
A FAST ALGORITHM TO MINIMIZE hRJLTl-OUTPUT MIXED-POLARITY
GENERALIZED REED-MULLER FORMS

Martin Helliwell
Marck Perkowski

Portland State University
Department of Electrical Engineering

P.O. Box 751
Portland, OR, 97207.

tel. (503) 464-3806~23

ABSTRACT

A very fast computer program that accepts a Boolan func-
tion as an array of multi-output disjoint cubes and returns a
mixed-polarity Generalized Reed-Muller Form is presented.
Such circuits often have gates and interconnections than
classical sum-of-product realizations and are easily testable.
The program was tested on many examples Born literature
as well as on many large arithmetic functions with up to 8
inputs, 8 outputs and 255 minterms. On all the examples
from the literature the solutions were either the same or
better than those generated by other methods. The algo-
rithm is based on a new cube operation, called xliaking, that
generalizes known operations of merger, exclusion and
other logic operations specified by previous authors.

1. INTRODUCTION

In recent years there is a growing interest in design of logic circuits
with EXOR gates. Particular interest is in the minimization of the General-
ized Reed-Muller Forms (GRM), with fixed or mixed polarity of variables
[3], 1131. [14], [19]. [30], [37]. [41], [44]. Functions realized with such cir-
cuits can have less gates, less connections and smaller VLSI realization [3],
[14]. What is even more important, such circuits are easily testable, they are
also used in self-testing circuits [2], [4], [15], [16]. [24], [28],[29]. [32], 1351,
[36], [40]. As Besslich writes [3] : “secondly, the testability of circuits is
significantly improved [35]. The gains from this second advantage may even
exceed possible disadvantages in such cases where the EXOR realization is
more costly than the equivalent vertex (sum of product) form. Applications
have so far not become very popular because of the practical difficulties in
the design procedure”. GRM circuits find applications in linear machines,
arithmetic and communication circuits, encrypting schemes, coding schemes
for error control and synchronization, sequence generation for process
identification, system testing and other applications.

The problem of minimization of such circuits is very important, but it
was traditionally treated as extremely difficult. Since optimal solutions can be
found only for functions with not more than 5 variables [30], the interest is in
approximate solutions. Although few authors 131, [t4], 1373 have imple-
mented computer programs, no results have been published that would help to
evaluate the speed and quality of their approaches.

The approach presented here attempts to do for GRM forms the same
that Espresso [39] has done for standard PLA minimization:

to create a practical, heuristic method. that would generate optimal or
nearly optimal results for most practical size function examples from
engineering practice,

to document the program execution times and properties on many
benchmark examples,

- to provide any interested party with the source code.

In this paper a program EXORCISM (EXOR Circuit Speedy Minim-
izer> will be described. It will be incorporated into large VLSI design auto-
mation system DIADES 1311, which includes several logic minimization pm-
ccdures that correspond to various kinds of logic and layout realizations and
which gives the user the choice of selecting the appropriate minirniition
approach. We solve here a problem that has not yet been solved in the litera-
ture: mixed-polarity minimization of multipleoutput incompletely specified
functions.

2. WHY IS THE USE OF GRM BENEFICIAL

It is well-known that the set (0, I] with operations . (AND) and @
(EXOR) is a ring 2, and a field. Therefore the following operations hold:

1. Assdat.ive laws:
a@(b@c) = (a@b)@c
a(bc)=(ab)c

2. Distributive laws:
a(b@c)= ab@ac

3. Commutative laws:
a@b= b@a
ab= ba

4. Identities:
a@O=a
a@l=Fi
al=a
aO=O
a@a=O
a@Z=l’

A Reed-Muller form is nothing more than an EXOR-sum of products
(called also product terms or terms for short), where every literal has positive
polarity. It can be found very easily by starting with a list of minterms and
replacing each negative literal with the positive literal plus one:

lliic = rl (b @l)c = ubc @UC

In Generalized Reed-Muller form, each literal may be positive or nega-
tive, but must remain in the same polarity through the entire expression. It can
be found in a very similar way to the Reed-Muller form.

The mixed GRM form is one in which the literals can be of both polari-
ties at the same time in different terms. The degree of a term is the number
of literals in it

Our primary goal is to minimize the number of terms (inputs to EXOR
gates). For the circuit with the minimum number of terms our secondary goal
is to minimize the total number of inputs. Therefore the cost function to be
minimized is:

where:
- NT is the total number of terms in the solution,
- NI is the total number of inputs in the solution,

25th ACM/IEEE Design Automation Conference@

CH2540-3/88/0000/0427$01 .OO 0 1988 IEEE

Paper 28.2
427

- Nli, is the total number of inputs in the initial function. The lirst principle of our method to minimize GRM forms is based on

We became interested in synthesis with EXOR gates when Jeff Fox the idea that any two minterms can be expanded into’an EXOR sum of one or

from (then) SILC group in GTE Labs pointed out to the second author that more terms containing fewer literals. It is helpful to put a dash in the place of

many important applications of circuits with EXORs exist in telecommunica- tbe missing literal.

tion industry and there is no program currently available for design of such
circuits. For example:

Later, we found many other circuits, especially code converters and
arithmetic circuits, for which the designs with EXORs were simple (see sec-

ABCi?@Ai?Ci?=A-Ci?@AB-5,

tion 5 on numerical results below). Moreover, we learned about the role of
EXOR gates in the design for testability [20]. Reed-Muller canonical forms

XB CR (BiBt?l? = ,i-FD

were considered by Reddy [35] as candidates for easily testable circuits with
(this is a counterpart of the well known merging rule),

function independent testing. For an arbitrary function f of n input variables,
by adding one extra AND gate to the Reed-Muller canonical realization off,

iBCfi($AiCD =-k=iCD@-CD@AB-D&B&

with inputs from all those primary inputs that ‘am connected to an even
(see Fig. l)..

number of AND gates, one can detect all single stuck-at faults by applying As we see. the chaining operation expands the well-known Boolean
only (n+l) test patterns, independent of the function f [35]. [15]. IFunction f rules of merging and exclusion used in the Quine-McCluskey or other logic

can be tested also for all single stuck-at faults with (n + 2n, + 4) tests where design algorithms. It finds one of the shortest paths between two nodes of a

n, is the number of input variables appearing in an even number of terms. Boolean hypercube. The number of generated terms equals the Hamming dis-

This research has been expanded in [24], [25], [40], [32], [29] and others. tame of these nodes.

The mixed-polarity GRMs that are discussed here also have very good Clearly a systematic way of finding the chain expansions is needed.

testability properties, but no systematic study similar to that of [35ll is known Below we will give a procedure for finding them. The appIication of this pro-

to the authors. cedure will be called xliokmg (pronounced cm&inking). The result of the

GRM forms, as well as forms that arise from their factorization can be
procedure will be called the xlink (crosslink) of the two original minterms.

realized with standard cell library approach, or with multi-input NOR gate,
The mintenns and the product terms are represented as ternaty cubes (cubes

EXOR gate and XNOR gate cell generators. Another approach would be to
with bits 0, 1, -) in the computer. Positional notation that permits for both 2-

expand the concept of PLA to the EXOR-based PLA where the EXOR-plane
valued and m-valued minimization is used [42].

replaces the OR-plane. We are currently working on possible layout of such To @d th_e xlink of a pair of two minterms, for example A B C D l?

PLA and PAL circuits. and A B C D E we write them vertically like this:

In interesting concept, not yet to our knowledge realized by industry, Ai?CDl?
would be to fabricate the off-the-shelf EXOR-based PAL, PLA and EPLD
user-programmable devices. Minimization of Boolean functions for program- ABr?DE
ming of such devices was now made possible because of availability of 9?
EXORCISM. ‘Ihe design for testability would be thus greatly simplified on
this design level.

Each time when the polarity of the literal changes from minterm to
minterm in the pair it is denoted by an arrow. Each arrow will give rise. to

3. THE XLINK OPERATION.
one term of the xlink. Let us now consider each arrow separately. The above
initial pair of minterms can then be expanded to two secondary pairs, for

Basic operation of our system is the operation of xlinking that general- variables B and C respectively, as shown below.
izes several operations known from the previous papers. For variable B the term A - c D l? is created as follows:

Let us first observe that any two minterms ml and m2 in a Karnaugh A i CD.‘?
map can be linked by a chain of groups, where:
- each group has two adjacent K-map cells, A B i!D.i?

- the first group includes ml, the last group includes m2,
- any two subsequent groups of the chain include a single common minterm. qJ 3)

C
tbe tint secondary pair

--- -_- ---..-_----

‘A - cL>i?

It can be easily proven that the EXOR of minterms ml and m2 is equal For variable C the tezm A B -D I? is created as follows:
to the EXOR of all groups from the chain. Figure 1 shows an example of a Ax C

7l

Da!? the second secondary pair
chain 6om minterm 0100 to minterm 1011. Let us observe that usually there /
are many such chains from ml to m2.

AB E[DE I ______ ___

3
.._____

‘Ai-DE
Under each pair of literals of different polarities under consideration (B in the
first pair, C in the second pair) we write the don’t care symbol (dash). To
create the result of xlink for a secondary pair we copy the part of the term
to the left of the dash from the top minterm. The part to tbe right of the
dash ls copied from the bottom minterm, as shown. The xlink of the ini-
tial pair of minterms is an EXOR of xlink terms of the secondary pairs for
each variab:le of different polarities.

Inomcaseitcanthenbeseenthat:
AL%D.E@ABf?Di=A-CD,?@Aij-DE.

This operation is illustrated in the Karnaugh map from Fig. 2.

This procedure can be easily extended for any two terms that have
dashes in the same positions. For example:
A-CD- @A-CD- = A-C--.

Fig. 1
This is also illustrated in Fig. 2. The terms (cubes) that have dashes in the
same positions will be called xlinkable terms (cubes). For instance

Paper 28.2
428

AB-C-andiii-F-

are xlinkable and
A-B C-andxB-c-

are not.
This type of xlinking for any two xlinkable terms will be called pri-

mary xlinking.

CDE
Al3 000 001 011 010 110 ‘I’ ‘01

00

01
---A-C--

/ \
A--CDT \ A;;- DE

Fig. 2.
Let us now introduce another type of xlinking. This new operation per-

mits two terms of different degrees to be xlinked. As we have seen, the pri-
mary xlinking reduces the degree of the terms. By use of the primary xlink-
ing, together with the laws:
1) x@O = x.
2) x0x = 0.
3)@is commutative and associative.
we will be able to formulate a secondary xlinking that xlinks terms of
degrees differing by one.

Secondary xhkable terms are two terms that satisfy these conditions:
- their degrees differ by one,
- the term with the higher degree contains all the variables from the other
term.
For example, the terms x B ‘- D E and i i C D E are secondary xli;lkable,
since. the term

.iiiCDE

of degree 5 has att the variables of the terms
AIB-DE

of degree 4.
Let us now consider an example of secondary xlinking. It uses the pri-

mary xlinking and the above three laws.

The secondary xlinking will be applied to:
AB-DE@ABCDE.

First., let us_see that variable C is lacking in x B -D E and occurs as C in
x B C D E . Let us then create a term, that is adjacent with respect to vari- --
ableCtothetermABCD~:thiiwiIlbeaterm~~f?D~.

Now we EXOR the previous EXOR sum with the zero term:
AB-DEO~BCDEO(ABCDEOABCDE).

Next we apply the fact that exoring is associative:
~B-DEO(~BCDElOABCDEI)OAB~D~.

We xlink the terms in the parantheses:
AB-DE@xB-DE@il?CD@.

We xlink the first two terms:
ii--Di@iiB-D-@Agi?D#.

The result shows that the lower degree term has been changed to terms of
even lower degree, and the upper degree term has been changed to another
term of the same degree.

The above operation is illustrated in the Karnaugh map of Fig. 3.
Remember that each cell covered by an even number of groups is a

“zero” cell and one coveted by an odd number of groups is a “one” cell (min-
t&IXl).

Fig. 3.

\
C

A0

00

0’

‘1

10

DE

CDE
\ A0 000 00’ 0” 010 I to “1 ‘01 too

CDE
\ AB 000 001 0’1 010 110 111 101 too

00

01

II

10

The above sequence of transformations was shown for the sake of
explanation, but the execution of the secondary xlink is very straightforward
in our implementation of the xlink operation. Its execution is therefore
speedy.

4. ALGORITHM,.

The algorithm currently used in our program is quite simple. The idea
is to carry out all primary and secondary xlinks possible, in some reasonable
order, giving priority to xlinking least distant groups first. Distance here
refers to the Hamming distance of two groups.

Simply stated the algorithm is:
1. Do all primary xlinks with preference given to closer groups.
2. Do all secondary xlinks with preference given to closer groups.
3. If any xlinking was done in 2, then go to 1

It is important in steps one and two of the algorithm to do xlinking on
terms of high degree first. This allows for the results of the first xlinks to be
compared for xlinking to groups of the same degree before those groups are
xlinked to groups of lower degree.

When performing primary or secondary xlinks the program finds close
groups by taking the tirst group in the list and comparing it to every other
group and choosing the closest. After performing that xlink it moves to the
second group in the list, and so on.

After performing secondary xlinks it is required to check again for pri-
mary xlinks, because the secondary xlinks may contain primary xlinkable
groups.

By way of example, take the function f = ~(1,3,7,10.1’2,I3,15) :

Paper 28.2
429

CD
\ AB 00 01 11 IO

00

01

II

IO

‘I
0 1 I 0

0 0 I 0

1 I I 0

0 0 0 I

Fig. 4.

HINTERHS

0011
000 I
0111
1100
1101
1111
1010

0011 7 00-l - 00-l - 00-r -
/

0001
0001
0111 -III
1100

- ;g 7 y; - --II
1101
1111 $

IlO-
I-O- - l-O- - I -o-

1010 ----lOlO
7

lo-- - lO-- - lO--

The first column is a list of minterms, the second is the results of the primary
xlinking in step 1 of the algorithm. The group 1010, being unxlinkable, was
just carried to the next step. Columns 3, 4, and 5 show the results of the
secondary xlinking in step 2 of the algorithm. Step 3 checks to r* if any
more primary xlinking is possible - since none is possible, the algorithm ter-
minates.

This program handles multioutput functions in a very simple way.
Each output is minimized with the stated xlinking algorithm, producing a list
of terms. After each output is minimized. each term from that and all previ-
ous outputs is included, one by one with each succeeding output - to see if it
helps the minimization. If it is beneficial, then it is included as a term in the
final minimization, if not, it is discarded and the next term from a previous
output is tried.

A better system for handling multioutput functions is to use each term
generated in a previous output as a “don’t care” minterm or group in each
succeeding output. The idea here is that any “don’t care” groups included
during minimization can be reincluded in the circuit at little cost since the
product already exists in a previous output. Remember that if a group is
included twice, it is the same as if the group was not included at all (a @ a=0
). Because of the even/odd properties of GRM forms the existence of even a
single don’t care permits term minimization. Don’t cares can be therefore
used to more extent than in the classical minimization and xlinking can be
further modified to take this into account.

5. NUMERICAL RESULTS.

In this section we will discuss the numerical results of our algorithm. AU
resuhs were obtained from an IBM AT with a 1OMHz clock and 640K RAM.
The program was written in C. Running times and other data for each exam-
ple are given in Table 1.

Example 1. This is Example 1 from [lo]. f(xt x1, xe) = x(0,2, 6, 7). The --
same solution, f=xaxe @x2x1. as in [Davi71] was generated.

F%intPie 2. This is Example 2 from t9]. f(xz, x1. x,,) = x(0.3.5,6,7). The
solution from [9].

--
f=Xe@x,xa@x;xrx*
has 3 terms and 8 gate inputs. Our solution,

f=Xe@X,@X;@XeXtXZ

has 4 terms but only 7 gate inputs. The solution from [9] could be obtained
with our algorithm if a different sorting procedure were applied.

Example 3. This is Example 1 from [13]. f(x,, x2. x,) = x(0. 1, 3, 5, 7).
The same solution as in [13] was generated: ---
f=xs@xlxaxs.

Example 4. This example is from [42], [13], [3] and [25].

Paper 28.2
430

Table 1.
-- ---

f(x,,;ra,xs,x&xr) = xsxjxq + x2x3.%5 + x1x2x3x., + xlxix4

xs. The same solution as in 1131 was obtained:
--_ --

f = ~~~~~.~~s~~~~~~~~~~~j~~~~~~~~~~s.
This is the best of all solutions found in the literature.

Example 5. This is Example 1 from [32].
f(xe, xl, x3 = C(l, 2,4,7). The solution from lRama651, f = x0 @ x1 @
x2 has the same term cost as our solution:
f = x;@x, @XT
The same solution as in 1321 would be generated by our algorithm with a dif-
ferent sorting routine.

Example 6. This Grey code - to - binary conversion from Fig. 5.26a page
160 of [18]. The same solution:

B4 = Gs,.
B3 = G3@ G4,
B, = Gz QG3@ G4,
b, = G, (3 G,@ G,@ Gq,

as in [18] has been generated.

Example 7. This is a simple parity-check encoder from Fig. 5.27 page 161 of
[IS]. The same solution:

I,’ = I,,
I,’ = Iz,
I,’ = I3,

14’ = 14,

P = i,@f,@I,@l,,,
as in 1181 has been generated.

-ample 8. This is binary-to-grey code conversion from Fig. 5.26, page 161
of [IS]. The same solution:

G4 = B4,

G3 = B3 GB 84,

G2 = B,@B,,

GI = 81 @Bz,

as in [18] was generated.

]*ampb? 9. 'fhis is an encoder for 7-bit Hamming code from Fig. 5.28 page
I.62 of [Grec861. The solution from [18] is:

pI = 14@1, 012,

p2 = 14 631, @In.
p3 = r4@r2@13.

Our solution is,

Example 10. This is Example 1 from 1421. f = Xt Xs + Xi Xs + Xs Xs.
The same solution, f = Xi Xs @Xi X3 @X2X3 as in 1421 was obtained.
Example 11. This is Example 2 from [42]. f(Xi, X,, Xs. X4, Xs) = c(8, 10,
11,16,17,19.23,24,26.27) . The solution from [42], -- -- ---
f = x~~~x4xs~x1_xr_Q_x2x3x4xs~x1x~xs

@~1~2x4xS@~1x2x3x4

has 7 terms, 6 AND gates and 27 gate inputs. Our solution,
-- ---

f = x2x~~xzx3x4xs@x4xsx1x~@x1x2x3x4
has 4 terms, 4 AND gates and 18 gate inputs.
Example 12. This is a combinational arithmetic multiplier (f = x * y) with 6
inputs and 6 outputs. The solution is in Fig. 5. The number of terms is the
same as in the multiple-value-inputs PLA (with 2-input decoders) of Sasao
c401.

Number of inputs:
Number of outputs:

Number of products:
l-1111 110000
1111-l 110000
ll-ll- 100000
110110 010000
-llll- 011000
11--n 010000
l--l-- 010000
-11011 001000
110-11 001000
l-11-1 001000
-l-l-- 001000
l---l- 001000
-11-11 000100
--ll-- 000100
-l--l- 000100
l----l 000100
--l-l- 000010
-l---l 000010
--l--l 000001
Nlunber of terms: 19

6
6
49

Number of inputs:
Number of .mtD~ts:

Number Of products:
oo------ 1110
-------- 1001
-ooo---- 0110
lo------ 0100
-1oooo-- 0011
o--000-- 0010
o-o----- 0010
-l------ 0010
1-001000 0001
-110-000 0001
---00000 0001
o---1000 0001
l--0-000 0001
o-o--o00 0001
oo---000 0001
-OlOl--- 0001
o--000-- 0001
o-110--- 0001
00--O--- 0001
-l-O---- 0001
l--l---- 0001
l-l----- 0001
Number of terms: 22

Fig. 5.

Fig. 6.

Number or inputs: 6
Number of o"tp~ts: 12

Number Of Droducts: 6,
10111- 111000000000
ll---- 100000000000
llO--- 010000000000
l----- 010001000000
-10011 001111000000
010-11 001110000000
11-l-- 001000000000
-Ol--- 001000000000
O-l--- 001000000000
101011 000100000000
l-111- 000100000000
ll-Ol- 000100000000
110-l- 000100000000
-llO-- 000100000000
l--l-- 000100000000
-1---- 000100000000
l-0111 000010000000
10-111 000010000000
1011-l 000010000000
-11-l- 000010100000

Fig. 7.

l-l--l 000010010000
--Ol-- 000010000000
-O-l-- 000010000000
l---l- 000010000000
-11101 000001000000
--llO- 000001000000
-l--10 000001000000
l----O 000001000000
--l--- 000001000000
--11-l 000000100000
-01-l- 000000100000
---ll- 000000100000
-l---l 000000100000
---110 000000010000
O-l--l 000000010000
---I-- 000000010000
----01 000000001000
---O-l 000000001000
----10 000000000100
-----I. 000000000001
Number of terms: 40

23:33:41.1l5 c:\c,

Example 13. This is a 2 + 2 adder (f = x + y) with 4 inputs and 3 o,Q~~s.
Example 14. This is a 4+4 adder with 8 inputs and 5 outputs.

Example lg. This is a 6-bit square rooter (f = int(sqr(x))) with 6 inputs and
3 outputs.

Example 16. This is an I-bit square rooter (f = int(sqr(x))) with 8 inputs
and 4 outputs. Solution in Fig. 6.

Example 17. This is a 3 input, 6 output square circuit (f = x * x).
Example 18. This is a 6x6 square circuit (f = x * x) with 6 inputs and 12
outputs. See Fig. 7 for solution.

Example 19. This is a 4x4 multiplier with 8 inputs and 8 outputs.

Our mean improvement was 54.84% on functions with mean value Of
inputs equal 4.74, mean value of outputs equal 3.47, and the mean value of
OTIS equal 59. Papakonstantinou [30] reports an optimal program that had
an improvement of 55% on 100 randomly generated single output functions
of five variables with a mean value of 13 terms. The methods from Even
[12] and Bioul[5] were reported to give an improvement of51%.

6. CONCLUSION

A fast computer algorithm for minimization of mixed-variable GRM
has been presented. There are no data in literature on performance of such
algorithms, and essentially very few papers have been published on this topic.
As illustrated by the examples, the aigorithm gives very good results, and is
fast, even implemented on a personal computer.

The algorithm permits for synthesis of multi-output incompletely
specified functions - there are currently no papers on this topic in the litera-
ture.

It can be easily upgraded to synthesize fixed polarity forms (by using
first the presented algorithm and next transforms ?i = l@a or a = a@1 for
selected variables followed by obvious simplifications). Such RM forms have
some advantage as far as the minimization of the number of function’s inputs
is concerned, which can be related to testability.

The algorithm is now beiig improved by adding more passes and tree
branching with various heuristic evaluation functions. Also, the next passes
will include shrinking operations (A @ B = A E @ A B) followed by
xlinking operations. The results can be also improved in some cases if in the
last pass the operations: ii = 10 a and a @ a = 0 are iterated (this would
for instance improve the solution from Example 9 by removing negations of
variables). We see also many other possible improvements of the algorithm,
and we plan to experiment with many variants in order to generate absolutely
optimum solutions in all or nearly all examples known to us. Since the algo-
rithm is fast, we are able to sacrifice some speed by making it even more
optimal.

We will consider also applying a cost function that would more accu-
rately estimate the real layout cost.

The advantage of our method is that it starts from an arbitrary array of
disjoint terms (disjoint cubes) end not necessarily from a canonical Reed-
Muller form like most the well-known algorithms.

Another advantage of the approach presented here is that our methods
can be easily extended to the description of functions with multiple-valued
inputs (multiple-valued EXOR forms are described in [17], clasical PLAs
with multiple-valued inputs in 1421. a new concept of GRM Forms with
multiple-valued inputs, that generalizes ideas from [42] and this paper will be
described in our outcoming paper).

Currently we see a multitude of fruitful research areas that have been
initiated by the research reported here:
1. Factorization of GRM polynomials (extensions of the Brayton’s

methods [6], as well as classical polynomial factorization methods are
possible).

2. Design for testability of multi-output functions of the above categories.
Testability analysis of mixed-polarity GRM functions extending the
known results. Analysis for factorized networks.

Paper 28.2
431

4.

5.

6.

7.

Application of the spectral analysis methods [23] to the above and more
general problems. Decomposition into linear and nonlinear part.
Decomposition into functions with simple GRM realizations.
Mixed forms, composed of EXOR, NOR and NAND gates, created to
concurrently minimize the area aad optimize the testability. Creating
an expert system by generalizing xlink operations and extending the
local transforming operations set (see EXPO [31]). We observed that
often the functions that give good results with EXORs produce poor
results with classical approaches. Some sort of an evaluation function
has to be created that would permit to evaluate the most appropriate
realization method for any decomposed subfunction.
Joining EXORCISM as a subroutine to MIS. EXPCI 1311 or other
multi-paradigm program for multi-level logic minimization.
Efficient realization of many input EXOR gates for EXOR-based PLA
layout

7. LITERATURE

VI

PI

[31

[41

[51

161

171

WI

[91

[lOI

II11

WI

D31

1141

[I51

WI

1171

WI

Akers, S.B.: “On a theory of Boolean functions”, J. SIAM, V’ol. 7., pp.
487-498, December 1959.

Bennetts, R.G., Lewin, D.: “Fault diagnosis of digital systems - a
review”, Comput. J., Vol. 14.. pp. 199-206, 1971.
Beslich, Ph.W.: “Efficient Computer Method for EXOR Logic Design”,
Proc. IEE, Vol. 130, Part E, CDT, No. 6.. pp. 203-206,1983.
Bhavsar, D., Heckelman, R.W.: “Self-testing by polynomial division”,
Proc. 1981 IEEE Test Conference, pp. 208-216,1981.
Bioul. G., Davio. D., Deschamps, JP.: “Minimization of ring-sum
expansions of Boolean functions”, Philips Research Report, Vol. 28,
pp. 17-36,1973.
Brayton, R.K.. Camposano, R., De Micheli. G., Otten. R.H.J’.M., Van
Eijndhoven, J.: “The Yorktown Silicon Compiler System”, Chapter 7 in
Gajski. D.. (ed). Silicon Compilation, 1987.
Calingaert. P.: “Switching function canonical forms based on commuta-
tive and associative binary operations”, AIEE Trans. Vol. 79.. pp. 808-
814, January 1961.
Carter, W.C.. Wadis, A.B.. Jessep. D.CJr.: “Implementation of Check-
able Acyclic Automata by Morphic Boolean Functions”, Proc. of the
Symp. on Comp. and Automata, Polytechnic Institute of Brooklyn, p.
645.1971.

Cohn, M.: “Inconsistent canonical forms of switching functions”, IRE
Trans. Electron. Comput.. Vol. EC-II, p. 284, April 1962.
Davio, M.: “Ring-Sum Expansions of Boolean Functions”, Presented at
the Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn, April 13-15,197l. Computers and-Automata, pp. 411-418.
Davio, M., Des&s, J.P., Thayse. A.: “Discrete and Switching
Functions”, McGraw-Hill Book Co., Inc., New York, 1978.
Even, S.. Kohavi, I., Pax. A.: “On minimal modulo-2 sum of products
for switching functions”. IEEE Trans. on Electron. Computers, pp.
671-674, October 1967.
Fleisher. H., Tavel, M., Yeager, J.: “ExclusiveOR representations of
Boolean functions”, IBM J. Res. Develop., vol. 27, pp, 412-416, July
1983.
Fleisher, H.. Tavel, M., Yeager, J.: “A Computer Algorithm for Minim-
izing Reed-Muller Canonical Forms”, IEEE Trans. on Compu.ters, Vol.
C-36, No. 2. February 1987.
Fujiwara, H.: “Logic Testing and Design for Testability”, Computer
System Series, The MIT Press, 1986.
Green, D.H., Dimond, K.R.: “Polynomial representation of nonlinear
feedback shift-registers”, Proc. IEE, 117, NO. l., pp. 56-60, 1970.

Green, D.H., Taylor, I.S.: “Multiple-valued switching circuit design by
means of generalized Reed-Muller expansions”, Digital Processes, No.
2, pp. 63-81, 1976.
Green, D.H., Edkins, M.: “Synthesis procedures for switching circuits
represented in generalized Reed-Muller form over a finite field”, Com-
puter and Digital Techniques, Vol. 1.. No. 1.. pp. 22-35, 1978.

Cl91

m

1211

1221

t231

WI

1251

1261

1271

1281

WI

1301

c311

1321

r331

1341

1351

[361

[371

1381

r391

1401

1411

1421

i431

WI

Green, D.: “Modem Logic Design”, Electronic Systems Engineering
Series, 1986.
Hayes, J.P.: “On modifying logic networks to improve their diagnosa-
bility”, IEEE Trans. Comput. Vol. C-23, No. 1, pp. 56-62.1974.

Hurst. S.I.: “Logical processing of digital signals”, Edward Arnold,
London: Crane-Russ&, N.Y., 1978.
Katzan, H., Jr.: “The Standard Data Encryption Algorithm”, New York
Petrocelli, pp. 6268.1977.
Karpovsky, M.: “Finite Orthogonal Series in the Design of Digital Dev-
ices. Analysis, Synthesis, Optimization “, J. Wiley & Sons, Israel Univ.
Press, 1976.
Kodandapani, K.L.: “A note on easily testable realizations for logical
functions”, IEEE Trans. Comp., Vol. C-23, pp. 332-333.1974.
Kodandapani, K.L., Setlur, R.V.: “A note on minimum Reed-Muller
canonic forms of switching functions”, IEEE Trans. Comp., Vol. C-26,
pp. 310-313,1977.
Lechaer, RJ.: “Transformations Among Switching-Function Canonical
Forms”, IEEE Trans. Eleca. Comput. Vol. EC-12, No. 2.. pp. 129-130,
April 1963.
Mukhophadhyay, A., Schmitx, G.: “Minimisation of exclusive-OR and
logical equivalence switching circuits”, IEEE Trans. Comp.. Comp.
Vol. C-19, No. 2.. pp. 132-140, February 1970.

Muller, DE.: “Application of Boolean algebra to switching circuit
design and to error detection”, IRE Trans. Electron. Comp., Vol EC-3,
pp. 612, September 1954.
Page, E.W.: “Minimally testable Reed-Muller canonical forms”, IEEE
Trans. Comput., Vol. C-29. No. 8., pp. 746-750, 1980.
Papakonstantinou, G.: “Minimization of modulo-2 sum of products”,
IEEE Trans. on Computers., Vol. C-28, pp. 163-167, February 1979.

Perkowski. M.: “Digital Design Automation System DIADES. Docu-
mentation”, Dept. EE, Portland State University, Portland. OR, 1988.
Pradhan, D.K.: “Universal test sets for multiple fault detection in
AND-EXOR arrays”, IEEE Trans. on Comput., Vol. C-27, No.~., pp.
181-187, 1978.

Pradhan, D-K.: “Fault-Tolerant Computing. Theory and Techniques.
Vol. I.” Prentice-Hall, 1987.
Rarnamoorthy. C.V.: ‘Procedures for minimization of “exclusive or”
and “log&I equivalence” switching circuits”, IEEE Symp. on Switch-
ing Ciiuit Theory and Logical Design, pp. 143-149. October 1965.
Rcdcly, S.M.: “Easily testable realization for logic functions”, IEEE
Trans. Comput., Vol. C-21. pp. 1183-l 188, Nov. 1972.
Reed, I.S.: “A class of multiple-error-correcting codes and their deccd-
ing scheme”, IRE Trans. Inf.Th. Vol. pGIT-4, pp. 38-49.1954.

Robinson, J.P., Yeh, CL.: “A MetbOa for modulo-2 Minimization”.
IEEE Trans. on Computers. Vol. C-31, pp. 800-801, August 1982.
Roth, P.: “Computer Logic, Testing and Verification”, Rockville, MD
Computer Science, 1980.
Rudell, R.: “Multiple-Valued Logic Minimization for PLA Synthesis”.
M.S. Report, June 5, 1986. University of California, Berkeley Califor-
nia 94720.
Saluja, K.K., Reddy, S.M.: “Fault detecting test sets for Reed-Mu&r
canonic networks”, IEEE Trans. Comput., Vol. C-24, No. 10.. pp. 995-
998.1975.
Saluja, K.K., Ong, E.H.: “Minimization of Reed-Muller canonic expan-
sion”, IEEE Trans. Comput., Vol. C-28, pp. 163-167. February 1979.

Sasao. T.: “Input Variable Assignment and Output Phase Optimization
of PLA’s”, IEEE Trans. on Comp., Vol. C-33, No. 10, pp. 879894.
October 1984.
Schrnokler. M.S.: “Mod-2 Sums of Products”, IEEE Trans on Comp..
Vol.C-18, No. lo., October 1%9.
Wu, X., Chen, X.. Hurst, S.L.: “Mapping of Reed-Muller coefficients
and the minimisation of Exclusive-OR switching functions”, Proc. IEE.
part I!, vol. 129, pp. 15-20, January 1982.

Paper 28.2
432

