REAL TIME GRAPHICAL SIMULATION OF SYSTOLIC
ARRAYS

Hai Van Dinh Le
Marek A. Perkowski
Department of Electrical Engineering
Portland State University
P.O. Box 751
Portland, Oregon 97207
tel. (503) 464-3806 x 23.

ABSTRACT

This paper p a new pt in visual simulation -
Systolic Arrays Graphical Simulator, SAGS - that allows for the
visualization of the data and control flow in various systolic
arrays on the monitor screen. The systolic architecture is con-
structed interactively from various basic cells and arrays. The
simulator has successfully been used to simulate several well-
known and new architectures and has even proven itself to be
useful in finding and correcting an error in a well publishized
algorithm for general purpose matrix computations that is
currently being realized in hardware and can have potential
applications that require extreme reliability.

1. INTRODUCTION

Simulation techniques play an imponant role in design analysis,
cofrectness verification, performance ion, and test ion for digi-
tal systems. Many simul are widely available for the university and
industrial user communitics. Recently a new generation of simulators is
becoming popular that permit the user to visualize the data flow, logic levels,
or register contents in the form of ani d sch ics or timing di

2. SYSTOLIC ARRAYS GRAPHICAL SIMULATOR
From the very begmmng. SAGS was designed to simulate the systolic
y of any fi These configuration are specified to SAGS by
means of script files. A script file contains all of the vital information about
the system: its number of arrays, their types and sizes, the way they are linked
, and the microp used in each cell.
A script file also specifies when and where the input data and the con-
trol signals should be fed into, and the output data taken from, the system.
SAGS allows for systems with multiple input, control, and output data
streams. Each input or control stream is stored into ASCI files prior 10 being
accessed by SAGS. Similarly, SAGS outputs are written into ASCII files.
During the simulation run time, SAGS consistently and successively
executes all of the steps involved in a problem, showing the results from each
step on the screen. This is referred to as a mulfisiep mode of execution. It
can be stopped and restarted at any time. Alternatively, SAGS can single-step
through the problem, allowing a more detailed inspection of the temporary
results, which is referred 1o as a single-stepped mode of execution. Switching
between these two modes can be easily accomplished at any time by typing
the appropriate command in at the keyboard.
Visually, SAGS allows for all of the arrays of the system to be seen on
the screen as long as each array has a reasonable number of celis.
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[12], (15], [16], [17], [18], (19}, [20], [21).

The arrival and wide acceptance of systolic processors (1], {2], [4], (5],
[6], together with the difficulty involved in designing as well as the problems
concerning the analysis of systolic algorithms, call for new kinds of CAD
tools for their synthesis at many levels, optimization, verification, and simula-
tion. It would be very advantageous if these tools were visual and combined
the properties of the tools from [12], [15] - [21] with interactive editing
("schematic capture") and the modification of systolic architectures of various
sizes, types of arrays, and cells linked in many configurations. Perhaps visual
simulators will be the first tools of this type. Such a tool - the visual simulator
of systolic arrays - is proposed below. The idea behind such a tool seems
very natural and perhaps comes from the originator of systolic amrays, H. T
Kung, who would overlap and shift several overhead transparencies to illus-
trate data flows in systolic arrays. With the exception of [11), however, we
have not been able to identify such tools and we are also not aware of anyone
using them in practical applications.

The classical method of displaying the simulation data and the results is
totally useless for systolic arrays. A system designer must be able to observe
the movement of every piece of data as it traverses through the array at all
times to verify whether a given algorithm is comrectly mapped into the
corresponding array architecture. He must aiso be able to see the results from
the operations performed on each piece of data by any of the cells. Further-
more, for debugging purposes, he must be able to look into the registers of
every cell at any one time and see the values of all the control signais present
in that cell. In short, he must have the most detailed view of the entire system
that may consist of many arrays composed of many types of cells. This per-
spective must be available 10 him with the accuracy of single pulses during
the entire simulation process.

To meet the above requirements, a new breed of simulator - a systolic
array simulator - has been developed and built by us to aid a hardware or
software designer in the task of designing, evnluaung, venfymg, debugging,
and teaching systolic sy . It was d | that this simul
should be graphics based, hence its name Systolic Arrays Graphical Simula-
tor, or SAGS for short.
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Becanse the real estate of the monitor screen is limited, arrays can be over-
lnppad. Thxs means that one from the background can be brought into the

ground to be scrutinized at any time. In addition, individual arrays can be
interactively positioned anywhere on the screen to maich the system-
schematic closely.

SAGS allows for an array 10 be viewed in two different ways: a real
perspective, with the array and its cells appearing smalier and therefore con-
taining less information, and a full perspective in which the cells show all
their register contents. The perspective of an aray can be specified in the
script file, or changed at the run time. All visual changes made to a system
configuration at run time can be recorded back to the script file for reuse. A
status bar on the top of the screen displays additional information such as the
current step number, the total execution time, and the array actually being
selected. The user can measure an execution time for a cell from their micro-
codes. This time unit is used as a step which allows for the evaluation and the
comparison of the speed of various aigorithm variants. Other properties of
secondary importance like, for example, the shape of the cells or the array
color, are also implemented.

SAGS has been used for debugging, verification and performance
evaluation of various algorithms. It aids in experimenting with new designs,
for example, in comparing various systolic architectures for a systolic algo-
rithm or in playing with different cell aigorithms for the same architecture
such as Gausian elimination and Givens rotations.

SAGS was developed on an IBM Personal Computer, running the MS
DOS operating system. It was written in Turbo Pascal [13), a dialect of the
Pascal programming language as described by Wirth and Jensen in [14]. Its
current  version limits the architecture to 15 arrays using the
Turbo Graphix Toolbox™ , but SAGS itself can handle an unlimited number
of arrays depending on the memory available. Each cell can have two inputs
and two outputs on each of its four sides. There is practicaily no restriction
conceming the number of inputs and outputs from the architecture or with
respect to the number of different types of cells and arrays. The SAGS
source code and many sample script files are available in Appendix C to [9].
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They are also in ASCII format on floppy disks and are available on request to
interested parties. To produce an executable SAGS copy, two software pack-
ages are needed: a copy of the DOS-based Turbo Pa.\'cal compiler (ver-
sion 3.0) and a copy of the Turbo Graphix Toolbox™ (version 1.07), both
available from Borland Intemnational, Inc. Since SAGS is graphics-based, a
video card with bit-mapped graphics capabilities is needed to run the pro-
gram. Because computer graphics and simulations are floating-point intensive
applications, the use of 2 numeric co-processor is highly recommended. For
SAGS 0 take advantage of the numeric co-processor, it must be compiled
using a compiler version that supports 8087 floating point mathematical rou-
tines.
3. ONE EXAMPLE OF SAGS APPLICATION

SAGS was created to help in verifying and debugging systolic proces-
sors for linear algebra applications, particularly for various implementations
of Faddeev algorithm {3). Many architectures, including those from [2], (4],
{51, (6], [7] and [8] have been simulated in [9]. Indeed, it was, during the use
‘of SAGS, while simulating the Nash implementation of Faddeev’s algorithm
:[6], [7], that the mentioned bug in its boundary cell microprogram was
fdiscovcred and identified.

In the Appendix A, six snapshots from a series of 13 will illustrate the
simulation of Nash’s systolic design. Each snapshot is a SAGS screen output
‘for one execution step. To appreciate the usefulness of SAGS in finding and
‘correcting the error, let us first explain the Nash's architecture which is shown
in Fig. 1. It is based on the Faddeev algorithm. This is a general purpose
algorithm useful for a wide class of . .atrix operations and especially suited
for systolic implementation. It calculates the value of CX + D, given AX =
B, where A, B, C, and D are known matrices of order n, and X is an unknown
matrix. The problem is formulatedas B “)

- |
If by some means, a suitable linear combination of the rows of A and B is

found and added to the rows of -C and D as follow
A B

-C+WA D+WB

where W specifies the appropriate linear combination such that only zeros
appear in the lower left hand quadrant then the lower right hand quadrant will
become matrix E = CX + D. This is because annihilating -C requires W =
CA™' so that D + WB = CA™B, and since AX =B, D + WB =D + CX. The
elegance and simplicity of the algorithm is apparent when one notes that o
carry it out it is only necessary to annul the lower left hand quadrant by
applying a matrix triangularization procedure to the left side of (1)
while extending the operation to its right side. This can be done using Gaus-
sian elimination. To improve the numerical stability of the Faddeev algo-
rithm, Nash suggested a modification to it by replacing the Gaussian elimina-
tion procedure used to triangularize matrix A of (1) with orthogonal triangu-
larization. The array consists of two types of cells: the boundary cells.
(represented by circles) and the internal cells (represented by squares). Each
cell stores a microprogram. Changing the microprograms of cells will allow
the array 1o execute different procedures.

For clarity, it is useful to divide Nash’s algorithm into a two-phase pro-
cedure. In the first phase, A is triangularized by a series of Givens rotations
(simultaneously applied to B ); in the second phase, the diagonal elements of
the resulting riangular matrix are used as pivoting elements in the Gaussian
elimination procedure on C and D, where columns of C will be zeroed out
and D will become the result. Note that for the Gaussian procedure to work
properly, it is necessary that these pivoting elements be non-zero. Hence, the
requirement that A be a full rank, i.e. at least one of its square submarrices of
order n has a non-zero determinant.

Nash’s systolic implementation, shown in Fig. 1, consists of a triangu-
lar array and its right extension: a square amay. The triangular array, based
on Kung's design in [4] for orthogonal tr ) ion, performs Givens
rotations on A (first phase) and ordinary Gaussmn climination on C (second

The cell” s execution codes are shown in Figure 2.
Furthermore, the added processing of ordinary Gaussian elimination
requires the extra codes shown in Figure 3.
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The square array simply ds the correspondi g 10 B and

D and thus only consists of square cells. The input data ﬂow mvolves feeding
A and B through the system from the top with cells executing the micropro-
grams codes shown in Figure 2 on each incoming row. This corresponds 1o
the first phase of the modified algorithm. Notice that the required skewing of
the data flow is performed by a triangular array of delay cells (represented by
rectangles) above the system. The second phase is accomplished by a similar
flow of C and D. Only this time the cells execute the microprograms shown
in Figure 3 on the data elements and the resulting matrix will appear row by
row coming from the bottom of the square array. These output rows are
straightened back to normal by another triangular array of delay cells below
the square array. The input data flow can be contiguous, i.e. matrices A and
B and then C and D can enter the array without any interruption in between.

Although Nash’s modification of Faddeev’s algorithm is mathemati-
cally sound, its systolic implementation, unfortunately, contains some serious
deficiencies. For instance, it is possible for the array to produce erroneous
results, as illustrated by the following example. Suppose we have a linear sys-
tem AX =B of order n = 3 where X is an unknown matrix, and on¢ or more
entries in column 1 of matrix A are zeroes, in this case, @q:

n-[éfg]_ B-[g] » .-
213 17 :

Since the determinant of A, A (A) = 9, is a non-zero, A is full rank.
Thus, guaranteeing that a solution to the system exists and that it is unique
with x, = 1.33, x, = -0.67 and x4 = 1.67. When A is fed into the array shown
in Figure 1 during the second step, however, the boundary cell in row 1,
cotumn 1 will clear its r register (it had @, = 1 stored prior to this) because
a5 = 0. This effectively transforms A into another matrix, say E, whose
entries are identical to A’s except for e, which is zero, and all further pro-
cessing will be on the resulting linear system.

Nash’s array computing (2). Only steps 2, 3, 4, 5, 12, and 13 are shown from
the series of 13, but these pictures clearly illustrate the sequence of events
leading up 1o the erroneous results. (The screen views have been overlapped
slightly so that they will fit on to a single page).

4. CONCLUSION

We have p d a new approach to si systolic processors. A
visual simulator allows for the visual analysis of data flows in systolic arrays
of various configurations. This approach allows for the visualization of the
behavior of such sy and is, therefore, also an llent system design
educational tool. It proved to be very useful in describing and analyzing
several well-known and new architectures. A microcode error has been
identified and corrected in a well-known algorithm thanks to this simulator.
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