
REAL TIME GRAPHICAL SIMULATION OF SYSTOLIC
ARRAYS

Hai Van Dinh Le
Marek A. Perbwski

Department of Electrical Engineering
Portland Slate University

P.O. Box 751
Portland. Oregon 97207
tel. (503) 464-3806 x 23.

ABSTRACT

'Ihis papex presents a new concept in visual simulation -
Systolic Arrays Graphical Simulator, SAGS - that allows for the
visualization of the data and control flow in various systolic
arrays on the monitor sawn. The systolic architecture is con-
smrted interactively from various basic cells and arrays. The
simulator has successfully been used to simulate several well-
known and new architccturcs and has even proven itself to be
useful in finding and correcting an e m in a well publishized
algorithm for general pvpose maaix computations that is
currently being realized in hardware and can have potential
applications that rquire e x m e reliability.

1. INTRODUCTION
Simulation techniques play an i m p o m t role in &sign analysis,

correctness verification, performance evaluation, and test genedon f a digi-
tal systems. Many simulators are widely avrulable f a the university and
industrial user communities. Recently a new generation of simulators is
becoming popular that permit the USQ to visualize the data flow, logic levels,
or register contents in the form of animated schematics or timing diagrams
[121, [151. [161. [17l. U81. U91, [U)]. PI].

The arrival and wide acceptance of systolic pmcessor~ [ll, [21, MI, [51,
[6] , together with the difficulty involved in designing as well as the problems
concerning the analysis of systolic algorithms, call for new kinds of CAD
tools for their synthesis at many levels, optimization, verification, and simula-
tion. It would be very advantageous if these tools were visual and combined
the properties of the tools from [12], [I51 - [21] with interactive editing
("schematic capture") and the modification of systolic architectures of various
sues, types of arrays, and cells linked in many configurations. Perhaps visual
simulators will be the first tools of this type. Such a tool - the visual simulator
of systolic arrays - is proposed below. The idea behind such a tool Seems
very natural and perhaps comes from the originator of systolic arrays, H. T
Kung, who would overlap and shift s e v d overhead transparencies m illus-
uate data flows in systolic anays. With the exception of [I]], howevu, w e
have not been able to identify such tools and we are also not a- of anyone
using them in practical applications.

The classical method of displaying the simulation data and the ndts is
totally useless for systolic arrays. A s y s m designer must be able tb observe
the movement of every piece of data as it traverses thrwgh the m y at all
tunes to verify whether a given algorithm is correctly mapped into the
corresponding array architecture. He must also be able to see the results from
the operations performed on each piece of data by any of the cells. Further-
more, for debugging plrposes, he must be able to lodc into the registers of
every cell at any one time and see the values of all the control signals present
in that cell. In short, he must have the most detailed view of the entire system
that may consist of many arrays composed of many types of cells This pex-
spective must be available to him with the accuracy of single pulses during
the entire simulation process.

To meet the above requirements. a new breed of simulator - a systdic
array simulator - has been developed and built by us to aid a hardware or
software designer in the taslr of designing. evaluating, verifying, debugging,
and reaching systolic systems. It was deemed essential that this simulator
should be graphics based, hence its name Systolic Arrays Graphical Simula-
tor. or SAGS for short

2. SYSTOLIC ARRAYS GRAPHICAL SIMULATOR
From the vuy beginning. SAGS was designed to simulate the systolic

systrms of any confgurarion. These configuratlon are specified to SAGS by
mesllS of scriptfrles. A script file contains all of the vital information about
the system: its n u m k of m y $, their types and sizes, the way thcy are linked
together. and the microprosrams used in w h cell.

A script file also specifies when and where the input data and the con-
a01 signals should be fed into, and the outplt dam uken from, the systun.

SAGS allows for systems with multiple inpuf cmtrol, and output data
arcams. Each input M control meam is stored into ASCII files prior to being
accessed by SAGS. Similarly. SAGS outputs are written into ASCII files.

During the simulation run time, SAGS consistenlty and successively
e x a m all of the steps involved in a problem, showing the results from each
step on the screen. This is r e f d to as a mulrisrep mode of execution. It
can be stopped and restarted at any time. Alternatively. SAGS can single-step
through the problem, allowing a more detailed inspection of the temporary
results, which is refared to as a single-stepped mode ofuccw'on. Switching
beoveur these two modes can be easily accomplished at any time by typing
the appmphw command in at the keyboard.

Visually. SAGS allows for all of the arrays of the system to be sten on
the monitor srrcen as long as cach army has a reasonable n u m b of cells.

the real estate of the monitor screen is limited, arrays can be over-
lapped. 'Ibis m a n s that one from the hdcground can be brought into the
forepund to be scrutinized at any the. In addition. individual anays can be
intexdvely positioned anywhen? on the screen to match the systcm-
schematic closely.

SAGS allows for an anay to be viewed in two different ways: a real
perspccave. with the array and its cells apparing smalln and therefore con-
taining less infomation, and a full pcrspecrive in which the cells show al l
their re- contents. The perspective of an array can be specified in the
script 6le. or changed at the run time. AU visual changes made to a system
COnfigraatiOn at run time cm be morricd back to the script file for reuse. A
stmu bar on the top of the screen displays additional information such ILE the
c k k ~lcp number. r h ~ total execution time, and the array a c d y being
s e l d The USQ can measun an execution time for a cell from their miao-
codes This time unit is used as a step which allows for the evaluation and the
compxison of the speed of various algorithm variants Other propaties of
secondary importance like, for example, the shape of the cells or the array
color, are also implunented.

SAGS has been used for debugging, verification and performance
evaluation of various algorithms. It aids in experimenting with new designs,
for example, in comparing various systolic architectures for a systolic algo-
rithm or in playing with different cell algorithms for the same architecture
such as Gausian elimination and Givens rotations.

SAGS was developed on an IBM Personal Computer, running the MS
DOS opzating system. It was written in Turbo Pascal [13]. a dialect of the
Pascal programming language as descn'bed by Winh and Jensen in [141. Its
current vcrsion limits the architecture to 15 arrays using the
T u r k Graphir Toolboxm, but SAGS itself can handle an unlimited number
of arrays depending on the memory available. Each cell can have two inputs
and two outputs on each of its four sides. Then is practically no resmction
concaaing the n u m b of inputs and outputs from the architecture or with
respea U) the number of different types of cells and arrays. The SAGS
so- codc and many sample script filcs are available in Appendix C to [9].

171
ISCAS '89 CH2692-2/89/0000-0171 $1.00 0 1989 IEEE

They are also in ASCII format on floppy disks and are available on request to
intuested parties. To produce an executable SAGS copy, two software pack-
ages are need& a copy of the JXSW TW~W ~ m c d " compiler (ver-
sion 3.0) and a copy of the Turbo Grophir Toolbox" (version 1.07). both
available from Borland International. Inc. Since SAGS is graphics-based, a
video card with bit-mapped graphics capabilities is needed to run the pro-
gram. Because computer graphics and simulations are floating-point intensive
applications, the use of a numeric co-processor is highly recommended. For
SAGS to ralie advantage of the numeric co-processor, it must be compiled
using a compiler version that supports 8087 floating point mathematical rou-
tines.

3. ONE EXAMPLE OF SAGS APPLICATION
SAGS was created to help in verifying and debugging systolic proces-

sors for linear algebra applications, particularly for various implementations
of Faddeev algorithm DI. Many archimtwes, including those from [2]. [4].
[a. [6], [7l and [81 have been simulated in [91. Indeed it was. during the use
of SAGS, while simulating the Nash implementation of Faddeev's algorithm
[6]. [7l, that the mentioned bug in its boundary cell microprogram was

'discovered and identilied.
In h e Appendix A, six snapshots from a series of 13 will illuswte the

simulation of Nash's systolic design. Each snapshot is a SAGS scrcen output
for one execution step. To appreciate the usefulness of SAGS in finding and
correcting the mor. l d us 6rst explain the Nash's architecture which is shown
in Fig. 1. It is based on the Faddeev algorithm. This is a g e n d purpose
algorithm useful for a wide class of I .a& operations and especially suited
for systolic implementation. It calculates the value of CX + D, given AX =
B, where. A, B, C, and D are known ma&iics of d e r n, and X is an unknown
manix. The problem is formulated as --%-

-C+M --3k
-c

If by some means, a suitable linear combination of the rows of A and B is
found and added to the rows of -C and D as follow

whae W specifies the approPriate linear combination such that only zuua
appear in the lower left hand quadrant then the lower right hand quadrant will
become manix E = CX + D. This is because annihilating -C quires W =
CA-' sothatD + WB = CA-'B,and since AX = B,D + WB = D + C X The
elegance and simplicity of the algorithm is apparent when one notes that to
carry it out it is only necessary to annul the lower left hand quadrant by
applying a suitable matrix triangularization procedure to the left side of (1)
while extending the operation to its right side. This can be done using Gaus-
sian elimination. To improve the numerical stability of the Faddeev algo-
rithm, Nash suggested a modification to it by repking the Gaussian eiimina-
tion procedure used to aiangulante matrix A of (1) with orthogonal h g u -
larizatwn. The m y cowisrs of two typts of cells: tk boundaty celk
(represented by circles) and the inrrmal cells (represmted by squms). Esch
c d su)rts a micropgram. Changing tk micropmgrams of cells will allow
the array to execute different procedures.

For clarity, it is useful to divide Nash's algorithm into a m p h a s c pro-
cedure. In the first phase, A is mangularired by a series of Givens rotatwns
(simultaneously applied to B); in the second phase, the diagonal elements of
the resulting triangular matrix are used as pivoting elements in the Gaucinn
eliminolion procedure on C and D, where columns of C will be z d out
and D wiU become the result. Note that for the Gaussian procedure to work
properly. it is necessary that these pivoting elements be non-zao. Hence, the
requirement that A be a full rank. i.e. at least one of irs square submamces of
order n has a non-zero determinant

Nash's systolic implementation. shown in Fig. 1, consists of a uiangu-
lar array and its right extensioa a square array. The triangular array. based
on Kung's dcsign in [4] for orthogonal viongularizafion. performs Givens
rotations on A (first phase) and ordinary Gaussian elimination on C (second

The cell's execution codes areshown in~igmc2
Funhum=, the added prossing of ordinary Gaunirn elimination

requires the extra ccdes shown in Figure 3.

i f x ! " = 0 then

beg t n

CO", - '
S , U l = 0
r - 0

end
e l s e b e g i n

? - fi"
CO,, - r / f

s,,, * Xl,'*t
r = 7

end

DELAY CELL :

172

Department ot ELecmcal and Computer Enpeenng and
The coordinated Science Laboratory

BDUSCARY CELL

;cnpororiiy u n u s e d n-blt bus
L.

Fig. 3
The square array simply extends the corresponding pmcessing to B and

D and thus only consists of square cells. "he input data flow involves feeding
A and B through the system fmtn the top with cells executing the micropm
grams CodCS shown in Figure2 on each incoming row. Thisconesponds to
the 6rst phase of the modified algorithm. Noolce that the requid skewmg of
the data flow is paformed by a triangular anay of delay cells (represented by
rectangles) above the system. The second phase is accomplished by a similar
flow of C and D. Only this time the cells execute the micmpropm shown
in Figure 3 on the data elements and the multing matrix will appear row by
row coming h m the boaom of the square array. These output rows are
saaightened back to normal by another hiangular array of delay cells below
the square array. The input data flow can be contiguous, i.e. matrices A and
B and then C and D can enter the array without any intermpb'on in between.

Although Nash's modification of F a d k v ' s algorithm is mathemati-
cally sound, its systolic implementation, unfortunately, contains some serious
deficiencies. For instance, it is possible for the array to produce erroneous
results, as illusuated by the following example. Suppose we have a linear sys-
tem AX = B of order n = 3 where.X is an unknown matrix. and anem more
enmes in column 1 of mahix A are z m , in this case, ozl:

Since the determinant of A, A (A) I 9, is a non-zero, A k full
Thus, guaranteeing that a solution to the system exists and that it is unique
with xI = 1.33, xz = -0.67 and x3 = 1.67. When A is fed into the m y show
in Figure 1 during the second step, however, the boundary cell in row 1,
co!umn 1 will clear its r register (it had a , I = 1 stored prior to this) because
azl = 0. This effectively transforms A into another &x, say E, whose
entries are identical to A's except for e l l . which is zero, a d all further pro-
cessine will be on the resulting linear system.

In this case. sinceA (E) = 4 is m-m, E is also fu l lmk and thaG
fore the procedure is completed successfully, but withx, = 3.x2 =4 andx, =
-1, which is the solution to (3) instead of (2).

The cause of the above a m W. be traced to a bug in ttie microp-
gram in the boundary cell. As Figure 2 reveals, this microprogram has a line
of code
r=O

which always clears the content of regism r whenever x, = 0. In fact, if at
any time during processing the boundary cell of a row i w i v e s a z e m
valuedx, homanintanalcellofrowi-1,anemneousresultwillappear
when the processing ends. Thus. to ccmct the problem, this line should be
removed. The c m t e d Nash algorithm has not been published to our
knowledge and we do not thinlr we wwld have been able to 6nd and c ~ m a

Nash's array computing (2). Only steps 2.3.4, 5, 1'2, and 13 are shorn h ' n
the series of 13, but these p i c m clearly illustrate the sequence of evens
leading up to the erroneous results. (lk s a w n views have been overlapped
slightly so that they will fit on to a single page).

4. CONCLUSION
We have presented a new approach to simulate systolic pessm. A

visual simulator allows for the visual analysis of data flows in systolic armys
of various configurauons. This approach allows for the. visualization of the
behavior of such systems and is, therefore, also an excellent system design
educational tool. It proved to be very useful in describing and analyzing
several well-known and new architectures. A microcode error has been
identified and comcted in a well-known algorithm thanks to this simulator.

5. LITERATURE
H. T. Kung, "Why Systolic Architectures?", IEEE Computer Magazine,
Vol. 15, NO. 1, Jan~ary 1982 pp. 37 - 46.
H. T. Kung. and C. E. hiserson, "Systolic Arrays (for VLSI)". S w s e
M o n i r Proc. 1978, SIAM. 1979. pp. 256 - 282.
D. K. Faddecv, and V. N. Fad&eva, Computational Methods of Linear
Algebra, W. H. Frr~man and Company. 1%3. pp. 150 - 158.
W. W. Gentleman, and H. T. Kung, "Matrix Triangulanzatlon by Sys-
tolic Arrays", Proc. SPIE - The Intemmionol Society of Optical
Engineering. Vol. 298,1981, pp. 19 - 26.
H. T. Kung. "Systolic Array for Orthogonal Triangularization", Proc.
SPIE, San Diego, CA, 1981, pp. 19 - 26.
J. G. Nash. "A Systolic/Cellular Computer Architecture for Linear
Algebraic Operations", Proc. 1985 IEEE International Conference on
Robotics and Automation. March 1985, pp. 779 - 784.
I. G. Nash, and S. Hansa~, "Modified Faddeev Algorithm for Matrix
Manipulation", Proc. SPIE. Vol. 495, August 1984, pp. 39 - 46.
H. Y. H. Chuang. and G. He, "A Versatile Systolic Array For A4aaix
Compumtions". The Intcnrotional Symposium on Computer Architec-
twe. 1985, pp. 315 - 322.
V. H. D. Le. "A New Genaal purpoSe Systolic Array for Matrix Com-
pu&tim". M. S. Thesis, m e n t of Electrical Engineering, Portlbd
State University, P.O. Box 751, Portland, Oregon 97207, April 1988.

[lo] V. H. D. Le, and M. A. Perkowski, "A New General purpoSe Systolic
Array for Maaix Computation", submitted to IEEE TC, 1988

[ll] H. HellWagner, and T. Muller, "LISAS - Loops-implemented systolic
army simulator". Proc. of VLSI & Computers Conference. COM-
PEURO '87, IEEE, 1987.

[E] Caominh Tuan, and U A. Perkowski, "LogiclRegister-Transfer Simu-
lator with Visualization", Record of Northconl86, papr 11.3, Scp-
t u n k 30 -October 2,1986, S&. Washington.

[13] TlabowscalMantd".
[14] Wirrh. and Jensen, "Pascal User Manual and Rcport".
[15] G.P. Brown, R.T. Carling. C.F. Hmt, D.A. Kramlich, and P. Souza

"Program Visualization: Graphical Support for Software Develop-
ment", Compurer. pp. Z7-35, August 1985.

[161 D.D. Hill, "Edisim: A Graphical Simulator Interface for LSI Design",
IEEE Trans. CAD ICs, Vol. CAD-2, NO. 2, pp. 57 - 61, April 1983.

[17] RJ.K. Jacob, "A State Transition Diagram Language for Visual Pro-
gramming", Computer, pp. 51 - 59, August 1985.

[18] B. Meiamed. RJ.T. Morris, "Visual Simulation: "he Performance
Analysis Workstation", Compuler. Vol. 18, No. 8, pp. 87 - 94, August
1985.

[19] A. Sugimoto et al. "VEGA" A Visual Modeling Language for Digital
C i u i t Design", Proc. IEEE ICCD'84. pp. 807 - 812,1984. this bug without SAGS.

~ ! [20] A. Sugimoto, " "VEGA" A Visual Modeling Language for Digital Sys-
examples (2) and 0) manually and thcn by Using O k algorithms W1-g 1 tuns", IEEE Design ond Tesr. pp. 38 - 45, June 1984.
theFaddecvalgorithmwithGivaurotations:xl=1.33,r2=-0.67.x3=1.67. ![211 ASu~.S .Abe ,M.KlnodaandY.Kato ,"AnObjcc t -Or iented

Visual Simulata for Micropogram Development". Proc. 23-rd DAC, Now that the correct result is hown. the reader is encouraged to examine the
series of snapshots in Appendix A which shows the grsphics simulation Of pp. 138 144, June 29 July 2, Las vegss, 1986.

For the plrpose of veri6m1,. we tint found the correct s a h & ~ ~

173

J ...
,r

I

Department ot ELecmcal and Computer Enpeenng and
The coordinated Science Laboratory

