SOFTWARE-HARDWARE CODESIGN APPROACH TO
GENERALIZED ZAKREVSKIJ STAIRCASE METHOD FOR EXACT
SOLUTIONS OF ARBITRARY CANONICAL AND
NON-CANONICAL EXPRESSIONS IN GALOIS LOGIC

M. A. Perkowski, P. Lech, Y. Khateeb, R. Yazdi, and K. Regupathy,
Dept. Electr. Engn., Portland State Univ., Portland, OR 97207

Staircase Method of Zakreuskij has been used for ezact solution to incomplete Exclusive-Or Sum of Products (ESOP)
and Fized Polarity Reed-Muller (FPRM) forms. It can be observed, that the method of Zakrevskij can be generalized to all
problems where the function sought is the canonical form of an EXOR of arbitrary linearly independent (LI) generating
functions. Next it can be observed that the EXOR expression can be not necessarily canonical, so that arbitrary functions
are used instead of LI functions. Finally, the method can be extended to a non-canonical Galois Field (GF(k)) sum
of arbitrary multivalued generating functions. We call this the ”"Generalized Zakrevskij Staircase Method”. This paper
introduces a software-hardware approach using the DEC PERLE-1 FPGA-based board. The Boolean decision function
to be satisfied with minimum non-zero arguments is a generalization of the Helliwell Function and is first minimized
in software taking into account the predicted cost of the solution. Next, the simplified incomplete function is realized in
hardware and an ezhaustive breadth-first search with use of a special "m out of N” counter is executed, where m is an
expected solution cost and N is the number of classes of equivalent generating functions. The method is efficient because

for incomplete functions "m” is small even for large "N ”.

A Xilinx 3090 FPGA-based accelerator board to DECsta-
tion 5000 executes a computation intensive part of the algo-
rithm and achieves performance superior to supercomput-
ers with a fraction of cost, while the rest of the algorithm
is done by software. The joint Reconfigurable Computing
Project of Portland State Univesity and Technical Univer-
sity of Eindhoven aims at using these concepts in a new
application domain - solving of NP-hard search com-
binatorial problems [4].

Generalized Zakrevskij Staircase Method for

EXOR logic minimization.

In 1988, Martin Helliwell introduced the Helliwell Func-
tion for exact ESOP minimization [3] and implemented a
GAL-based circuit (courtesy Lattice Corp.) for hardware
minimization of exact ESOPs for single-output 5-variable
functions. The generating functions were all possible
products of terms of n-variable function F, there existed
thus N = 35 = 243 of such generating functions. There
were 2° = 32 flip-flops corresponding to every minterm
of the function, set initially to the value of a function to
be minimized. The problem was to find, by a hardware
search, such choice of the generating functions that the
EXOR of them would make the states of all flip-flops equal
to zero (F = Zg iff F @ Zg = 0). A 243-bit
binary counter in natural code was used to exhaus-
tively search all combinations of the generating functions,
so the search was generating worse solutions after already
finding a solution with a smaller cost (such as generating
candidate 00...01110 after already finding that combination
00...00011 was a solution). This was the first hardware ac-

celerator for EXOR logic problem and its performance was
much superior to IBM PC AT, but the limited size of func-
tions discouraged us at this time to continue this research.
Searching with a binary counter is not a depth-first, nor
a breadth-first method and its only advantage is the sim-
plicity and regularity of hardware.

In 1990 Perkowski and Jeske found several generaliza-
tions of the Helliwell’s Method: to multi-output, multi-
valued functions, to Positive Polarity Reed-Muller Forms,
to Fixed Polarity Reed-Muller Forms, GRM forms and
other [2, 12]. The method was implemented in software
using depth-first search, but unfortunately the limit of 5
variables was not exceeded. However, we observed that
the search algorithms can be made much more efficient for
strongly unspecified functions, and by using more sophis-
ticated tree search strategies. A tree is pruned by finding
equivalent operators on each level. A better search strat-
egy was subsequently implemented which allows to realize
a higher percent of functions with more than 5 variables,
and these improved results will be soon published. We
observed also that very good upper bounds can be found
by EXORCISM-MV-2, which are next used to limit the
first backtracks in our search. In 1993 Sasao solved Helli-
well’s Function for only small functions using BDDs, but
his method allowed to realize more functions of more than
5 variables than our approach at this time. Similar BDD-
based results were reported by Somenzi and Escobar and
other authors (unpublished). In 1993 Perkowski general-
ized the Helliwell’s function for arbitrary canonical family
in Linearly Independent Logic and for Galois Logic.



Zakrevskij [15] introduced the so-called Staircase
Method which he used for exact solution to (non-canonical)
ESOP expressions and (canonical) FPRM forms, and re-
ported good results for multi-output strongly incomplete
functions, specified by minterms. In essence, his method
is based on partitioning a set of generating functions
(products of variables or products of literals in his case),
to classes of equivalency with respect to a set of care
minterms. Two generating functions are equivalent if they
cover exactly the same care minterms. If a function is com-
pletely specified, there are no equivalent generating func-
tions for it. (The more don’t cares exist in the function,
the larger are the equivalency classes, so Zakrevskij method
has the best advantage for very strongly unspecified func-
tions). Only one representative function is selected from
a class for subsequent search, which limits substantially
the search. It can be observed that from a programming
point of view the depth-search software search method is
used with cost-based backtracking. Zakrevskij’s method
was next generalized, improved and extended by Shmerko,
Zajtseva, and Yanushkevitch and other researchers in Eu-
rope, including logics more general than binary. The idea
of dividing to classes of equivalency is the reason of the
success of this method for incomplete functions, but with
the introduction of more cares the method becomes not
efficient, and is very similar to the one from [3]. On the
other hand, when the exact ESOP or FPRM minimiza-
tion is not required, there exist many eflicient algorithms,
such as EXORCISM-MV-3, so Zakrevskij Method loses its
merits when approximate solutions are sought.

There are, however, the following two ideas in Zakrevskij
Method that remain very powerful to generate exact solu-
tions, and should be in our opinion further investigated:
(1) Partitioning the set of generating functions to equiva-
lence classes. Although used by Zakrevskij only to ESOP
and PPRM solutions, (3" and 2" generating functions cor-
responding to terms of literals, and variables, respectively),
it can be used to arbitrary Linearly Independent family of
functions. Moreover, this idea can be used to any func-
tions, even linearly dependent, such as generating functions
for all possible polarities for AND/OR/EXOR expansions
based on generalized Maitra cascades [6, 5, 7, 13, 11, 9, 8]
and AND/OR cascades. (2) Using the breadth-first search
at level m, next at level m — 1, m — 2, etc, which leads to
the staircase pattern.

The following observations can be made:

(al) The method of Zakrevskij can be generalized to all
problems where the function sought is the canonical form
of an EXOR of arbitrary linearly independent (LI) gen-
erating functions. The only difference is that instead of
all products of literals, all generating functions of cer-
tain Linearly Independent form are created [11], which
can be of AND/OR, AND/OR/EXOR, or another type
[6, 5, 7, 13, 11, 9, 8]. Next, for these generating functions,
groups of functions are compared and all those that cover
exactly the same care minterms are put into one equiva-
lence class. The equivalence classes are thus generated as in
the original staircase method, and one representative from

each class is selected. Next the search is performed as in Za-
krevskij Method. This generalized method can be applied
to arbitrary Linearly Independent forms, which means, in
particular, to all AND/EXOR forms such as Fixed Polarity,
Generalized Reed-Muller, Kronecker, Pseudo-Kronecker,
Generalized-Kronecker, and all AND/OR/EXOR forms
such as those from [2, 12, 6, 5, 7, 13, 11, 9, 8].
(a2) The original method of Zakrevskij was created for
Positive Polarity Reed-Muller forms (PPRM). It was next
extended for FPRM and ESOP, but it is our understand-
ing that the generalization for ESOP was not exact. It can
be observed that the EXOR expression of generating func-
tions used in both ESOP and PPRM can be not necessarily
canonical, so that arbitrary functions can be used instead
of LI functions. Thus, if for some reason given is an ar-
bitrary set of generating functions (specified by a singular
matrix M, [6]), then a minimal solution is generated for a
non-canonical expression type. This way, the method can
be also applied to an arbitrary class of non-canonical ex-
pressions that includes the class of canonical Linearly Inde-
pendent forms defined in point (al). These expressions can
be ESOPs (when all 3” product terms are used as generat-
ing functions), and all AND/EXOR subsets of ESOPs that
are created by selecting smallest sets of generating func-
tions from the sets being unions of sets of some generating
functions of some canonical forms. More interestingly, all
AND/OR/EXOR expressions created from the generating
functions which are selected from unions of sets of generat-
ing functions for any canonical AND/OR/EXOR forms can
be also minimized this way. Maitra cascades [6, 5, 7, 8].
We call this the Generalized Zakrevskij Staircase Method.
In conclusion, Zakrevskij Method in this generalized
formulation becomes already the most general method
of solving all exact problems for all Linearly Indepen-
dent and non-canonical multi-output expressions that have
EXOR output gates. Unfortunately, as it is now, the
method is computationally not efficient. To release its
full potential, more sophisticated search methods, and a
hardware realization of search should be employed. This
paper introduces a software-hardware approach using the
DECPeRLe-1 FPGA-based board.
Our approach to minimize arbitrary single-output expres-
sion with EXOR output gate and with given set of gener-
ating functions has several stages as follows:
Given:
(d1) the set of care minterms of a multi-output function
F, with the corresponding binary output values of a single-
output function for each care minterm. (d2) the set of
generating functions.
Find: The minimum solution, i.e. the expression being an
EXOR of generating functions with the minimum number
of inputs to the output EXOR gate. (i.e., in other words,
the minimum number of EXOR-ed functions selected from
the set of generating functions from (d2)).
(s1) Step executed in software. For function F of n
variables create an arbitrary number C of all generating
functions G; stored in hypothetical registers (C = 2" for
any canonical AND/EXOR form, 3" for ESOP, C= 2" for



any LI form, C = 3" for non-canonical expressions being
generalizations of canonical Maitra LI forms, C = v-2" for
a combination of generating functions from various canon-
ical forms, etc.). Create a binary matrix with generating
functions as columns and care minterms as rows. Thus
there exist R < 2" rows. If function covers this minterm,
there is a 1 on their intersection, otherwise - 0. (sla) Find
equivalence classes of generating functions with respect to
care minterms. Two functions are equivalent if they have
the same columns. If a function is completely specified,
this step should be omitted. (s1b) Select one represen-
tative from each class (exactly as in Zakrevskij method).
Thus the new matrix has N < C columns.

(s2) Step executed in software.
@Zif, ¢; G;, where G; are vectors of minterm-variables
G;,. Minterm-variables correspond to values of function G;
on all care minterms. Each such vector corresponds then
to a column of the matrix. All these vectors have length
R. For any given function G;, all the minterm-variables
G, are constants 0 or 1. Variable c;=1 means selection
of function G; for the EXOR combination. Variable ¢;=0
means no selection of function G; for the EXOR combina-

Create a function

tion.

Satisfaction of formula
Dl GoF=0
where 0 = (00...0),
means that function F is realized by the selected gener-

ating functions for which ¢; =1, with cost being the number

of ¢; that are equal 1. Thus, the minimum number of ¢;
= 1 for which formula (F1) is satisfied, is the exact mini-
mum solution to the generalized minimization problem. In
yet another words, exoring all selected groups equals the
original function F. The decision function from formula

F1 is a generalization of the Helliwell Function. Its gener-

alization for multi-output case is trivial, the cares of each

output must be separately repeated in the vectors. Figure

1 explains the principle of our approach.

(s3) Step Executed in software.

(s3a) Substitute constant values of minterm-variables from

registers G; to function @Zif, c; Gi.

(F1),

Thus, function
@Zif, ¢; G; becomes now function H(cy, ¢z, ...,cn) of only
c; variables.

(s3b) Having value m+1 of an upper bound of the solution,
found in software by a heuristic search depth-first program,
expect the solution with cost m and modify function H ac-
cordingly to this expectation. First, create function S™
with arguments ¢;. (By S™ we denote the (single-index)
symmetric function on variables ¢;, that equals 1 when ex-
actly m of its input variables are equal 1.) Create a new
decision function: H N $™ = (ON,OFF), and replace all
minterms in H N 5™ by don’t cares.

(s3c) Using fast Boolean minimization methods, simplify
the incomplete function H; = (ON,OFF), where ON =
ON(H) N 8™, and OFF = OFF(H) N 8™ to some com-
pletely specified function Hj.

(s3e) Download the simplified, completely specified, deci-
sion function Hj(cy,..,cn) as a netlist to hardware. If this
function is zero, there is no solution of cost m. Otherwise,

there exists at least one solution of cost m.

(s4) Step executed in hardware. Use the special
Search Counter (address generator) circuit that generates
all binary vectors (c1,..,cn) in "m out of N code”. If
Hi(cy,..,en) = 1 for some vector of ¢;-s then a new solu-
tion is found. If it is known that a better solution cannot
be found, return and stop (see below), else continue. This
way, a single level on depth m is searched in the solution
tree for one downloading of a hardware configuration.

(s5) Steps executed in software and hardware. Re-
peate above steps (s1)-(s4) for m—1, m—2,... and smaller
values of m. This means, for every value of m, a new hard-
ware configuration is created and downloaded.

We developed several variants of this algorithm which
speed-up the operation in some special cases. (case 1). In
some problems, for instance in ESOP minimization, it can
be proved that for every m, if a solution with cost m exists,
then also a solution with cost m + 1 exists. In such case,
if no solution is found for certain m, then our algorithm
can stop and return m + 1 as the minimum solution cost.
Its corresponding combination of ¢; satisfying the equation
H) = 1 isreturned as the solution.

(case 2). When no upper bound is known, the algo-
rithm with increasing the value of m can be used, instead of
the above algorithm with decreasing the value of m. In the
increasing variant, the first solution is the minimum one,
but usually more iterations are needed. In this variant, it
speeds the algorithm when we calculate a lower bound of
the cost as the starting value of m.

(case 3). When function is complete and exact ESOP
is looked for, a simplified algorithm is executed. It starts
from a upper bound found by EXORCISM-MV-2 and
EXORCISM-MV-3. When it finds in (s3c) that H # 01t
is not downloading the configuration to hardware but keeps
decreasing m by one and iterating. When it finally finds
for value m’ in (s3c) that H = 0 which means, no solution
of cost m’, it downloades the configuration for m’ + 1 to
hardware and finds the solution in hardware.

The problem of designing the ”"m out of N” counter is an
interesting design problem in itself which will be discussed
in our oral presentation. It is designed as a one-dimensional
cellular automaton. The method is (relatively) efficient be-
cause for incomplete functions the value of ”m” is small
even for large " N”. At the time of this writing we do not
know how big functions would be possible to minimize.

Approach to the Minimization of Multivalued Logic
Functions with Galois-Addition Output Gates.

Zakrevski]) Method and its hardware realization presented
above can be further extended to canonical and non-
canonical Galois(k) sum of arbitrary multivalued generat-
ing functions. The only differences are the following: (a)
Instead of EXOR gates, the Galois(k) addition gates are
used in the Generalized Helliwell Function H. (b) Instead
of storing values 0 and 1 as for GF(2), the flip-flops in
registers of function F' and of generating functions store
values from 0 to k — 1 for k-valued logic. Because the cod-
ing for k # 27 is difficult, we concentrated on the cases
when k& = 2". Thus, a 2"-valued signal is realized with r
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Figure 1: Principle of the presented method for ESOP minimization: (a) EXOR-ing groups G; selected by signals c;
with F. Groups c,b and a¢ are selected to realize function F = (ON,OFF) where ON = (1,2,4,5), OFF = (3,6). The
result of EXORing is vector 0, so F =c @ b @ ac. (b) the schematic diagram ezplaining the configuration downloaded

to hardware.

binary singals. For instance, this way, only two two-input
EXOR gates are needed to realize a Galois(4) addition and
only 3 two-input EXOR gates for Galois(8) addition. The
construction of the ”m out of N” Search Counter and the
rest of the circuit remain the same. Similarly, the software
preprocessing of the function is basically the same. This
way, the expressions that are GF(k) additions of arbitrary
k-valued generating functions can be exactly minimized.
The classes of expressions include all Galois Logic canoni-
cal forms, all Linearly Independent forms with GF(k) Ad-
dition, all Galois Logic Linearly Independent GF(k) forms,
and all their non-canonical extensions and generalizations
[6, 1, 10]. Thus, similarly as in the binary case, the Gen-
eralized Zakrevskij Method allows to find exact so-
lutions for arbitrary canonical and non-canonical
expressions.

Conclusion.

Our main idea can be summarized as follows: every (multi-
output, incomplete) k-nary input k-nary output function
realized in the form of a GF(k)-addition of arbitrary func-
tions from a well-defined set of functions over GF(k), can
be minimized (exactly or approximately) in a system, that
realizes a generalized Helliwell function in a hardware data-
path, and implements the staircase algorithm of Zakrevskij
with a sequence of down-loaded ”m out of N” Address Gen-
erators realized as Cellular Automata (Finite State Ma-
chines). In addition, a general software technique of pre-
processing the function H was shown, that can be used
for any kind of tree-search problems, realized in hard-
ware. We created very similar approaches to solving ar-
bitrary Boolean equations, Generalized Satisfiability Func-
tions, Graph Coloring, Maximum Clique, Set Covering,
Petrick Functions, and Clique Partitioning using FPGA
technology. In each of them, the essence is to perform the
enumeration of all subsets and checking some logical con-
ditions, using various Address Generators that correspond
to Depth-First, Breadth-First and other Tree Search meth-
ods. Most generally, the main contribution of this note is
to propose a very general method to perform arbitrary tree
search for NP-complete problems using hardware Address
Generators.
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