parsilel 103 296 926 150 N7
Figure 3. Sample output time d

3. LITERATURE

(11 S.J. Hong, R.G. Cain and D.L. Ostapko, "MINI: A heuristic approach for
logic minimization,” IBM J. R&D, Vol.18, pp.443 - 458, Sept. 1974,

2] MR. Dagenais, VK. Agarwal and N.C. Rumin, "McBOOLE: A new
procedure for exact logic minimization,” /EEE TCAD, Vol.CAD-5, No.l,
Pp.229-237, Jan. 1986.

[3] T. Sasao, "Input variable assignment and output phase optimization of
PLA’s,” JEEE TC. Vol.33, No.10, pp.879-894, Oct. 1984.

[4] RX. Braywon, G. D. Hachtel, C.T. McMullen and A.L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Boston, MA:
Kluwer Academic Publishers, 1984.

[5] R.L.Rudell and A L. Sangiovanni-Vincentelli, "Multiple-valued minimi-
zation for PLA optimization,” JEEE TCAD, Vol.CAD-6, No.5, pp.727-749,
Sept. 1987.

[6] R.L. Rudell and A.L. Sangiovanni-Vincentelli, "Exact minimization of
multiple-valued functions for PLA optimization,” Proc. ICCAD, Nov. 1986.
{71 W.V. Quine, "The problem of simplifying truth functions,” Amer. Math.
Monthly, Vol.59, p.521, 1952.

(8] W.V. Quine, "A way to simplify truth functions,” Amer. Math. Monthly,
Vol.62, p.627, 1955.

[9] E.J. McCluskey, Jr., "Minimization of boolean functions,” Bell System
Tech. J., Vol.35, pp.1417-1443, Apr. 1956.

[10] M.A. Perkowski, J. Liu and J. Brown, "Quick Software Prototyping:
CAD Design of Digital CAD Algorithms," in "Progress in Computer Aided
VLSI Design," edited by G. Zobrist. Ablex Publishing Ccrp., 1989 (in print).
[11] H. Fleisher and L.1. Maissel, "An introduction to array logic,” /BM J. of
R&D, Vol.19, pp.98-109, Mar. 1975.

{12] T. Sasao, "An application of multiple-valued logic to0 a design of Pro-
grammable Logic Arrays,” Proc. 8th ISMVL, 1978.

[13] Y.S. Kuo, "Generating essential primes for a boolean function with
multiple-valued inputs,” IEEE TC. Vol.36, pp.356-359, Mar. 1987.

{14] T. Sasao, "MACDAS: Multi-level AND-OR circuit synthesis using
two-variable function generators,” Proc. 23rd DAC, pp.86-93, Jun. 1986.

[15] T. Sasao, "An algorithm to derive the complement of a binary function
with multiple-valued inputs,” JEEE TC. Vol.34, pp.131-140, Feb. 1985.

[16] S.Y.H. Su and P.T. Cheung, "Computer minimization of multivalued
switching functions,” JEEE TC. Vol.21, No.9, pp.995-1003, Sept. 1972.

[17) M.A. Perkowski, P. Wu, "A new approach to exact minimization of
Boolean functions with multi-valued inputs,” Technical Report, Dept. EE.,
Portland State Univ., Portiand, Oregon, Sept. 1988.

[18] K.A. Pirkl, "Comparison of parallel set covering algorithms,” Report,
P.S.U. 1989.

404

