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Abstract

This paper presents a simple� uni�ed� graphical ap�
proach to designs implemented with multiplexers and to
the decomposition of Boolean functions� In doing so� de�
signs composed of both completely and incompletely spec�
i�ed Boolean functions are presented and illustrated using
the numerical method as well as an applicable computer
program�

�� INTRODUCTION

One of the most general approaches to solve engineering
and science optimization problems is to apply the princi�
ple of decomposition� A problem of greater size is decom�
posed into a number of problems smaller in size that can
be solved separately and with less e�ort�
The principle of decomposition has also been applied

in logic design with respect to both Boolean functions
and Finite State Machines ���� There are several types of
single�output Boolean function decompositions of which
the best known is a simple disjoint decomposition� An
example of such a decomposition is shown in the block
diagram in Fig� ��
The function f�� with its inputs a� b� c� and d� is de�

composed to two subfunctions�

� subfunction 	� denoted by �
c� d�� and having inputs
c� d�

� subfunction � with inputs a� b as well as ��

This approach allows us to minimize one two�input
function and one three�input function instead of having
to minimize a four variable function�
Each of subfunctions can possibly be further decom�

posed� Therefore� a multi�level� tree�like implementa�
tion structure is created� Since many Boolean minimiza�
tion computer programs� especially those that attempt
to �nd optimal solutions� are only practical for solving
problems of limited size� and which may even restrict

the number of inputs� this approach not only yields re�
sults lower in cost but can also produce optimal solu�
tions more quickly� This may even be the only way to
get any results at all from such programs� Understand�
ing the principles of Boolean decomposition is� therefore�
important for everybody who is interested in minimiza�
tion of Boolean functions� Although minimization with
TTL�logic implemented gates like NANDs or NORs is no
more of practical importance� the designers who use Pro�
grammable Logic Devices 
PLD� or the designers of VLSI
chips are faced with increasing complexity of problems
related to automatic design of logic� especially of logic re�
alizing control units� Many sophisticated programs have
been written to perform this tasks for two�level realiza�
tions 
Programmable Logic Arrays � PLA� Programmable
Array Logic � PAL� and are used both at the universities

like Espresso from Berkeley VLSI Design Tools� and in
industry� Due to the extensive area and to the slow speed
involved when Boolean functions are realized using PLAs�
however� there has recently emerged a renewed interest in
the multi�level realizations of Boolean functions 
Bray�
ton ���� Sangiovanni�Vincentelli � U�C� Berkeley� Hachtel
� University of Colorado�� The use of Boolean decomposi�
tion should also be considered when selecting one of these
methods of realization� Designs implemented with multi�
plexers are closely related and �nd applications both in
VLSI design and in the board�level design of logic func�
tions using MSI chips� Such designs minimize the silicon
area or the chip count while simplifying the design pro�
cess�

Today� an increasing number of graduating engineers
are employed at the entry�level as CAD tool developers�
or users� which leads us to feel that the undergraduate cur�
ricula should include even more CAD material� We have�
therefore� enhanced our logic design classes with some el�
ementary topics related to the logical and to the physical
CAD� especially to the problems related to designs imple�
mented with PLAs� PALs� PLDs and EPROMs� as well
as VLSI design� both custom and with standard cell li�



c

d

a

b

Subfunction 2

Sub-

  function
1

(c,d)

f1(a,b, (c,d) )

Figure ��

braries�
Since most undergraduate logic design textbooks re�

gard the decomposition of Boolean functions as an ad�
vanced topic� it is seldom mentioned in them� Graduate
Switching Circuits textbooks like� for instance� the well
known book by Kohavi ���� however� present decomposi�
tion in such a manner that is di
cult to teach and very
time consuming to apply in practical design� On the other
hand� designs implemented with multiplexers are taught
in undergraduate courses but to our knowledge no general�
simple and systematical� graphical or analytical method
has yet been presented�
In this paper� we will present a new� uni�ed approach

to the decomposition of Boolean functions and to designs
implemented with multiplexers� The three following vari�
ants will be discussed in more detail�

�� The graphical variant using Karnaugh maps is very
easy to teach and is successfully used by students
for maps of up to six variables� It is analogous to
the most familiar concepts of elementary logic de�
sign� The authors used this method for practical
problems of strongly unspeci�ed functions with up to
�� variables prior to writing the computer program
mentioned below�

	� The analytical variant using the well�known calculus
of arrays of cubes 
such calculus is presented for in�
stance in ���� ��� and ����� Teaching of this material
can be used to master cube calculus and present the
ways to implement logic CAD algorithms� We teach
this material in a graduate class�

�� The computer program makes decomposition and de�
signs implemented with multiplexers for up to �� in�
put variables possible� It is programmed in C and
implementations for Vax and personal computers are
available� Students can copy a PC diskette with the
source code and design examples�

�� GRAPHICAL METHODS

A� DESIGNS REALIZED WITH MULTIPLEXERS

Let us �rst describe how Karnaugh maps 
K�maps for
short� can be used to implement a single�output function
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using multiplexers�
Example ��

Let us assume that we want to realize the four�input func�
tion f�
a� b� c� d�� shown in Fig� 	a� using a � x � multi�
plexer with two select lines 
	 bit address��
Let as further assume that inputs a� b were selected

as address inputs of the multiplexer� We will denote the
set of address variables is fa� bg or say that variables a
and b are the address variables� Then� for a � � and
b � � a function described in row a b of the K�map
should be realized as the function f�
a� b� c� d�� We will
denote the function from row a b as f�
�� �� c� d�� The
other notation used will be f��
c� d�� To realize function
f�
a� b� c� d� we then provide the data input number �

which denotes �a�b� � ������ in the multiplexer with the
function f� 
�� �� c� d�� Similarly� the function from row
	� a � �� b � �� will be provided at data input �� the func�
tion from row �� a � �� b � �� will be provided at data
input 	 of the multiplexer� and the function from row �

�a�b� � ������� will be provided at data input �� This is
shown in Figure 	b�
Now our task is to �nd the realizations of the functions�

f�
�� �� c� d� � f��
c� d��
f�
�� �� c� d� � f��
c� d��
f�
�� �� c� d� � f��
c� d��
f�
�� �� c� d� � f��
c� d��

These functions are speci�ed by the corresponding loops
in the K�map a b� a b� a b� and a b� respectively� We will
denote these as loop functions� For better manipulation�
the inexperienced user can rewrite each loop in the form
of a separate K�map� As we see� all of them are functions
of the variables c and d only as shown in the K�maps in
Fig� ��
Before gaining experience in the manipulation of such

maps� we can transfer these functions to K�maps of a more
familiar form� as shown in Fig� �� After solving a few
examples� however� the student gets enough pro�ciency
so to omit this step and operate directly on the initial
submaps of the K�map�
The data input functions f��� f��� f��� f�� will now be
realized using any of the well�known Boolean minimiza�
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tion methods� The corresponding circuit realization is
shown in Fig� ��
Note that contrary to well�known approaches we do not

need to use Marquand or decomposition charts to �nd
multiplexer realizations for other sets of address variables�
The same K�map will su
ce� The process of �nding the
circuit when variables c and d are assumed as the address
variables for example is shown in Fig� ��
This realization costs less than the previous one since an
inverter is used instead of an equivalence gate 
exnor��
Similarly� assuming address variables a and c 
Fig� �a��
the functions f��
b� d�� f��
b� d�� f��
b� d�� f��
b� d�
will be as shown in Fig� �b and the realization as shown
in Fig� �c� Note the inverse order of variables in the head�
ings of some of maps from Fig� �b� If the designer has
di
culties in using the �inverse� K�maps� he can rewrite
some of them as shown in Fig� �d� After solving few ex�
amples� however� the student becomes pro�cient enough
to omit this step as well and operate directly from the
�inverse submaps� of the K�map� The realization shown
in Fig� �c has the same cost as one from Fig� ��
We are now able to formulate the design method for

designs implemented with multiplexers� Corresponding
loops in the K�map must be drawn for each possible sub�
set of variables that are used as the address variables�
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Fig� � shows loops for all of the possible sets of address
variables for ��variable functions� It is easy to start with
the loop corresponding to the product made up of nonin�
verted address variables 
such products are shown in bold
� for instance group � for ab in Fig� �a�� The remaining
loops for these variables can quickly be drawn by taking
the mirror image of the initial loop with respect to all
the possible combinations of values of the corresponding
address variables� Group � in Fig� �a is� for example� a
mirror image with respect to variable a� the group 	 with
respect to variable b� and group � with respect to both
variable a and variable b�

We denote the set of address variables by B� Later this
set will also be referred to as a set of free variables 
or
free set� to be consistent with the notation used for de�
composition� The set of all the remaining input variables
will be denoted by A� This is a set of bounded variables
or a bounded set� The set of all input variables is denoted
by I� Therefore� I � A � B� and � of course� A � B � ��

The design method for designs implemented with mul�
tiplexers is then as follows�

�� Draw the K�map for the function f
I��

	� Find all the possible subsets B of input variables to
be used as the address variables�

�� Draw the initial loop and then all the remaining loops
for each set B of address variables� as shown in Fig�
��

�� For each subset B of address variables�

� �nd loop functions fi
A� for all the loops of this
free set�

� realize loop functions fi
A� using any Boolan
minimization method but use the same function
for multiple multiplexer inputs as often as pos�
sible�
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� evaluate the cost of the solution by adding the
realization costs of various loop functions�

�� Select the best solution for all the free sets out of
those found in step ��

Experienced designers can practically apply this
method in K�maps using not more than ten variables�
Many design short�cuts are possible to �nd good solu�
tions without investigating all free sets� Its application
is now mainly didactical� since students can easily solve
functions of this size on a programwritten for the personal
computer�

B� DECOMPOSITION

Let us �rst observe that function f��
c� d� in Fig� �
is the negation of function f��
c� d�� Therefore� the re�
alization from Fig� � can be re�drawn as shown in Fig�
��
Next� the function from Fig� � can be represented in
block diagram form as in Fig� �� 
and Fig� ��� This �g�
ure represents a general scheme of the classical �simple�
disjunctive decomposition of a single output Boolean func�
tion with the set of bound variables fc� dg and the set of
free variables fa� bg� Such decompositions are discussed
in ��� and �	��
At this point the question arises as to how to �nd

whether this function is decomposable for the set of ad�
dress variables selected by us from the function�s K�map�
It is obvious from Fig� � and Fig� �� that if we want to
have a single connection from subfunction 	 to subfunc�
tion � then all of the data inputs to the multiplexer have



f1(a,b,c,d)

0

 1

0

1

2

3

f1(a,b,c,d)

c

d

0

 1

0

1

2

3

a b d

c

a

b

Figure ��

Figure ���

to be a constant �� a constant �� an output of subfunction
	 or a negation of subfunction 	 
the negation is created
inside of subfunction ��� Patterns ������ and � in A are
equivalent to two patterns in B� This is basically a proof
of the Ashenhurst theorem�
The well�known Ashenhurst theorem can now be ex�

pressed as follows�
The function f
I� is decomposable with free set B and

bounded set A if each of the subfunctions fi
A� is at most
one of the following types�

� constant ��

� constant ��

� some function� call it �
B��

� negation �
B� of this said function �
B��

Let us now observe that the decomposition process can
be performed graphically even faster than the process of
design with multiplexers using K�maps� First� all the
loops are drawn for the selected free variables as previ�
ously� Then� we discard all the loops consisting of only
zeros or only ones� Finally� we assume that one of the
remaining 
if any� loop functions is �� When all of the
remaining loops describe functions that are either � or �
we have found a decomposition� If we �nd at least one
function that is neither a � and nor a �� the decomposi�
tion does not exist for the selected free variables� We can
often quickly establish that the decomposition for a given
set of free variables does not exist without checking too
many loops for this set� Therefore with some experience
the designer can quickly scan the loops to �nd nonexis�
tence of a decomposition� He does this subsequently for
all other sets of free variables� There is no need to redraw
the sub�K�maps� Finding the existence of the decompo�
sition can be more time consuming and it may require
the re�drawing of some submaps for K�maps with many
variables�

Example ��
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Let us go back to function f�
a� b� c� d� from Example
�� We assume address variables a� b� Loop ab of ones and
loop a b of zeros are discarded so only loops a b and ab

remain� Let us assume that � � f��� Now it is easy to
check that f�� � �� and the theorem is� therefore� satis�ed�
The decomposed realization of this function is shown in
Fig� ��� The subfunction � K�map is created from the
K�map shown in Fig� 	� �� and ��� as in Fig� ��a� This
function is minimized to the circuit shown in Fig� ��b
using two�level Boolean minimization

Example ��
For the same function let us now select variables c and

d as address variables 
Fig� �a�� No loops can be dis�
carded� Assuming � � f�
a� b� in column � 
loop c d�
we immediately see that function from loop cd is neither
� nor ��� so no decomposition exists with c and d as free
variables�
Let us observe that if the decomposition exists the de�

signer has a choice to implement each function either with
a multiplexer for subfunction �� e
ciently realizing the
data input functions� or subfunction � could also be re�
alized using any other Boolean minimization method� for
instance as a PLA� minimized using a two�level Boolean
minimization program 
as in Example 	�� If the decom�
position does not exist� the results of the above loop func�
tions comparison are still useful for the e
cient design for
the implementation using the multiplexer in which sim�
ple loop functions are realized and the smallest possible
number of them exist�

C� DECOMPOSITION OF INCOMPLETELY SPECI�

FIED FUNCTIONS

The graphical method can also be applied to incom�
pletely speci�ed functions with very little modi�cation�
First� we remove loops that can be completed to all ze�
ros or that can be completed to all ones� Next we check
whether the remaining loops can be completed to func�
tions � and ���

Example ��
Given is function f	
a� b� c� d� e� f� from Fig� �	�
Assuming address variables a� b the loops are as shown

in Fig� �	� We can immediately discard loop ab that can
be completed to all zeros� as well as the loop a b that can
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be completed to all ones� To help the reader the loops
a b and a b are rewritten to those shown in Fig� ��� It
is clear that both of them can be completed to the same
function

� � c d e f � c d ef � c def � c de f � cde f � cdef

� cd ef � cde f � c � d � e � f

It is important to note that with some experience one
does not have to draw all the loops in the K�map� but�
remembering their shapes� the existence of functions �

and �� can be veri�ed directly�

When checking the decomposition possibility for free
sets� it is also often not neccessary to generate loops sys�
tematically for all possible free sets� Since we know that
the existance of loops of zeros and loops of ones for some
free set increases the possibility of a decomposition� we
will �rst �nd a large loop of zeros or a large loop of ones�
or a loop that can be completed to a loop of such a type�
Next� we will test the decomposition possibility for other
loops created for the free set of the variables from this
loop� If no decomposition exists for this free set� the de�
composition for the next large loop of the above types is
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investigated�

Example ��

We will solve the example from p� ��� in ����

f
v� w� x� y� z� �
P


����������������	��		�	��	�� �
P

� 
������������	��	���������

The K�map for this function is shown in Fig� ���

First� we try to �nd large loops that can be completed
to loops of all zeros or to loops of all ones� A loop xz is
found as a loop that can be completed to ones � see Fig�
��� This suggests selecting the set fx�zg as a free set� By
examining the other loops for this set we �nd that loop x z
can be completed to all zeros� Now the remaining loops
are found and compared 
Fig� ���� As we see� assuming
that loop x z corresponds to �� we notice that the loop
xz will correspond to ��� The completion is shown in Fig�
��a�

Therefore the decomposition for free set fx� zg is found�
as shown in Fig� ��� Fig� ��b� c presents two methods
for realization of function f
x� z� ��� The �nal circuit is
presented in Fig� ��e�
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�� ANALYTICAL DECOMPOSITION OF

INCOMPLETELY SPECIFIED

SINGLE�OUTPUT BOOLEAN FUNCTIONS

The analytical method presented below serves to ex�
plain the computer algorithm that follows in section ��
but it is not necessary for the teacher to explain it in the
class�
Our goal is to �nd an analysis method to check if the

completion to � and �� exists for a given free set�
De�nition ��

By a loop pair we will understand a pair�
�loop� respective loop function� � � loop� f
loop� ��
De�nition ��

Two functions are called the compatible functions when
they can be completed to the same function�
De�nition ��

Two loop pairs p� � �l�� f
l��� and p� � �l�� f
l��� are called
compatible loop pairs when f
l�� and f
l�� are compatible
functions�
De�nition ��

The operation of merging� with two functions f� and f� as
arguments� produces the least de�ned function f � f� � f�
that completes both of them by replacing dont�cares with
zeros or ones� This is done on a cell�by�cell basis� If a
cell has the same value in both functions� this value is
retained� Don�t care and cell will yield the value of this
cell�
� � � � �� � � � � �� � � � � �� � � � � �� If the
respective cells have values � and �� the merging cannot
be done 
we denote this by � � � � �� and we say that
functions f� and f	 are not compatible�
De�nition ��

Two loop pairs p� � �l�� f
l��� and p� � �l�� f
l��� are
merged to a loop pair
�fl�� l�g� f
l�� � f
l��� if f
l�� and f
l�� are compatible
functions�
Loop pairs are introduced to make it possible to per�

form operations on the corresponding loop functions while
keeping track of the loops from which the merged func�
tions are derived�
First note that the loop pair compatibility relation is not

an equivalence relation�
Example ��

Let us consider a function given in a Karnaugh map of
Fig� ��� assuming B � fc� d� eg�
The free set B � fc�d�eg� as can be seen in the loop func�
tions that correspond to the columns of the map� After
removing the loop c d e of ��s and the loop cde of ��s�
the loop pair compatibility graph as shown in Fig� �� is
created with the remaining loop pairs as nodes�
The compatibility of two loop pairs in the graph is de�

noted by an edge between the corresponding nodes� Let
us� for instance� compare loop functions for columns ���
and ��� 
loops cde and c d e�� The loop function for a
column will be denoted in the current section� for the sake
of explanation� as the string of symbols ���� ���� and ���
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� and in the same order as they are in the column from the
top to the bottom� The computer representation of loop
functions will be discussed in the next section when the
computer program will be presented� The loop function
for column ��� 
loop cde� is ����� and the loop function
for column ��� is ����� These loop functions are compat�
ible� This is denoted in cube calculus as�
����� ���� � ����� We denote the merging 
commonmin�
imal completion� operation of functions represented by ��
The corresponding loop pairs are then also compatible�
�cde� ����� � �c de� ����� � �fcde� cdeg� ������ Compati�
bility of loop pairs is denoted as an edge between nodes
�cde� f
cde�� and �cde� f
cde��� In our notation the nodes�
�cde� ����� and � cde� ����� 
see Fig� ���� Similarly� loop
pairs �cde� ����� and �cde� ����� are compatible� since ����
� ���� � ����� The loop pairs �cde� ����� and �cde� ���
��� however� are not compatible since ���� � ���� � ����

we denote the incompatible � and � in the lowest row
of the K�map by ��� The relation of compatibility
is� therefore� not transitive and hence it is not an
equivalence relation�
We create the entire loop pair compatibility graph from

Fig� �� using the above method� The next stage is to �nd
a partition of this graph to two maximum cliques�
A clique is a subgraph with any two nodes linked by an
edge� The maximum clique is a clique with maximum
number of nodes� If we created function � after merging
the loop functions from the �rst clique� the merging from
the other clique would be ��� otherwise there is no decom�
position� The classical decomposition of the function does
not exist in one of two cases�

�� there is more than two cliques in the minimal parti�
tion�

	� �
J

ci�C�
ci �� �cj�C�

cj

i�e� the two mergings from the cliques C� and C� can
not be completed to functions � and �� of each other�

The fact that the relation of compatibility is not
an equivalence relation makes the search for maximum
cliques more di
cult�
We can create a simple sequential clique�growing algo�

rithm in which the two cliques are extended step�by�step�
starting from any loop pair� By �rst selecting the loop
pair �c de� ����� and then the pair �cde� ������ for ex�
ample� we create a merged loop pair �fc de� cdeg� ������

Now �cde� ����� is selected and we join it to this loop pair�
�fc de� cde� c deg� ������ Then we select �cde� ������ This
cannot be merged with the previous merged loop pair�
so is becomes a beginning of the new merged loop pair�
Next we select �cd e� ������ creating the merged loop pair
�fcde� c d eg� ������ When next the pair �cde� ����� is
selected it is joined to the last merged loop pair� creating
a pair� �fcde� cd e� cdeg� ������ After scanning all loop
pairs two merged loop pairs� �fc de� cde� c deg� ����� and
�fcde� cd e� c deg� ������ have then been created� They
are mutual negations� so the respective decomposition ex�
ists� Let us however observe that this method would not
work for the other order of selection� If we �rst selected
the loop pair �cde� ����� and then the pair �cde� ������ we
would create the pair �fcde� cdeg� ������ Then� we select
loop pair �c de� ����� and we see that the loop functions�
����� from this pair� and ���� from the pair �fcde� cdeg�
����� cannot be negations of each other and also cannot
be merged� The decomposition was� therefore� not found
for this order of loop pair selection even if it existed� as
was the case for another order�
The problem of �nding maximum clique partitioning is

in general an NP�hard one� We will� therefore� propose a
simple and fast algorithm below that yields good results
for most practical problems� It refers to an optimal NP�
hard clique partitioning algorithm� only when necessary�

Algorithm ��

�� UNSPECIFIED �� ��

Select any loop function� Call it ��

Make a pair pi � ��� ���

	� For each loop pair pi � �li� ci� � LOOP PAIRS do

if loop ci has no bits in the same positions as � or ��

then UNSPECIFIED �� UNSPECIFIED � fpig

else

if ci � � and �ci � ��

then

�S�� �� �� �li� ci� � �S� �� � �S�� ��� �� �li� �ci� � �S� ���

if

ci � �� and �ci � �

then

�S�� �� �� ��li� �ci� � �S� ��� �S�� ��� �� �li� ci� � �S� ���

else

return �no decomposition�

�� If UNSPECIFIED � �

then

return



�� For each loop pair pi � UNSPECIFIED do if col�
umn ci has no bits in the same positions as � or ��

then

UNSPECIFIED� �� UNSPECIFIED� � pi

else

if ci � � and �ci � ��

then

�S�� �� �� �li� ci� � �S� ��� �S�� ��� �� �li� �ci� � �S� ���

if ci � �� and �ci � �

then

�S�� �� �� �li� ci� � �S� ��� �S�� ��� �� �li� ci� � �S� ���

else

return �no decomposition�

�� If

CARD�UNSPECIFIED� � CARD�UNSPECIFIED��

then apply optimal clique partitioning algorithm of
loop pair compatibility graph

else

UNSPECIFIED �� UNSPECIFIED��

UNSPECIFIED� �� �

Go to ��

End

Example 	�
We continue the previous example and solve it using

Algorithm �� Let us assume� that �rst loop pair �cde� ��
��� is selected� It is marked as �� Let us now assume
that as a second loop pair� we select the pair �cde� ������
The function from this pair has no common speci�ed bits
common to function �� The pair is� therefore� added to
the set UNSPECIFIED� The pair selected next is �cd e�
������ The negation of this pair�s function has a common
complement to the function �� Therefore� �� �� ����� The
pair �cde� ����� selected as the next one is compatible
with ��� Therefore� �� � ���� � ���� � ����� so � � �����
Then� pair �c de� ����� is selected and merged with �� Next
�cde� ����� is merged with �� Now� the UNSPECIFIED
set�s functions are taken into consideration again� The
pair �cde� ����� can only be joined with ��� Decomposition
exists with � � ���� and �� � �����

�� COMPUTER IMPLEMENTATION OF

ANALYTICAL DECOMPOSITION METHOD

A Boolean function of n input variables
 X�� X�� ���� Xn

will be given in a form of arrays of cubes� Each cube
will have n positions� Each position of a cube can be a
value of the respective variable� � � in negative form� � �
in positive form� X � don�t care form� The function will
be speci�ed as ON�array and OFF�array� ON�array is an

array of ON�cubes� OFF�array is an array of OFF�cubes�
ON�cube is a cube with value �� OFF�cube is a cube with
value �� By ON
��XXX� we will denote the set of ON�
cubes of f
�� �� c� d� e�� Similarly by OFF
XX���� we will
denote the set of OFF�cubes of f
a� b� �� �� ���
Theorem ��
Two functions f� and f� are compatible if and only if
ON
f�� u OFF
f�� � �

and
ON
f�� u OFF
f�� � �

Proof is obvious from De�nition 	�
De�nition ��
The loop pair incompatibility graph is an undirected

graph
G � 
N� RS� de�ned as follows�
N � is the set of loops�
a � 
c�� c�� � RS � loop functions f
c�� and f
c�� are

not compatible 
such functions are called incompatible��
The nodes of the graph are loops� The edge a is created

in the incompatibility graph between two nodes when the
corresponding loop functions of these loops are not com�
patible�
Let us observe that the loop pair incompatibility graph

is a complement of the loop pair compatibility graph� i�e�
has an edge betwen two nodes if there is no edge in the
other graph� and vice versa�
The optimal algorithmfor loop pair compatibility graph

clique partitioning is based on minimal proper coloring of
the loop pair incompatibility graph� The proper coloring
is an assignment of colors to graph nodes in which any
nodes linked by an edge receive di�erent colors� Minimal
coloring is a proper coloring with the minimum number
of colors� If the number of colors is two then the classical
decomposition is possible� Function F� being the merg�
ing of loop functions from all nodes of color � is found�
Next function F	 being the merging of loop functions
from nodes of color 	� If F� and F	 are compatible then
decomposition exists� Otherwise� even when the number
of colors exceeds two � the minimal proper coloring result
can still be used for the e
cient realization with multi�
plexers�

Example ��
Let us assume a function f
a� b� c� d� e� speci�ed as fol�

lows� ON
f� � f������ ���X�� ��X��� ������ ������
�����g� OFF
f� � f���X�� X����� �XX��� ���X�� ����X�
X����� ������ �����g� The function is presented in a Kar�
naugh map from Fig� 	��
We illustrate application of the optimal graph�coloring
algorithm for B � fc� d� eg�
�� Find loop functions in the form of arrays of
cubes�
ON
XX���� � f��XXXg�
OFF
XX���� � f��XXX� ��XXXg�
ON
XX���� � f��XXXg�
OFF
XX���� � f��XXXg�
ON
XX���� � fg�
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OFF
XX���� � f�XXXX� X�XXX� ��XXXg�
ON
XX���� � f��XXX� ��XXXg�
OFF
XX���� � fg�
ON
XX���� � f��XXXg�
OFF
XX���� � f��XXXg
ON
XX���� � f��XXXg�
OFF
XX���� � fX�XXXg�
ON
XX���� � f��XXXg�
OFF
XX���� � f�XXXXg�
ON
XX���� � f��XXXg�
OFF
XX���� � f��XXXg�

�� Discard loops of zeros and loops of ones�
After removing the loop XX��� of ones and the loop
XX��� of zeros 
such loops can be easily found� since
they have empty sets OFF
XX���� and ON
XX����� re�
spectively� we obtain the following set of loops
fXX���� XX���� XX���� XX���� XX���� XX���g�

These loops become the incompatibility graph nodes�
�� Create the loop pair incompatibility graph�
For the pair of loops XX���� XX��� we have
ON
XX���� u OFF
XX���� � f��XXXg u f��XXXg �
��
OFF
XX���� u ON
XX���� � f��XXX� ��XXXg u
f��XXXg � f��XXXg �� �
then these loops are incompatible and an edge is added
to the graph between nodes XX��� and XX����
Similarly� using this method the entire loop pair incom�

patibility graph from Fig� 	� is created�
�� Find minimal proper coloring of the loop pair
incompatibility graph�

XX000

XX001 XX111

XX101 XX110

XX100
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BB BB BB

CC AA
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After coloring with a minimum number of colors the
graph is as in Fig� 		� The minimal coloring has then �
colors� AA� BB� and CC� The decomposition thus does
not exist but this result is useful to minimize the design
using the multiplexer� We have then to realize only three
di�erent functions� AA� BB� and CC to feed the output
subfunction � 
multiplexer� for B � fc� d� eg� The set
of columns colored with color AA is � fXX���� XX���g�
The set of columns with color BB is fXX���� XX����
XX���g and the set for color CC is fXX���g�
The next stage is to merge the compatible loop pairs�
For color AA	

ON
XX���� t ON
XX���� �
f��XXXg t f��XXXg � f��XXXg
OFF
XX���� t OFF
XX���� �
f��XXX� ��XXXg t f�XXXXg � f�XXXX� ��XXXg

since ��XXX v �XXXX�
Let us observe that this is not a set of prime implicants
for this column�
For color BB	

ON
XX���� t ON
XX���� t ON
XX���� �
f��XXXg t f��XXXg t f��XXXg � f��XXX� ��XXXg�
OFF
XX���� t OFF
XX���� t OFF
XX���� �
f��XXXg t f��XXXg t f��XXXg � f��XXX� ��XXXg�
For color CC	
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ON
XX���� � f��XXXg�
OFF
XX���� � fX�XXXg�
�� Complete the function f according to the opti

mal coloring found in the previous step	 functions
being mergings of all loop functions of the same
color replace the original loop functions�
Now our K�map looks as in Fig� 	��
�� Depending on the number of colors and com

patibility of F� and F		 either �nd classical de

composition or �nd a realization using a multi

plexer that minimizes the number of various func

tions given on this multiplexer�s data inputs� The
respective realization with multiplexers is shown in Fig�
	�� The names of the wires� AA� BB� and CC correspond
to the colors of the combined functions� Let us observe
that the don�t cares have been utilized to simplify func�
tion CC�
The above method based on minimal proper graph col�

oring of the loop pair incompatibility graph is a starting
point to generalized decompositions introduced in ����

�� CONCLUSION

We have presented a new approach to design with mul�
tiplexers and decomposition of Boolean functions� Both a
quasi�optimal graphical method and an optimal analyti�
cal method as well as a respective computer program have
been presented�
Before we began to teach the material as in this paper�

in many undergraduate classes� the students complained
that decomposition and design with multiplexers� espe�
cially classical approach to decomposition 
based on de�
composition charts ���� is too di
cult� error�prone� and
time consuming�
The graphical method was class�tested in four univer�

sities and two countries in classes ranging from sopho�
mores to Ph�D� graduates and from short review courses
to advanced logic design courses for practicing VLSI dig�
ital design engineers and professional CAD tools devel�
opers� The student responses on questionairies indicated
that they felt that our new methods were not any more

di
cult than the rest of the material presented in these
classes� Exam results were quite satisfactory and showed
that this material was well retained� The students also
liked the methods used very much�
Several expansions of the analytical method has been

designed in ��� and are now being programmed�

� For multioutput functions�

� For multioutput functions with multiple�valued in�
puts 
application in design of PLA with pair decoders
�����

� For generalized decomposition� as discussed in ����
but for the incompletely speci�ed functions�

�� LITERATURE�

��
 Kohavi� Z�� Switching and Finite Automata Theory�
McGraw�Hill Book Company� �����

��
 Ashenhurst� R�L�� The Decomposition of Switching
Functions� Proceedings of an International Symposium on
the Theory of Switching� April 	��� ����� Ann� Compu�
tation Lab�� Harvard Univ�� Vol� 	�� pp� ������� �����

��
 Sasao� T�� Functional Decomposition of PLA�s� Pro�
ceeedings of the International Workshop on Logic Synthe�
sis� Research Triangle Park� North Carolina� May �	����
����� Vol� I�

��
 Sasao� T�� Input Variable Assignment and Output
Phase Optimization of PLA�s� IEEE Trans� on Comp��
October ����� Vol� C���� No� ��� pp� ��������

��
 Rudell� R�� and Sangiovanni�Vincentelli� A��
Multiple�Valued Minimization for PLA Optimization�
Proceedings of ��th Intern� Symposium on Multiple�
Valued Logic� Boston MA� May 	��	�� ����� pp� ����	���

��
 Perkowski� M�� Uong� H�� Generalized Decomposi�
tion of Incompletely Speci�ed Multioutput� Multivalued
Boolean Functions� submitted�

��
 Brayton� R�K�� Mc Mullen� C�T�� The Decomposition
and Factorization of Boolean Expressions� International
Symposium on Circuits and Systems� Rome� Italy� ���	�
pp� �� � ���


