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Abstract

A set of p-valued logic gates (primitives) is called universal if an arbitrary p-valued logic function can
be realized by a logic circuit built up from a finite number of gates belonging to this set. In the paper,
we consider the problem of determining the number of universal ternary reversible logic gates with
two inputs and two outputs. We have established that over 97% of such gates are universal. Some of
the theoretical results are also valid for arbitrary p-valued reversible logic gates.

1. Introduction

The universality (or completeness) of sets of binary and multiple-valued functions and related
problems have been studied for many years and by many researchers in three areas: propositional
calculus of logics, universal algebras and logic (switching) circuits ([49] contains 464 references). The
universality of logic gates (primitives) depends on the technology because it has to take into account
also some constraints. It may differ from the notion of functional completeness studied by
mathematicians and for this reason sometimes is called elemental universality [19]. This area has been
gradually evolving. Initially, it dealt with delay-less combinational circuits exclusively [37]. Later,
delays have also been taken into account as well as universality of sequential primitives was
considered (including asynchronous behavior) [19, 40]. With technological changes new types of
universality have been developed, e.g. corresponding to double-rail signals [21].

Although studies of reversible computing were initiated in the 1960s [31, 6] and a number of
universal reversible logic gates have been proposed, general problems of universality of such gates
have attracted the attention of researchers only very recently. Few papers have been devoted so far to
universality of reversible gates and they consider almost exclusively binary gates [52, 14, 26]. In this
paper, we are concerned entirely with universality of general ternary reversible gates.

A gate (or a circuit) is called reversible if there is a one-to-one correspondence between its input
and output assignments, i.e. not only the outputs can be uniquely determined from the inputs, but also
the inputs can be recovered from the outputs. In other words, a gate is reversible if it is invertible or
information-lossless. Using reversible logic circuits enables avoiding energy losses in digital devices
[31, 18, 6, 10, 11, 17]. It is a fast developing area of research due to its increasing importance to future
computer technologies, especially quantum ones [16] because of possibility to solve some
exponentially hard problems in polynomial time [7]. For example, during the last three years many
papers have been written on reversible computing [1-5, 8, 12-15, 20, 22-26, 28-30, 32-36, 41-48, 51,
54, 55], some of them proposing new multiple-valued gates [48, 42, 5, 14, 1-3, 41, 44, 30]. In
designing circuits built from such gates it is important to know which of the gates have the least cost.
Solving this practical problem we should first establish how many multiple-valued gates are universal.

Let us call a gate with n inputs and m outputs an n*m-gate. Some of the binary reversible gates
considered in the literature have different number of inputs and outputs, e.g. 2*3 �switch gate� and 2*4
�interaction gate� [18] (also called IB and IIB elements, respectively, in [27, 50]). However, usually it is
assumed that a reversible gate has the same number of inputs and outputs. In this case, the output rows
of the truth table of a reversible gate can be obtained by permutation of the input rows. Thus, there are
equal numbers of all values in the function vector for each output function of a reversible gate (such
functions are called balanced [9]).
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Universality of reversible gates differs from classical elemental universality because in reversible
circuits

(1) usually multi-output gates are considered instead of only one-output gates,
(2) a constant signal may be applied to an arbitrary number of inputs,
(3) reversible gates have fan-out of each output equal to 1.

Thus we have to consider
(1) universality of sets of functions instead of single functions,
(2) weak completeness instead of strong completeness,
(3) the property of replicating input signals at the gate outputs.
Compositional properties of binary and ternary reversible gates are different. Universal binary

reversible k*k gates exist only for k > 3 [53] (the set of 2-variable balanced Boolean functions is equal
to {EXCLUSIVE-OR, EQUIVALENCE} and it is known that this set is not weak complete). Over
97% of binary reversible 3*3 gates and almost all reversible 4*4 gates are universal [26] in spite of the
reversibility constraint. However, there exist ternary 2*2 gates that are universal. Moreover, the number
of ternary reversible 2*2 gates is 9 times greater than the number of binary reversible 3*3 gates (9! in
comparison with 8!). In binary case, for establishing universality of a gate it is sufficient to check weak
completeness of the set of the gate output functions as it has been proved in [26] that all gates with this
property are duplicating input signals. This result does not hold for ternary reversible gates. For this
reason we have introduced a new property of gates called quasi-replicating. Using this notion it was
possible to obtain experimental results allowing estimation of the number of universal ternary
reversible 2*2 gates. Namely, also over 97% of such gates are universal.

The rest of the paper is organized as follows. In Section 2, we define basic notions of reversible
gates. Section 3 introduces the notion of universality of reversible gates (called r-universality, in short).
Section 4 presents results of counting the number of r-universal ternary reversible 2*2 gates. Finally, in
Section 5, conclusions are made.

2. Preliminaries

Let P = {0,1, � , p-1}. A mapping f: Pn → P will be called an n-variable p-valued function. If
p=3 then the function f is called ternary. To represent a 1-variable ternary function f(x) we use the
vector of the function values written as a string a0 a1 a2, where ai = f(i). For example, the identity
function f(x) = x is represented by the vector 012. Similarly, to represent a 2-variable ternary function
f(x1,x2) the vector a0 a1 a2 a3 a4 a5 a6 a7 a8 will be used, where f(j,k) = a3j+k. For example, the function
f(x1,x2) = x1+x2 (mod 3) will be represented by the vector 012120201.

Definition 1 A set of p-valued functions F is
- complete (strong complete, Sheffer) if an arbitrary p-valued function f(x1,…,xn) can be realized

by a loop-free combinational circuit built up of logic gates realizing functions from F and using
x1, ... ,xn as primary inputs,

-  weak complete (complete with constants, pseudo-Sheffer) if an arbitrary p-valued function
f(x1,…,xn) can be realized by a loop-free combinational circuit built up of logic gates realizing
functions from F and using 0, 1, � , p-1, x1, ... ,xn as primary inputs.

Definition 2 Let wi(f) denotes the number of input assignments X for which f(X) = i. An n-variable
p-valued function f  is called balanced if wi(f) = pn-1 for each i, i.e. f is equal to each value belonging to
the set {0,1, � , p-1} the same number of times.

There are six 1-variable balanced ternary functions. They are represented by the vectors 012, 021,
102, 120, 201, 210 and corresponds to S3, the symmetric group on three marks. The function f(x1,x2) =
x1+x2 (mod 3) is one of 1,680 2-variable balanced ternary functions.

Definition 3 A p-valued gate (or a circuit) is reversible if there is a one-to-one correspondence
between the input and the output assignments, i.e. if in the truth table of the gate or circuit there is a
distinct output row for each input row.



Note that every output function of a reversible gate is balanced and that the reversibility property of
gates is preserved under permutations of inputs and/or outputs. We will consider only the gates with the
same number of inputs and outputs. A gate with k inputs and k outputs will be called a k*k-gate. There
exist six ternary reversible 1*1 gates (they have the same truth tables as 1-variable balanced ternary
functions). As mentioned earlier only 1,680 out of 39 =19,683 2-variable ternary functions are balanced.
The number of pairs of balanced ternary functions is equal to 1,6802 = 2,822,400. However, the
number of ternary reversible 2*2 gates is smaller: 9! = 362,880 (it is equal to the number of
permutations of 9 rows in the truth table of a ternary reversible 2*2 gate) as not every pair of balanced
functions may appear in a ternary reversible 2*2-gate (see Example 1).

Definition 4 Two balanced p-valued functions f, g are called r-compatible if for all input
assignments (a1, … , an) the pairs of their values <f(a1,…,an), g(a1,…,an)> are equal the same number of
times to each of the pairs <j.k>, 0 < j,k < p-1.

Example 1 Let the capital letters A, B denote inputs, and P, Q denote outputs of a ternary reversible
2*2 gate. Table 1 shows an example of a pair of balanced functions that is not r-compatible. Namely, in
the output rows of Table 1 each of the pairs <0,0>, <1,2> and <2,1> appears twice, while the
combinations <0,2>, <1,1> and <2,0> are missing.

TABLE 1
PAIR OF TERNARY BALANCED FUNCTIONS THAT IS NOT r-COMPATIBLE

A     B P     Q
 0     0
 0     1
 0     2
 1     0
 1     1
 1     2
 2     0
 2     1
 2     2

   0     0
   1     2
   1     0
   0     1
   1     2
   0     0
   2     1
   2     1
   2     2

Lemma 1 Each pair of functions belonging to the set of output functions of a p-valued reversible
gate is r-compatible.

Proof. All pn output rows in the truth table of a reversible n*n gate are distinct. Thus for each pair
of output functions f, g all pairs of values of these functions <f(a1,…,an), g(a1,…,an)> appear in the
output part of the gate the same number of times. Hence the pair f, g is r-compatible.

Lemma 2 All output functions of every p-valued reversible gate are distinct.
Proof. Let us assume that there exists a p-valued reversible gate with two identical output

functions. In a pair of identical output columns only the following pairs of values appear: <0,0>,
<1,1>, ... , <p-1,p-1>. Such a pair of functions is not r-compatible. By Lemma 1 we obtain a
contradiction. Hence, Lemma 2 holds.

3. Universality of ternary reversible 2*2 gates

Definition 5 A p-valued reversible n*n gate (or circuit) has duplicating property (D-property, in
short) if there exist a sequence of n-1 constants a1, … ,ai-1, ai+1, ... ,an and two output functions of the
gate (circuit) fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such that

fj(a1,…,ai-1,xi,ai+1,...,an) = fk(a1,…,ai-1,xi,ai+1,...,an) = xi.

Example 2 Table 2 shows the truth table of a ternary reversible 2*2 gate (circuit) having D-
property. It is easy to notice that for A = 0 we always obtain the same value at both gate outputs P and
Q as at the input B:

P = B Q = B.



TABLE 2
TERNARY REVERSIBLE 2*2 GATE HAVING D-PROPERTY

A     B P     Q
 0     0
 0     1
 0     2
 1     0
 1     1
 1     2
 2     0
 2     1
 2     2

   0     0
   1     1
   2     2
   0     1
   1     2
   0     2
   2     1
   1     0
   2     0

Definition 6 A p-valued reversible n*n gate (or circuit) has quasi-duplicating property (qD-
property, in short) if it is has not D-property and there exist a sequence of n-1 constants a1, … , ai-1,
ai+1, ... , an and two output functions of this gate fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such that each of the
functions

fj(a1,…,ai-1,xi,ai+1,...,an)     and      fk(a1,…,ai-1,xi,ai+1,...,an)
takes all values 0,1, ... , p-1.

Example 3 Table 3 shows the truth table of a ternary reversible 2*2 gate (circuit) having qD-
property. It is easy to notice that for B = 0 the output functions P and Q have the representations 012
and 201, respectively.

TABLE 3
TERNARY REVERSIBLE 2*2 GATE HAVING qD-PROPERTY

A     B P     Q
 0     0
 0     1
 0     2
 1     0
 1     1
 1     2
 2     0
 2     1
 2     2

   0     2
   0     0
   0     1
   1     0
   1     1
   2     0
   2     1
   1     2
   2     2

Theorem 1 If G is a p-valued reversible n*n gate with qD-property then a circuit with D-property
can be built using exclusively gates G.

Proof Let us consider ternary case. If f is a 1-variable ternary function and f2(x) = f(f(x)), f3 (x) =
f(f2(x)) then f2=f for f belonging to A1={021, 102, 210}, and f3=f for f belonging to A2={120, 201}.
Assume that a ternary reversible n*n gate G has qD-property. Then there exists a sequence of n-1
constants a1, … , ai-1, ai+1, ... , an and two output functions of this gate fj(x1,x2,...,xn) and fk(x1,x2,...,xn)
such that each of the functions fj(a1,…,ai-1,xi,ai+1,...,an) and fk(a1,…,ai-1,xi,ai+1,...,an) takes all three
values 0,1,2. First, we will consider an example. Let the representation of fj(a1,…,ai-1,xi,ai+1,...,an)
belongs to A1 and the representation of fk(a1,…,ai-1,xi,ai+1,...,an) belongs to A2. Fig. 1 shows a circuit
with D-property built using exclusively gates G. In general, if the representation of the function
fm(a1,…,ai-1,xi,ai+1,...,an), where m = j or k, belongs to A1 (A2) then we construct a sequence of two
(three) gates in which the j-th output of the first gate is connected to the i-th input of the second gate
(the k-th outputs of the first and second gate are connected to the i-th input of the second and third gate,
respectively). When the first gate is common for the two sequences then the signal at the j-th output of
one sequence and the signal at the k-th output of the other sequence are both equal to the i-th input of
the common gate. Thus Theorem 1 holds in ternary case. The proof for p-valued case is similar (based
on properties of permutation groups). We are not including it due to the lack of space.



Fig. 1 Example of a circuit with D-property built using gates G with qD-property

It is possible to build up a circuit with qD-property (and by Theorem 1 also a circuit with D-
property) using gates not having qD-property as shown in the example below.

Example 4 Table 4 shows the truth table of a ternary reversible 2*2 gate not having qD-property.
Fig. 2 presents a circuit with qD-property built using such gates. Thus it is also possible to build up a
circuit with D-property using circuits from Fig. 2.

TABLE 4
TERNARY REVERSIBLE 2*2 GATE NOT HAVING qD-PROPERTY

A     B P     Q
 0     0
 0     1
 0     2
 1     0
 1     1
 1     2
 2     0
 2     1
 2     2

   0     2
   0     0
   0     1
   1     1
   1     0
   2     0
   2     1
   1     2
   2     2

Fig. 2 Circuit with qD-property built up using gate G not having qD-property

Definition 7 A p-valued reversible gate G is r-universal if an arbitrary p-valued function f(x1,…,xn)
can be realized by a loop-free combinational circuit built up of a finite number of copies of the gate G
using constants an arbitrary number of times and using each signal x1, ... ,xn at most once as primary
inputs.

Theorem 2 If for a p-valued reversible gate G it is possible to built a circuit having qD-property
using gates G and the set of output functions of G is weak complete then G is r-universal.

Proof. Proofs of universality in classical case (see e.g. [37]) are based on the assumption that each
input signal may be used an arbitrary number of times (i.e., arbitrary number of copies of primary
inputs can be used). Then from a canonical form of a function it follows that a circuit realizing any
function can be built. Thus it is sufficient to follow these arguments to prove Theorem 2. As it is
possible to built a circuit having qD-property using gates G then by Theorem 1 it is possible to build a
circuit with D-property using gates G. However, this is equivalent to the assumption that each signal
may be used any number of times. Hence, Theorem 2 holds.



4. Experimental results

First we have run a program based on the procedure from [39] to find all ternary reversible 2*2
gates that are weak complete. Then for each such gate we have constructed cascade circuits (allowing
wire crossing) to check whether conditions of Theorem 2 have been fulfilled. Because the number of
these cascade circuits grows exponentially with the number of levels we have limited the calculations to
12 levels.

On the basis of Theorem 2 we were able to establish that among 362,880 ternary reversible 2*2
gates:

a) 353,214 (97.34%) are r-universal,
b) 1,934 (0,53%) are not weak complete, thus are not r-universal,
c) 7,732 (2.13%) are weak complete, but it is not known whether they are r-universal (circuits

with qD-property built up of gates G have not been found)..

5. Conclusions

By exhaustive calculations we have established that over 97% of all ternary reversible 2*2 gates
are r-universal. As there are so many universal gates the circuit designers have a lot of freedom in
finding gates with good physical implementations (e.g. minimum cost). Some such multivalued gates
have been proposed for quantum logic [38] and generalized in [41, 44, 30]. However, nobody has
done such research for CMOS, DNA and nanotechnologies where a number of binary gates have been
proposed.

Theorem 2 gives a sufficient condition for r-universality. However, we do not know whether it is
also a necessary condition. It is an interesting open problem.
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