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Abstract

Integrated circuits with a highly regular, repeated structure outperform IC's with complex logic
interconnects, in transistor density, gate delay time, and testability. These advantages drive the search for
highly regular structures. In [4] a triangular Davio lattice array has been introduced and its testability. A
new structure, rectangular Davio lattice array is introduced here that has even more advantages for
testability and nano-technology design.

1. Rectangular Lattice Architecture
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The rectangular lattice from Figure 1 is an m by n array of Davio gates connected much like the triangular
structure from [4]. The upper part of the triangle has been filled out, creating a separate output for each
column. One further difference is that signal lines from column zero wrap around to the right-most column,
giving the structure an overall left-right rotational symmetry around rotations of the the b vector. As we'll
soon see, an N by N+1 rectangular structure, like the triangular structure, is capable of generating any
symmetric function. But the additional outputs the rectangular structure produces significantly enhance
both synthesis and testability.

2. Transformation by a Lattice Row

When an s input is zero, control inputs are passed upward through the row without modification. When an s
input is one, the control signals are XOR'ed with a left-rotated copy of the signals. Mathematically:

b;' =b;® b (+1) mod cols)

Applying the rule recursively, we can see how the control signals are transformed as they pass upward
through multiple rows that have s equal to one:

b;' =b; @ b (G+1) mod cols)

b;'" =b; @ [b (+1) mod cots) 12 @ b (G+2) mod cols)

bj'” = bj @ [b ((j+1) mod cols) ]A3 @ [b ((j*+2) mod cols) ]A3 @b ((j*+3) mod cols)
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Symbol a”b means b times XORing of a. These equations are very much like the equations for the
triangular structure [4] except that when the number of rows with s = 1 becomes equal to the number of
columns in the lattice, the subscripts wrap around and new terms on the right begin to interfere with
existing terms. Consider, for example, a 4x4 lattice. The rightmost term in the b'""' equation above, b (j+4
mod 4) 1 the same as the first, b ;. Combining the first and last terms gives us:

b;"" =[bj]*2 @ [ b (+1) mod cats) |4 © [ b (+2) mod cots) 10 © [ b ((+3) mod cots) |4

The powers on all terms are even, thus b;"""" = 0, regardless of the initial b vector! Note that this 4x4 lattice
is a special case -- not all lattice sizes will go to zero like this. A three-column wide lattice, for example,
goes into a three-line repeating pattern.

3. Logic Synthesis

Logic synthesis for the rectangular structure is similar to the triangular structure. We simply equate the b;
values with the appropriate S(i) values and then solve the resulting system of linear equations:

S(0) =bj
S(1) = bj'
S(2) =bj"
S@3)=bj"
S(4) = bj""

Table la Test to find all single stuck-at faults in a rectangular array
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The synthesis can be done for any output, f;. The other outputs, however, are dependent on the same b
values, simply rotated, and so can not be independently synthesized. We'll see later on, though that
although these other outputs may not be independent, they can still be useful.

Something that should be noted at this point is that if the number of rows is greater than the number of
columns in the lattice, the coefficient matrix in the resulting system of equations may not be of full rank,
and thus the desired solution may not exist. For example, in the case of a 4x4 lattice, whether desired or
not, S(4) is always zero. The converse statement, however, holds. As long as the number of columns is
greater than the number of rows, it's not possible for a given j to wrap all the way around, thus it's possible
to synthesize any symmetric function over the rows of the lattice. Note that sometimes it's desirable to
disable the wrap-around connections from the last column to the first column. When this is done, the
modulo operations disappear from the equations above, and the synthesis is like that for the triangular
lattice with the one exception that all columns produce an output.

4. Universal Test

It's here that we first see just how valuable these extra output lines are. Instead of a single output for the
entire lattice structure, we now have as many outputs as there are columns. These
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outputs greatly increase observability of the structure during testing. In the rectangular structure, we can
test entire rows at a time (a strategy that was only partially successful in the triangular lattice case). To find
all single stuck-at faults, first apply this test, shown in Table 1(a). The first test vector tests for stuck-at-0
faults in the lattice columns and stuck-at-1 faults on the AND gate inputs. Next, walk ones on the s inputs,
cycling through the four b test vectors on each row as shown in Table 1(b) These test vectors walk each
Davio gate through its universal test shown in Table 2. Caution: when the number of columns in the lattice
is odd, we can run into problems on the last column. It will still have a value of 1 on the initial test vector,
but for all the other test vectors, the last column will always be zero.



Table 4b. Second stage of improved test
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S. Improved Test

The high observability of the rectangular lattice structure makes it pretty easy to extend our test above to
cover stuck-open faults in the Davio gates and bridging faults between adjacent columns. Instead of using
only 4 test vectors per row, we use 9. These vectors test every transistor in a typical CMOS implementation
of the Davio gate for stuck-at and stuck-open faults, and cover both the even and odd columns in the lattice
from Table 3. The initial test above isn't actually needed in this approach, but it's easy to do and gives a
quick indication of whether there are major problems in the lattice or not. Let's keep it, but force the b
values up then back down to detect any stuck-open faults in the columns, shown in Table 4(a). We still
walk ones on the s inputs, but notice that all s inputs must be zero for the first two and last two rows of the
test vector blocks, Table 4(b).

Caution: As with the previous testing strategy, if the lattice has an odd number of columns, the right-most
output behaves differently from the others. Here, the last output will have the expected value from the table
when all s inputs are zero and will always be zero when an s input is on.

Summarizing: Due to the greater observability provided by the per-column outputs of the rectangular
structure, the rectangular structure is much easier to test. The testing method just given detects all single
stuck-at faults, all stuck-open faults and all bridging faults between adjacent columns. Further, the number
of test vectors required grows linearly with the number of table rows. So, where a 4x4 lattice requires 36



vectors, the 40x40 only requires 360. Compare this to the quadratic growth algorithm developed for the
triangular structure in [4]. For a 4x5 triangular lattice, that test requires 50 vectors. For a 40x41 lattice,
however, it requires 4100 vectors! The rectangular structure's additional outputs are also quite useful for
synthesis.

6. Linear Transformations in Galois Field(2)

This section covers matrix methods for analysis and synthesis of the Davio gate lattice structures. All
matrix operations here are performed in the Galois Field(2) system, in which multiplication is like AND
(Table 5) and addition is like XOR (Table 6):

Table 5 Table 6
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6.1 Row Transformation Matrix, R

To model the transformation of the control signals by a row with s = 1, we define the row transformation
matrix, R. Using the notation from [4] and previous sections, each right-side multiplication of b by R adds
a prime to b:

b'=b*Rb"=b"*R

So, if the lattice has i s inputs set to one, or in other words, if s is in S(i), the output of the lattice is related
to the control inputs, b by the relation:

f=b*R
The R matrix has two forms depending on whether or not the last column signals wrap-around to the first
column. Examples are shown in Tables 7(a) and 7(b).

The R matrix is always square with dimensions based on the number of columns in the lattice. The major
diagonal always contains ones, representing signals passing upward through the XOR part of the Davio
gates. Off-diagonal terms represent the signals from the neighboring column to the right feeding into the
AND portion of the Davio gates. The only difference between the 7(a) and 7(b) forms is the value of the
upper-right corner square. When this value is one, it represents a value wrapping-around from the first
column to the last. When zero, the AND portion of last column Davio gates always receive zero, thus the
last column Davio gates become degenerate - they simply pass the b (5.1 control input through without
modification.

Another difference between the two forms is that the 7(a) form is never invertible while the 7(b) form
always is. This follows from the fact that in the 7(a) form, any row of the matrix can be calculated by
adding all the other rows together, thus each row is a linear combination of the other rows. In the 7(b) form,
we can always diagonalize the matrix by starting at the top and adding each row to the row immediately
below. This difference, though interesting, probably isn't extremely significant. It only seems to matter in
the case that we have an f vector and the number of s inputs set, and want to calculate the b vector.

Table 7(a) Table 7(b)
R R
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6.2 Powers of the R Matrix

In [4], it was mentioned that it's possible to implement asymmetric functions using the lattice structure if an

external input is repeated on the s inputs of two or more rows. A transformation by i repeated rows can be

described by R'. This section explores powers of the R matrix and develops a method to simplify repeated

inputs. Let's look at a few powers of the Table 7(a) R matrix, Table 8(a), Table 8(b), Table 8(c), Table 8(d).
Table 8(a) Matrix R Table 8(b) Matrix R"2

Notice that in the R? case, the matrix still has the major diagonal of ones representing the control signals
passing upward through the lattice, but instead of the off-diagonal terms representing a rotation from the
neighboring column, it reflects a rotation from the column one beyond the neighbor. Another way of
looking at it is that the column immediately to the right is XOR'ed into the current column twice, canceling
itself. Meanwhile, the column two to the right is XOR'ed in once. Look now at the R* case. Here, the
column two to the right is XOR'ed into the current column twice while the column four to the right is
XOR'ed in once. In this case, though, the column four to the right is the current column itself and
everything cancels and the row always produces zeros.
Table 8(c) Matrix R"3 Table 8(d) Matrix R

It should be start to become clear that for any power of R in the form

R
, k integer > 0, the repeated line transformation is equivalent to rewiring the inter-column connections to
jump every 2* rows.

Taking R to the third power, however, is not equivalent to rewiring the columns to jump every 3 rows.
Here, we don't have the luxury of the multiple transformations canceling out the intermediate terms. R®
could be implemented, however, by connecting the external input both to a R* row and a regular row.

Table 9(a). Matrix R Table 9(b) Matrix R"2




This property suggests an enhancement to the rectangular lattice structure. The lattice should contain
several regular rows, then a few R’ rows, a few R* rows, a few Rs, etc. Then, for example, if a synthesis
problem required a multiple of say, 9 rows, we could implement it by wiring a regular row with an R8 row,
using the size and gate delays of only two rows!

What about powers of the table 7(b) form? They are shown in Tables 9(a), 9(b), 9(c) and 9(d).

As we can see, the same canceling of intermediate terms happens here as well, so the optimization applies
equally to this case.

6.3 (b -> S) Transformation Matrix, T

The R matrix gives us a nice tool to determine the output function f given b and s, but it doesn't really give
us a way to compute the b vector needed to realize a given desired symmetric function. This section
develops a transformation matrix that converts a given b vector to its corresponding symmetric function, S,
and the inverse transformation than can be used to find the b necessary to implement a specific symmetric
function, S.

The T transformation and, if it exists, the T™ transformation, are used as follows:

S=T*b"
b= [T"*8]"

where the superscripted, T, indicates the transpose operation and the S vector describes the symmetric
function appearing on output fy. Note that b is a row vector while S is a column vector.

Like R, the T matrix has a regular pattern and is easily synthesized with a computer. For the wrap-around
and no-wrap-around lattice architectures [Figure 7(a) and 7(b)], respectively, the T matrix has the forms
from Tables 10(a) and 10(b).

Table 10(a)
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Following directly from the math given in [4] and section 3, the T matrix can be constructed as follows:

Construction of T (with wrap-around)

T 0,0 = 1

To;=0, 1<=j<cols

Tio=T G, @os1) @ T p),0, 1 <=i<=rows, 1 <=j<cols
T i~ T (i-1), (1) eT 1), » 1 <=i<=rows,1 <=j < cols

Construction of T (no wrap-around)



T 0,0 = 1

Ty; =0, 1<=j<cols

T i = T G-1),0 » 1 <=i<=rows

T ij = T (i-1), (j-1) ®T (i-1),j » 1<=i<= rows, 1 <=j < cols

6.4 Synthesis Using T

The T matrix has dimension (rows+1) x cols. Because T is not necessarily square, the inverse matrix, T
must be computed using the pseudo-inverse method. Even then, if cols <= rows, the pseudo- inverse may
not exist. For example, in the 4x4 matrix, T exists for the wrap-around architecture, Table 11(a), but does
not exist for the no-wrap architecture. If we increase the number of columns by one, making a 4x5 matrix,
then the inverse exists for the no-wrap case, Table 11(b).

Table 11(a) Table 11(b)
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Because we are using the pseudo-inverse, even when T exists, there's still no guarantee that the b vector it
produces generates the desired symmetric function. Therefore, it is important to multiply the generated b
back by T as a check. For example, suppose we want to implement the AND function using the 4x4 wrap-
around lattice. The desired S vector on fj is:

S
S(0): [0]
S(1): [0]
S(2): [0]
S@3): [0]
S@): 1]

Going back to Table 10(a), we can already see that we're in trouble, because independent of b, an input of
S(4) always produces zero in the 4x4 wrap-around structure! Let's continue with the synthesis, anyway to
see what happens.

Multiplying S by T [Table 11(a)] yields the a b vector of [ 0 0 0 0 ]. Multiplying back by T as a check
shows us that we've in fact implemented the "zero" function:

S
S(0): [0]
S): [0]
S@2): [0]
S@3): (0]
S@): [0]

The problem is that the 4x4 wrap-around lattice is not capable of implementing 4-input AND. If we had
chosen a value of cols greater than rows, 4x5, for example, or if we had tried to implement a function
where S(4) = 0, it would have worked. For example, in the case of the 4x5 lattice, we would have



calculated b=10 0 0 0 1 |, which does produce the AND function on fy. Or, sticking with the 4x4 lattice,
we could have implemented a function where S(4) = 0, say, 4-input XOR:

S
S(0):  [0]
S(: 1]
S2): [0]
S@3): 1]
S@: [0]

Here, multiplication by T givesusb=[01 0 0 0 ] and the resulting function at f, is indeed XOR.

For the case of lattice structures in which the number of columns is greater than the number of rows by one,
we can prove that T™ exists, and that the T synthesis method works for any arbitrary symmetric function.
Looking at the way the T matrix is constructed, we can see that with or without wrap-around, we get a
square, lower triangular matrix with a diagonal of all ones. This matrix is of full rank and therefore has an
inverse, [3]. T%lerefore, there is a 1-1 mapping between b and S. For any S, there is a corresponding b such
thatS=T*b".

6.5 Synthesis of Multiple Symmetric Functions

Section 6.4 presented a method for synthesizing arbitrary symmetric functions at lattice output fy. From
section 6.1, we know that the other lattice outputs are based on the same control vector, b and side inputs s;.
What do we get on these other outputs? How many symmetric functions can we create using all outputs?

To answer the first question, we can calculate f; using either the T or R matrices. The wrap-around lattice
structure has rotational symmetry about the columns, so we can calculate the S vector at any output, fj, by
rotating the elements of b by j elements to the left and multiplying by T.

A more general technique, however, is to use the R matrix to build a matrix of the S vectors for all
columns, the f matrix. This approach is more general because it works on both the wrap-around and no-
wrap variants, and it calculates all outputs at the same time.

We construct the f matrix as follows. The zero-th row of the f matrix is the b vector calculated for output fj.
Subsequent rows, i, in the f matrix are calculated by repeated multiplication by R. Stated mathematically,
row iis b * R'. Thus the rows of f represent the number of s inputs asserted, the i in S(i), while the columns
of f represent lattice column outputs, f;.

Using the 4x5 lattice AND example above, b was calculated as [0 0 0 0 1]. The corresponding f matrix is
shown in Table 12.

Table 12. The f matrix for the example from section 6.5

f f
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The function at the first column is the one we chose. The 4x5 lattice gives us four other functions that we
don't get to choose, for free:

fy is the 4-input AND function we synthesized.
f; is symmetric function S(3).



f, is symmetric function S(2)+S(3).
f; is 4-input XOR.
fy 1is the function, TRUE.

Of these, at least AND and XOR are probably useful directly. But much more significantly, we can see
from the lower-triangular structure of this matrix that it has full rank, meaning that it forms a basis for ALL
(32) symmetric functions in 4 variables! To realize any of these functions, all we need to do is selectively
choose a subset of the column outputs and combine them in an XOR collecting plane.

Many, but not all b vector choices result in an f matrix that forms a basis for all symmetric functions. The
control vector, b=[00 0 ... 0 1 ], however, used in conjunction with an n x (n+1) lattice structure always
works. [Proof is left to the reader.]

The next section is a web-based program that generates R, T, f matrices, and computes b vectors to
implement arbitrary symmetric functions.

7. Davio Lattice Analysis/Synthesis Program

A program to aid in the analysis and synthesis of symmetric logic functions implemented by a lattice of
Davio gates has been developed [5]. The program is fully interactive and can be used through Internet.

8. Example

Figure 2 illustrates a 4-bit full adder implemented using the rectangular lattice structure. Several
optimizations have been done to arrive at this solution. Let's start at the beginning and work our way
through all steps to illustrate the entire process. First, both the carry and sum outputs of a one-bit full adder
are symmetric functions of the three inputs. When we try to extend the adder to two or more bits, we no
longer have a purely symmetric function of all inputs. We can fix this by connecting a single external input
to two or more lattice rows. For the adder, the process is really straightforward: connect the x0, y0, and cin
inputs directly to lattice rows. Connect x1 and y1 each to two rows, x2 and y2 each to four rows, and
finally x3 and y3 each to eight rows. At this point, we have a fully symmetric function in 31 inputs
representing our adder.

The desired functions are the columns of this matrix, the rows of which are simply the numbers from 0 to
31 in binary, as shown in Table 13. Using the program from [5], we can calculate the b vectors necessary to
implement any of these functions. To be confident that T™ exists, we have to set the number of columns to
one more than the number of rows. We have 31 rows, so we'll need 32 columns. Using the wrap-around
structure, the results are:

c3: b =[<16 zeros>1<15 zeros>|
s3: b =[<8 zeros>1<23 zeros>|
s3: b =[<4 zeros>1<27 zeros>|
s1: b =[<2 zeros>1<29 zeros>|
s b =[<1 zero>1<30 zeros>|

These results couldn't be much more convenient -- all desired outputs are simply rotations of the same b
vector. Because of the left-right symmetry of the wrap-around lattice, any b vector containing a single 1 in
an arbitrary position generates all desired outputs! If we line up the 1's vertically in the five computed b
vectors above, and left-justify the result, i.e., we use the b for output c;, then the lattice outputs have the
following assignments:

C3=f0
S3=f8
s;= T

s1=f14



so="11s

Looking at the whole lattice, we can see that in order for column 17 to rotate anything other than zeros into
column 16, it would have to rotate the one at byg 16 columns left, wrap it from the left side of the lattice to
the right and then shift another 16 places. This would require an input of S(32), but we only have 31 s
inputs. Therefore, it's not possible for column 17 to rotate anything other than a column of zeros into
column 16. In fact, the only purpose columns 17-32 are serving is to get rid of any data that's wrapping
around from column 0. It should be clear now that if we disable the left-right wrap-around in the lattice, we
can eliminate columns 17-32! At this point, we have a 31 x 17 lattice without wrap-around, and a control
vector, b, of [<16 zeros> 1]. In [4] we developed the theory behind an optimization that involves collapsing
powers of two rows that share a repeated s input into just one row. If we modify our lattice such that it has
three ordinary rows, two R’ rows, two R* rows and two R® rows, then we can make it so that each external
input connects to just one lattice row, and the total number of rows required is equal to the number of
inputs, 9.

Notice that the R® rows are beginning to be a bit crowded with interconnect wires, which works somewhat
against our argument for using the lattice structure in the first place. But up to about R®, the interconnect
wires are still relatively short and the structure is still very regular, so this seems like a good optimization
up to at least this power of R. The final 9 x 17 lattice design is shown in Figure 2.

Table 13. To adder example: the rows are simply the numbers from 0 to 31 in binary.
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9. Conclusions

We presented advantages of rectangular Davio lattices as compared to triangular Davio lattices from [4].
Look to [4] for a discussion of background, applications and complete bibliography, and to [5] for all
programs used in reported research. These programs find also applications also to other regular structures
with XOR gates, especially in reversible logic. Our future research is on extensions of the presented
methods to reversible logic and Single Transistor and Quantum Dot circuits.
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Figure 2. Four Bit Adder with Carry
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