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ABSTRACT 

A very fast computer program that accepts a Boolan func- 
tion as an array of multi-output disjoint cubes and returns a 
mixed-polarity Generalized Reed-Muller Form is presented. 
Such circuits often have gates and interconnections than 
classical sum-of-product realizations and are easily testable. 
The program was tested on many examples Born literature 
as well as on many large arithmetic functions with up to 8 
inputs, 8 outputs and 255 minterms. On all the examples 
from the literature the solutions were either the same or 
better than those generated by other methods. The algo- 
rithm is based on a new cube operation, called xliaking, that 
generalizes known operations of merger, exclusion and 
other logic operations specified by previous authors. 

1. INTRODUCTION 

In recent years there is a growing interest in design of logic circuits 
with EXOR gates. Particular interest is in the minimization of the General- 
ized Reed-Muller Forms (GRM), with fixed or mixed polarity of variables 
[3], 1131. [14], [19]. [30], [37]. [41], [44]. Functions realized with such cir- 
cuits can have less gates, less connections and smaller VLSI realization [3], 
[14]. What is even more important, such circuits are easily testable, they are 
also used in self-testing circuits [2], [4], [15], [16]. [24], [28],[29]. [32], 1351, 
[36], [40]. As Besslich writes [3] : “secondly, the testability of circuits is 
significantly improved [35]. The gains from this second advantage may even 
exceed possible disadvantages in such cases where the EXOR realization is 
more costly than the equivalent vertex (sum of product) form. Applications 
have so far not become very popular because of the practical difficulties in 
the design procedure”. GRM circuits find applications in linear machines, 
arithmetic and communication circuits, encrypting schemes, coding schemes 
for error control and synchronization, sequence generation for process 
identification, system testing and other applications. 

The problem of minimization of such circuits is very important, but it 
was traditionally treated as extremely difficult. Since optimal solutions can be 
found only for functions with not more than 5 variables [30], the interest is in 
approximate solutions. Although few authors 131, [t4], 1373 have imple- 
mented computer programs, no results have been published that would help to 
evaluate the speed and quality of their approaches. 

The approach presented here attempts to do for GRM forms the same 
that Espresso [39] has done for standard PLA minimization: 

to create a practical, heuristic method. that would generate optimal or 
nearly optimal results for most practical size function examples from 
engineering practice, 

to document the program execution times and properties on many 
benchmark examples, 

- to provide any interested party with the source code. 

In this paper a program EXORCISM (EXOR Circuit Speedy Minim- 
izer> will be described. It will be incorporated into large VLSI design auto- 
mation system DIADES 1311, which includes several logic minimization pm- 
ccdures that correspond to various kinds of logic and layout realizations and 
which gives the user the choice of selecting the appropriate minirniition 
approach. We solve here a problem that has not yet been solved in the litera- 
ture: mixed-polarity minimization of multipleoutput incompletely specified 
functions. 

2. WHY IS THE USE OF GRM BENEFICIAL 

It is well-known that the set (0, I] with operations . (AND) and @ 
(EXOR) is a ring 2, and a field. Therefore the following operations hold: 

1. Assdat.ive laws: 
a@( b@c ) = ( a@b )@c 
a(bc)=(ab)c 

2. Distributive laws: 
a(b@c)= ab@ac 

3. Commutative laws: 
a@b= b@a 
ab= ba 

4. Identities: 
a@O=a 
a@l=Fi 
al=a 
aO=O 
a@a=O 
a@Z=l’ 

A Reed-Muller form is nothing more than an EXOR-sum of products 
(called also product terms or terms for short), where every literal has positive 
polarity. It can be found very easily by starting with a list of minterms and 
replacing each negative literal with the positive literal plus one: 

lliic = rl (b @l)c = ubc @UC 

In Generalized Reed-Muller form, each literal may be positive or nega- 
tive, but must remain in the same polarity through the entire expression. It can 
be found in a very similar way to the Reed-Muller form. 

The mixed GRM form is one in which the literals can be of both polari- 
ties at the same time in different terms. The degree of a term is the number 
of literals in it 

Our primary goal is to minimize the number of terms (inputs to EXOR 
gates). For the circuit with the minimum number of terms our secondary goal 
is to minimize the total number of inputs. Therefore the cost function to be 
minimized is: 

where: 
- NT is the total number of terms in the solution, 
- NI is the total number of inputs in the solution, 
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- Nli, is the total number of inputs in the initial function. The lirst principle of our method to minimize GRM forms is based on 

We became interested in synthesis with EXOR gates when Jeff Fox the idea that any two minterms can be expanded into’an EXOR sum of one or 

from (then) SILC group in GTE Labs pointed out to the second author that more terms containing fewer literals. It is helpful to put a dash in the place of 

many important applications of circuits with EXORs exist in telecommunica- tbe missing literal. 

tion industry and there is no program currently available for design of such 
circuits. For example: 

Later, we found many other circuits, especially code converters and 
arithmetic circuits, for which the designs with EXORs were simple (see sec- 

ABCi?@Ai?Ci?=A-Ci?@AB-5, 

tion 5 on numerical results below). Moreover, we learned about the role of 
EXOR gates in the design for testability [20]. Reed-Muller canonical forms 

XB CR (BiBt?l? = ,i-FD 

were considered by Reddy [35] as candidates for easily testable circuits with 
(this is a counterpart of the well known merging rule), 

function independent testing. For an arbitrary function f of n input variables, 
by adding one extra AND gate to the Reed-Muller canonical realization off, 

iBCfi($AiCD =-k=iCD@-CD@AB-D&B& 

with inputs from all those primary inputs that ‘am connected to an even 
(see Fig. l).. 

number of AND gates, one can detect all single stuck-at faults by applying As we see. the chaining operation expands the well-known Boolean 
only (n+l) test patterns, independent of the function f [35]. [15]. IFunction f rules of merging and exclusion used in the Quine-McCluskey or other logic 

can be tested also for all single stuck-at faults with (n + 2n, + 4) tests where design algorithms. It finds one of the shortest paths between two nodes of a 

n, is the number of input variables appearing in an even number of terms. Boolean hypercube. The number of generated terms equals the Hamming dis- 

This research has been expanded in [24], [25], [40], [32], [29] and others. tame of these nodes. 

The mixed-polarity GRMs that are discussed here also have very good Clearly a systematic way of finding the chain expansions is needed. 

testability properties, but no systematic study similar to that of [35ll is known Below we will give a procedure for finding them. The appIication of this pro- 

to the authors. cedure will be called xliokmg (pronounced cm&inking). The result of the 

GRM forms, as well as forms that arise from their factorization can be 
procedure will be called the xlink (crosslink) of the two original minterms. 

realized with standard cell library approach, or with multi-input NOR gate, 
The mintenns and the product terms are represented as ternaty cubes (cubes 

EXOR gate and XNOR gate cell generators. Another approach would be to 
with bits 0, 1, -) in the computer. Positional notation that permits for both 2- 

expand the concept of PLA to the EXOR-based PLA where the EXOR-plane 
valued and m-valued minimization is used [42]. 

replaces the OR-plane. We are currently working on possible layout of such To @d th_e xlink of a pair of two minterms, for example A B C D l? 

PLA and PAL circuits. and A B C D E we write them vertically like this: 

In interesting concept, not yet to our knowledge realized by industry, Ai?CDl? 
would be to fabricate the off-the-shelf EXOR-based PAL, PLA and EPLD 
user-programmable devices. Minimization of Boolean functions for program- ABr?DE 
ming of such devices was now made possible because of availability of 9? 
EXORCISM. ‘Ihe design for testability would be thus greatly simplified on 
this design level. 

Each time when the polarity of the literal changes from minterm to 
minterm in the pair it is denoted by an arrow. Each arrow will give rise. to 

3. THE XLINK OPERATION. 
one term of the xlink. Let us now consider each arrow separately. The above 
initial pair of minterms can then be expanded to two secondary pairs, for 

Basic operation of our system is the operation of xlinking that general- variables B and C respectively, as shown below. 
izes several operations known from the previous papers. For variable B the term A - c D l? is created as follows: 

Let us first observe that any two minterms ml and m2 in a Karnaugh A i CD.‘? 
map can be linked by a chain of groups, where: 
- each group has two adjacent K-map cells, A B i!D.i? 

- the first group includes ml, the last group includes m2, 
- any two subsequent groups of the chain include a single common minterm. qJ 3) 

C 
tbe tint secondary pair 

--- -_- ---..-_---- 

‘A - cL>i? 

It can be easily proven that the EXOR of minterms ml and m2 is equal For variable C the tezm A B -D I? is created as follows: 
to the EXOR of all groups from the chain. Figure 1 shows an example of a Ax C 

7l 

Da!? the second secondary pair 
chain 6om minterm 0100 to minterm 1011. Let us observe that usually there / 
are many such chains from ml to m2. 

AB E[DE I ______ ___ 

3 
.._____ 

‘Ai-DE 
Under each pair of literals of different polarities under consideration (B in the 
first pair, C in the second pair) we write the don’t care symbol (dash). To 
create the result of xlink for a secondary pair we copy the part of the term 
to the left of the dash from the top minterm. The part to tbe right of the 
dash ls copied from the bottom minterm, as shown. The xlink of the ini- 
tial pair of minterms is an EXOR of xlink terms of the secondary pairs for 
each variab:le of different polarities. 

Inomcaseitcanthenbeseenthat: 
AL%D.E@ABf?Di=A-CD,?@Aij-DE. 

This operation is illustrated in the Karnaugh map from Fig. 2. 

This procedure can be easily extended for any two terms that have 
dashes in the same positions. For example: 
A-CD- @A-CD- = A-C--. 

Fig. 1 
This is also illustrated in Fig. 2. The terms (cubes) that have dashes in the 
same positions will be called xlinkable terms (cubes). For instance 
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AB-C-andiii-F- 

are xlinkable and 
A-B C-andxB-c- 

are not. 
This type of xlinking for any two xlinkable terms will be called pri- 

mary xlinking. 

CDE 
Al3 000 001 011 010 110 ‘I’ ‘01 

00 

01 
---A-C-- 

/ \ 
A--CDT \ A;;- DE 

Fig. 2. 
Let us now introduce another type of xlinking. This new operation per- 

mits two terms of different degrees to be xlinked. As we have seen, the pri- 
mary xlinking reduces the degree of the terms. By use of the primary xlink- 
ing, together with the laws: 
1) x@O = x. 
2) x0x = 0. 
3)@is commutative and associative. 
we will be able to formulate a secondary xlinking that xlinks terms of 
degrees differing by one. 

Secondary xhkable terms are two terms that satisfy these conditions: 
- their degrees differ by one, 
- the term with the higher degree contains all the variables from the other 
term. 
For example, the terms x B ‘- D E and i i C D E are secondary xli;lkable, 
since. the term 

.iiiCDE 

of degree 5 has att the variables of the terms 
AIB-DE 

of degree 4. 
Let us now consider an example of secondary xlinking. It uses the pri- 

mary xlinking and the above three laws. 

The secondary xlinking will be applied to: 
AB-DE@ABCDE. 

First., let us_see that variable C is lacking in x B -D E and occurs as C in 
x B C D E . Let us then create a term, that is adjacent with respect to vari- -- 
ableCtothetermABCD~:thiiwiIlbeaterm~~f?D~. 

Now we EXOR the previous EXOR sum with the zero term: 
AB-DEO~BCDEO(ABCDEOABCDE). 

Next we apply the fact that exoring is associative: 
~B-DEO(~BCDElOABCDEI)OAB~D~. 

We xlink the terms in the parantheses: 
AB-DE@xB-DE@il?CD@. 

We xlink the first two terms: 
ii--Di@iiB-D-@Agi?D#. 

The result shows that the lower degree term has been changed to terms of 
even lower degree, and the upper degree term has been changed to another 
term of the same degree. 

The above operation is illustrated in the Karnaugh map of Fig. 3. 
Remember that each cell covered by an even number of groups is a 

“zero” cell and one coveted by an odd number of groups is a “one” cell (min- 
t&IXl). 

Fig. 3. 

\ 
C 

A0 

00 

0’ 

‘1 

10 

DE 

CDE 
\ A0 000 00’ 0” 010 I to “1 ‘01 too 

CDE 
\ AB 000 001 0’1 010 110 111 101 too 

00 

01 

II 

10 

The above sequence of transformations was shown for the sake of 
explanation, but the execution of the secondary xlink is very straightforward 
in our implementation of the xlink operation. Its execution is therefore 
speedy. 

4. ALGORITHM,. 

The algorithm currently used in our program is quite simple. The idea 
is to carry out all primary and secondary xlinks possible, in some reasonable 
order, giving priority to xlinking least distant groups first. Distance here 
refers to the Hamming distance of two groups. 

Simply stated the algorithm is: 
1. Do all primary xlinks with preference given to closer groups. 
2. Do all secondary xlinks with preference given to closer groups. 
3. If any xlinking was done in 2, then go to 1 

It is important in steps one and two of the algorithm to do xlinking on 
terms of high degree first. This allows for the results of the first xlinks to be 
compared for xlinking to groups of the same degree before those groups are 
xlinked to groups of lower degree. 

When performing primary or secondary xlinks the program finds close 
groups by taking the tirst group in the list and comparing it to every other 
group and choosing the closest. After performing that xlink it moves to the 
second group in the list, and so on. 

After performing secondary xlinks it is required to check again for pri- 
mary xlinks, because the secondary xlinks may contain primary xlinkable 
groups. 

By way of example, take the function f = ~(1,3,7,10.1’2,I3,15) : 
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CD 
\ AB 00 01 11 IO 

00 

01 

II 

IO 

‘I 
0 1 I 0 

0 0 I 0 

1 I I 0 

0 0 0 I 

Fig. 4. 

HINTERHS 

0011 
000 I 
0111 
1100 
1101 
1111 
1010 

0011 7 00-l - 00-l - 00-r - 
/ 

0001 
0001 
0111 -III 
1100 

- ;g 7 y; - --II 
1101 
1111 $ 

IlO- 
I-O- - l-O- - I -o- 

1010 ----lOlO 
7 

lo-- - lO-- - lO-- 

The first column is a list of minterms, the second is the results of the primary 
xlinking in step 1 of the algorithm. The group 1010, being unxlinkable, was 
just carried to the next step. Columns 3, 4, and 5 show the results of the 
secondary xlinking in step 2 of the algorithm. Step 3 checks to r* if any 
more primary xlinking is possible - since none is possible, the algorithm ter- 
minates. 

This program handles multioutput functions in a very simple way. 
Each output is minimized with the stated xlinking algorithm, producing a list 
of terms. After each output is minimized. each term from that and all previ- 
ous outputs is included, one by one with each succeeding output - to see if it 
helps the minimization. If it is beneficial, then it is included as a term in the 
final minimization, if not, it is discarded and the next term from a previous 
output is tried. 

A better system for handling multioutput functions is to use each term 
generated in a previous output as a “don’t care” minterm or group in each 
succeeding output. The idea here is that any “don’t care” groups included 
during minimization can be reincluded in the circuit at little cost since the 
product already exists in a previous output. Remember that if a group is 
included twice, it is the same as if the group was not included at all ( a @ a=0 
). Because of the even/odd properties of GRM forms the existence of even a 
single don’t care permits term minimization. Don’t cares can be therefore 
used to more extent than in the classical minimization and xlinking can be 
further modified to take this into account. 

5. NUMERICAL RESULTS. 

In this section we will discuss the numerical results of our algorithm. AU 
resuhs were obtained from an IBM AT with a 1OMHz clock and 640K RAM. 
The program was written in C. Running times and other data for each exam- 
ple are given in Table 1. 

Example 1. This is Example 1 from [lo]. f(xt x1, xe) = x(0,2, 6, 7). The -- 
same solution, f=xaxe @x2x1. as in [Davi71] was generated. 

F%intPie 2. This is Example 2 from t9]. f(xz, x1. x,,) = x(0.3.5,6,7). The 
solution from [9]. 

-- 
f=Xe@x,xa@x;xrx* 
has 3 terms and 8 gate inputs. Our solution, 

f=Xe@X,@X;@XeXtXZ 

has 4 terms but only 7 gate inputs. The solution from [9] could be obtained 
with our algorithm if a different sorting procedure were applied. 

Example 3. This is Example 1 from [13]. f(x,, x2. x,) = x(0. 1, 3, 5, 7). 
The same solution as in [13] was generated: --- 
f=xs@xlxaxs. 

Example 4. This example is from [42], [13], [3] and [25]. 
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Table 1. 
-- --- 

f(x,,;ra,xs,x&xr) = xsxjxq + x2x3.%5 + x1x2x3x., + xlxix4 

xs. The same solution as in 1131 was obtained: 
--_ -- 

f = ~~~~~.~~s~~~~~~~~~~~j~~~~~~~~~~s. 
This is the best of all solutions found in the literature. 

Example 5. This is Example 1 from [32]. 
f(xe, xl, x3 = C(l, 2,4,7). The solution from lRama651, f = x0 @ x1 @ 
x2 has the same term cost as our solution: 
f = x;@x, @XT 
The same solution as in 1321 would be generated by our algorithm with a dif- 
ferent sorting routine. 

Example 6. This Grey code - to - binary conversion from Fig. 5.26a page 
160 of [18]. The same solution: 

B4 = Gs,. 
B3 = G3@ G4, 
B, = Gz QG3@ G4, 
b, = G, (3 G,@ G,@ Gq, 

as in [18] has been generated. 

Example 7. This is a simple parity-check encoder from Fig. 5.27 page 161 of 
[IS]. The same solution: 

I,’ = I,, 
I,’ = Iz, 
I,’ = I3, 

14’ = 14, 

P = i,@f,@I,@l,,, 
as in 1181 has been generated. 

-ample 8. This is binary-to-grey code conversion from Fig. 5.26, page 161 
of [IS]. The same solution: 

G4 = B4, 

G3 = B3 GB 84, 

G2 = B,@B,, 

GI = 81 @Bz, 

as in [18] was generated. 

]*ampb? 9. 'fhis is an encoder for 7-bit Hamming code from Fig. 5.28 page 
I.62 of [Grec861. The solution from [18] is: 

pI = 14@1, 012, 

p2 = 14 631, @In. 
p3 = r4@r2@13. 

Our solution is, 



Example 10. This is Example 1 from 1421. f = Xt Xs + Xi Xs + Xs Xs. 
The same solution, f = Xi Xs @Xi X3 @X2X3 as in 1421 was obtained. 
Example 11. This is Example 2 from [42]. f(Xi, X,, Xs. X4, Xs) = c(8, 10, 
11,16,17,19.23,24,26.27) . The solution from [42], -- -- --- 
f = x~~~x4xs~x1_xr_Q_x2x3x4xs~x1x~xs 

@~1~2x4xS@~1x2x3x4 

has 7 terms, 6 AND gates and 27 gate inputs. Our solution, 
-- --- 

f = x2x~~xzx3x4xs@x4xsx1x~@x1x2x3x4 
has 4 terms, 4 AND gates and 18 gate inputs. 
Example 12. This is a combinational arithmetic multiplier (f = x * y) with 6 
inputs and 6 outputs. The solution is in Fig. 5. The number of terms is the 
same as in the multiple-value-inputs PLA (with 2-input decoders) of Sasao 
c401. 

Number of inputs: 
Number of outputs: 

Number of products: 
l-1111 110000 
1111-l 110000 
ll-ll- 100000 
110110 010000 
-llll- 011000 
11--n 010000 
l--l-- 010000 
-11011 001000 
110-11 001000 
l-11-1 001000 
-l-l-- 001000 
l---l- 001000 
-11-11 000100 
--ll-- 000100 
-l--l- 000100 
l----l 000100 
--l-l- 000010 
-l---l 000010 
--l--l 000001 
Nlunber of terms: 19 

6 
6 
49 

Number of inputs: 
Number of .mtD~ts: 

Number Of products: 
oo------ 1110 
-------- 1001 
-ooo---- 0110 
lo------ 0100 
-1oooo-- 0011 
o--000-- 0010 
o-o----- 0010 
-l------ 0010 
1-001000 0001 
-110-000 0001 
---00000 0001 
o---1000 0001 
l--0-000 0001 
o-o--o00 0001 
oo---000 0001 
-OlOl--- 0001 
o--000-- 0001 
o-110--- 0001 
00--O--- 0001 
-l-O---- 0001 
l--l---- 0001 
l-l----- 0001 
Number of terms: 22 

Fig. 5. 

Fig. 6. 

Number or inputs: 6 
Number of o"tp~ts: 12 

Number Of Droducts: 6, 
10111- 111000000000 
ll---- 100000000000 
llO--- 010000000000 
l----- 010001000000 
-10011 001111000000 
010-11 001110000000 
11-l-- 001000000000 
-Ol--- 001000000000 
O-l--- 001000000000 
101011 000100000000 
l-111- 000100000000 
ll-Ol- 000100000000 
110-l- 000100000000 
-llO-- 000100000000 
l--l-- 000100000000 
-1---- 000100000000 
l-0111 000010000000 
10-111 000010000000 
1011-l 000010000000 
-11-l- 000010100000 

Fig. 7. 

l-l--l 000010010000 
--Ol-- 000010000000 
-O-l-- 000010000000 
l---l- 000010000000 
-11101 000001000000 
--llO- 000001000000 
-l--10 000001000000 
l----O 000001000000 
--l--- 000001000000 
--11-l 000000100000 
-01-l- 000000100000 
---ll- 000000100000 
-l---l 000000100000 
---110 000000010000 
O-l--l 000000010000 
---I-- 000000010000 
----01 000000001000 
---O-l 000000001000 
----10 000000000100 
-----I. 000000000001 
Number of terms: 40 

23:33:41.1l5 c:\c, 

Example 13. This is a 2 + 2 adder (f = x + y) with 4 inputs and 3 o,Q~~s. 
Example 14. This is a 4+4 adder with 8 inputs and 5 outputs. 

Example lg. This is a 6-bit square rooter ( f = int(sqr(x)) ) with 6 inputs and 
3 outputs. 

Example 16. This is an I-bit square rooter ( f = int(sqr(x)) ) with 8 inputs 
and 4 outputs. Solution in Fig. 6. 

Example 17. This is a 3 input, 6 output square circuit ( f = x * x). 
Example 18. This is a 6x6 square circuit ( f = x * x ) with 6 inputs and 12 
outputs. See Fig. 7 for solution. 

Example 19. This is a 4x4 multiplier with 8 inputs and 8 outputs. 

Our mean improvement was 54.84% on functions with mean value Of 
inputs equal 4.74, mean value of outputs equal 3.47, and the mean value of 
OTIS equal 59. Papakonstantinou [30] reports an optimal program that had 
an improvement of 55% on 100 randomly generated single output functions 
of five variables with a mean value of 13 terms. The methods from Even 
[12] and Bioul[5] were reported to give an improvement of51%. 

6. CONCLUSION 

A fast computer algorithm for minimization of mixed-variable GRM 
has been presented. There are no data in literature on performance of such 
algorithms, and essentially very few papers have been published on this topic. 
As illustrated by the examples, the aigorithm gives very good results, and is 
fast, even implemented on a personal computer. 

The algorithm permits for synthesis of multi-output incompletely 
specified functions - there are currently no papers on this topic in the litera- 
ture. 

It can be easily upgraded to synthesize fixed polarity forms (by using 
first the presented algorithm and next transforms ?i = l@a or a = a@1 for 
selected variables followed by obvious simplifications). Such RM forms have 
some advantage as far as the minimization of the number of function’s inputs 
is concerned, which can be related to testability. 

The algorithm is now beiig improved by adding more passes and tree 
branching with various heuristic evaluation functions. Also, the next passes 
will include shrinking operations (A @ B = A E @ A B) followed by 
xlinking operations. The results can be also improved in some cases if in the 
last pass the operations: ii = 10 a and a @ a = 0 are iterated (this would 
for instance improve the solution from Example 9 by removing negations of 
variables). We see also many other possible improvements of the algorithm, 
and we plan to experiment with many variants in order to generate absolutely 
optimum solutions in all or nearly all examples known to us. Since the algo- 
rithm is fast, we are able to sacrifice some speed by making it even more 
optimal. 

We will consider also applying a cost function that would more accu- 
rately estimate the real layout cost. 

The advantage of our method is that it starts from an arbitrary array of 
disjoint terms (disjoint cubes) end not necessarily from a canonical Reed- 
Muller form like most the well-known algorithms. 

Another advantage of the approach presented here is that our methods 
can be easily extended to the description of functions with multiple-valued 
inputs (multiple-valued EXOR forms are described in [17], clasical PLAs 
with multiple-valued inputs in 1421. a new concept of GRM Forms with 
multiple-valued inputs, that generalizes ideas from [42] and this paper will be 
described in our outcoming paper). 

Currently we see a multitude of fruitful research areas that have been 
initiated by the research reported here: 
1. Factorization of GRM polynomials (extensions of the Brayton’s 

methods [6], as well as classical polynomial factorization methods are 
possible). 

2. Design for testability of multi-output functions of the above categories. 
Testability analysis of mixed-polarity GRM functions extending the 
known results. Analysis for factorized networks. 
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4. 

5. 

6. 

7. 

Application of the spectral analysis methods [23 ] to the above and more 
general problems. Decomposition into linear and nonlinear part. 
Decomposition into functions with simple GRM realizations. 
Mixed forms, composed of EXOR, NOR and NAND gates, created to 
concurrently minimize the area aad optimize the testability. Creating 
an expert system by generalizing xlink operations and extending the 
local transforming operations set (see EXPO [31]). We observed that 
often the functions that give good results with EXORs produce poor 
results with classical approaches. Some sort of an evaluation function 
has to be created that would permit to evaluate the most appropriate 
realization method for any decomposed subfunction. 
Joining EXORCISM as a subroutine to MIS. EXPCI 1311 or other 
multi-paradigm program for multi-level logic minimization. 
Efficient realization of many input EXOR gates for EXOR-based PLA 
layout 
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