
A New Approach to Robot’s Imitation of Behaviors by
Decomposition of Multiple-Valued Relations

Uland Wong and Marek Perkowski
Department of Electrical and Computer Engineering,

Portland State University
P.O.Box 751, Portland, Oregon, 97207-0751

Abstract
Relation decomposition has been used for FPGA mapping, layout optimization, and data mining. Decision trees are very
popular in data mining and robotics. We present relation decomposition as a new general-purpose machine learning method
which generalizes the methods of inducing decision trees, decision diagrams and other structures. Relation decomposition
can be used in robotics also in place of classical learning methods such as Reinforcement Learning or Artificial Neural
Networks. This paper presents an approach to imitation learning based on decomposition. A Head/Hand robot learns simple
behaviors using features extracted from computer vision, speech recognition and sensors.

1. Building a Learning and Imitating Robot Puppet with High School Students

 High school robotics is advocated by many authorities as the best way to enthuse young people to become interested
in mechanical design, mathematics, programming, electronics and mechanics [3,5]. In our high school robotics outreach
program at PSU we want to appeal also to those youngsters who have interest in sculpture, artistic design, theatre and
puppets. For the last three years the second author works with high school students on a variety of long-term robot
projects. We integrate mechanical design of robots, interface design, logic synthesis, computer vision and machine
learning. The ultimate technical goal of this project is to build a theater of fully autonomous robotic creatures that will
live semi-independent life in our Laboratory, communicating with humans and among themselves using speech and
natural language and gestures seen by their eye-cameras [16]. The didactic goal, however, is to work with several
student groups: talented, high risk, disabled and female students and help them to find creativity in themselves. The
robots will be equipped with rule-based general behaviors such as: language generation and parsing, “robot morality
and etiquette” and knowledge usage. They are being taught rather than programmed. Example of a puppet of our
Portland International Cyber Theatre is shown in Figure 1. It is called BUG, or Big Ugly Greeter. The robot was
designed by a small group of high school students, guided by the first author of this paper. Most of the design was done
by him in the summer of 2001 and is being programmed since then. The software will integrate Visual Basic, Visual
C++, Lisp and much publicly available software for speech synthesis, speech recognition, image processing and
computer interfacing [19,20,22,23,24]. We use also software developed previously at PSU, U.C. Berkeley, and
Technical University of Freiberg for machine learning [6,6,9,10,11,21] and image processing [4]. In our system the
only type of actuators are inexpensive servo-motors that can be purchased in most hobby shops or through Internet. The
cost of such servo is about $ 8.50 when purchased in larger quantities, which allows to build inexpensive robots with
many degrees of freedom. The hand/head robot is controlled by a total of 21 servos. Four fingers have 3 degrees of
freedom each and the hand has a total of 16 servos. Head has 5 servos. There are 4 touch sensors on tips of each finger
and one motion sensor for the head. In addition, Intel cameras and microphones serve as the robot’s inputs. There will
be also several additional sensors on hand and face: temperature, touch, infrared, and other. The signals from sensors
are either digital or analog and converted in A/D converters to multi-valued input signals of the software-realized
Reactive State Machines (RSM).

2. Learning Behaviors as Inducing Relations from Data

 Many problems can be described using tabular form in which rows correspond to objects (elementary behaviors,
minterms) and columns to attributes (features, variables) corresponding to objects [1,10,14,17]. For instance, object
behavior_1 has input variable values COLOR_OF_HAIR = black and HAND_MOVEMENT = horizontal and output
variable THREE_FINGERS_UP = 1. This means, that when camera sees a person with black hair who is waving his
hand horizontally and robot hand is raising three fingers up then this behavior should become an instance of a learned,
generalized robot’s behavior. Or, in other words, this behavior is reinforced by the learning system and will be used,

together with other positive and negative objects to induce a general formula for robot’s behaviors. Such tables,
object/attribute tables are the inputs to many types of learning algorithms: Rough Set, Decision Trees, Neural Nets,
Reinforcement Learning, DNF minimization and Functional Decomposition [13,19]. In general, the variables are
multiple-valued. Symbolic variables are encoded and the encoding can be for both nominal and non-nominal variables.
For instance, a ternary variable COLOR_OF_HAIR encodes values: bald = 0, black = 1, yellow = 2. The generalized
don’t cares are allowed in our system, which means instead of a single value of attribute for an object, some subset of
possible values of this attribute is allowed. For instance, color of hair is black or brown but not yellow in an input
variable COLOR_OF_HAIR, or the robot will show one or two or three fingers up but not four as a value of the output
variable FINGERS_UP.

 Behavior of a robot is described in terms of a hierarchy of (Mealy) finite state machines in which every machine is
composed of a multiple-valued combinational function and a memory. The inputs to the combinational function are
primary inputs from sensors (including vision and speech) or outputs from other state machines and the current state
signals of this state machine. The outputs of the state machine are: the next state signals of this state machine, and the
outputs of this state machine which either go to other state machines or to the actuators. Counters are used for timed
behaviors. We called these machines Reactive State Machines, as they react to events of the environment with robot’s
behaviors.

 There are several machine learning methods that can be used to induce combinational modules. We used the method
of decomposition of multiple-valued relations [1,14,17,21] but here we will specifically concentrate on the method for
bi-decomposition of multiple-valued relations from [11,21] which is now a part of MVSIS tools from University of
California in Berkeley [25]. Actually, any tool included into MVSIS can be used, but we experiment now only with bi-
decomposition. The input data are tables of MV relations (with very high percent of don’t cares, called don’t knows in
Machine Learning) and the output is a multi-level netlist of multi-valued gates described by gates such as MINIMUM,
MAXIMUM, MODULO-ADDITION and so on. This netlist can be interpreted as a multi-input, multi-output control
program of a robot, describing a set of generalized interrelated behaviors, similar but much more complex than the
behavior_1 above. Synthesized behaviors are in a form of BLIF-like multi-valued logic format so that they can be
edited manually (learning by brain surgery) by students. They can be also translated to a C program whose subroutine
calls are interpreted as calling executions of certain robot actions.

3. Hierarchy of Reactive State Machines for Robots

 The robot performs simple programmable movements: MOTOR-1-UP, MOTOR-2-DOWN, MOTOR-3-LEFT,
PICK, RELEASE. They correspond to states of output variables and can be timed or cyclic, for instance leg movements
for certain gaits. For instance, each finger has 3 servo-motors, each servo has a specified number of states which
correspond to angles of finger’s joints. Variables for head correspond for instance to angles of head rotations. All
signals, input, output and internal, are programmed as multi-valued. Timing information is added. For instance:
MOTOR-1-UP for 2 seconds, MOTOR-2-LEFT and MOTOR-3-UP for 3 seconds. One multi-valued variable is used
for time, with 4 bits. It describes time for both input and output variables. This allows to give commands such as: IF
INPUT-SIGNAL-SENSOR-1 for two seconds AND INPUT-SIGNAL-SENSOR-3 for one second, THEN generate
sequence MOTOR-1-UP and MOTOR-2-LEFT and MOTOR-3-UP for 10 seconds. State machines are hierarchical and
distributed, each component specifies certain behavior, for instance, it includes counters for counting time. Even for a
simple learned machine, the Cartesian products of parallel machines create extremely large spaces of possible
observable behaviors, which can make an impression of intelligence and free choice. The user describes the learning
data in form of tables available in a new window of software. The user cannot change the hierarchy of machines and
the general decomposition to modules, but can teach new functionalities of each module or change essential to vacuous
variables or states and vice versa.

 There exists also a voice recognition module (excellent toolbox from Microsoft). The human can control the robot
with simple voice commands such as LEFT, RIGHT, STOP. Image processing subsystem allows to recognize rough
shapes and colors. For instance, the color can be used to recognize the human, the robot has not trouble to recognize
Uland’s hair (Figure 6). Big area of green (a jacket, etc.) symbolizes man Green, red will is man Red, etc. The
experiments illustrate the behavior-based programming based on Reactive State Machines (RSMs)
[2,5,8,13,15,16,18,19]. Using this paradigm, the robot programs (i.e. RSMs) are constructed as a hierarchy of behavior
modules that execute concurrently in a multi-tasking environment. This enables a robot builder to create robots that

exhibit simple behaviors to which more sophisticated behaviors can be added simply by coding higher level behavior
modules. This way of organizing a hierarchy of behavior modules is also termed subsumption architecture [2]. This
proved to be a unique and concrete way of introducing multitasking, and issues relating to real-time control in the
computer science curriculum and is used at MIT, CMU etc. What is new to our approach, is the acquisition of the
machines’ functionalities in terms of: examples being generalized don’t cares, and learning by Decomposition of
Relations. Typically, the tasks only provide an abstract description of the desired mapping from perception to action.
Much of the detailed specifications about how to behave in a particular situation is not given and may not be known.
For example, a typical robotics task is to navigate (manipulate) from a starting point to a goal point. It can be learned
by examples rather than being programmed in detail in software language.

4. Modes of Robot Learning

 The “brain” of the robot is built not only by writing software but by teaching the robot on examples. This is a
standard "learning from supervisor" approach, and the student is the supervisor. He creates all sequences for training
the reactive state machine. It is as the parent would teach the child by re-wiring directly his brain based on positive and
negative examples. The set of sequences is incomplete, so the machine performs the generalization, automatically.
Adding or removing new rules, by the human supervisor or automatically/randomly, will change the behavior. The
students can experiment with this a lot. Due to the open ended nature of robotics problems, a lengthy process of trial
and error is often necessary to answer typical questions of robot behavior clearly enough to develop a working
algorithm. Students must repeatedly run their RSM-based programs on the robot and watch how well it performs. They
must analyze the failures and determine how they emanate from the RSM. They must then modify the RSMs in order to
correct the failures or improve the performance. During this debugging period, students learn a great deal about the
interaction between the robot's sensors and its physical environment, and in turn must translate this knowledge back
into their programs and behaviors. The goal of this project is to design machines that will react to sound, temperature,
touch, words (text) from speech recognition, simplified image recognition, light sensors, etc. Here, we want to design
something like the famous Furby toy, but with real learning.

 Let us first discuss how Furby works. It can be observed that Furby's internal states are prespecified, its learning is
only transiting to prespecified new states in the labyrinth of its possible "states of emotions and knowledge" (sleeps,
plays games, sings, is ill/healthy, etc). Appropriate learning patterns (such as petting the head twice and next the back
once) lead to the displays of appropriate behaviors pre-stored in the toy's memory, and are only hidden from the user by
not entering some internal states earlier. Although this is not a real learning, it is perceived as astounding by people
who observe this toy. Now, we want to create a puppet robot similar in sensor/actuator Pavlovian/Skinnerian learning
model, but that will built its "world model" with unlimited behaviors. This model is by inducing the logic of
prespecified behavior hierarchy of RSMs. The totally new states with their respective input/output behaviors will be
created using our approach. In contrast to Furby, our robot has new internal states, created automatically, and not
known to the designer. The power of constraint-based RSM descriptions induced from examples of our approach will
be again used to achieve this task. Instead of only transiting to "higher levels of consciousness" as Furby, the robot will
create its own space of internal states and transitions, modeling a simplified environment. Observe however, that there
is still no real world involved directly in learning. The observation of the results of robot's behavior is done by the
student-supervisor and it is him who in a God-like manner (or, brain-surgeon manner) inserts directly knowledge to the
software/silicon brain of the robot (the set of RSMs). In this world, there exist two kinds of learning. The learning in
the software, which is designing the robot's brain, and the learning of the student, which means, the student learns to
invent good learning sequences. Observing how robot reacts to the sequences, he invents new learning sequences that
directly affect robot's brain. The student has the power of directly changing the brain of the robot, as he wishes, and
according to what he observes in the real world, but there is no mechanism of having the world tell directly to the robot
what is wrong with its actions. This would require the evolution and the evolving robot, which is done in other learning
methods.

5. Evolvable Robot that learns from its mistakes in environment

 In this approach the robot's mechanics is fixed, and there is now no human supervisor. The real world or the
environment, serves now as the supervisor. This is the most complex of the learning modes. Robot executes the genetic
algorithm; with its cycle of parents' chromosomes crossover, mutations, fitness functions, and the survival of the fittest.
Having, however, only one robot, we will be growing only the brains of robots in the robot population (i.e. each

reactive state machine plays the role of one chromosome) and the populations of these machines will be
tested/evaluated in real mechanics/hardware. Thus, a programmed robot's genotype is its hierarchy of reactive state
machines. The programmed robot's phenotype is its physical robot with its brain in the real physical environment of
robotic hand and head, external items and obstacles, that punishes it or rewards for its actions. At the beginning of its
life the robot phenotype obtains certain number of units of energy. With time this energy is dissipated (the robot is
getting old), and the robot is supposed to achieve some tasks (like bringing a box from place to place). For each task
achieved the robot phenotype (its part of memory other than the RSM) is rewarded (a number is added to the value of
the fitness function). For each task not achieved, or a mistake (like bumping an obstacle with a hand) the robot is
penalized (a number is subtracted from the fitness function). When certain given time passes (i.e. when the robot dies),
the total fitness function of the robot is known. If it is small the robot's genotype is send to eternal damnation. If it is
high, the robot is allowed to reproduce, which means, new reactive state machines will be created by reproducing the
most successful genotype RSMs. Thus the corresponding child genotype and next child phenotype robot are created.
The child will be tested again in the same environment (reincarnation?). Thus the supervisor is removed from the loop
now, the human provides only the formulation of the fitness function. It will be up to the student to define the fitness
function and to develop experiments. He will evolve the robot as a series of RSM files, created by positive and negative
feedbacks from the physical environment. We just started work on this method and so far it has been not programmed
to BUG robot but is developed for robot soccer.

6. Simple Example
Given are two sensors, left sensor LS and right sensor RS located in front of a mobile robot with two wheels and a
caster wheel. Left wheel is controlled by motor LM and right wheel by motor RM. Both motors can run only forward.
All variables are ternary. LS=0 means no light, LS=1 means weak light and LS=2 means strong light perceived by
sensor LS. Similarly, for sensor RS. LM = 0 means LM stops, LM =1 is slow movement of LM, LM=2 is fast
movement of LM. Similarly, for motor RM. The sensors are connected to inputs of the black box and the motor
controls are connected as outputs of the black box that we are going to teach, in this case teaching is inducing a
combinational multi-valued function of robot’s behavior. Random output signals are created by some additional
mechanism to be able to create learning conditions and at the same time certain information from sensors is perceived
by the system. Robot executes this some random behaviors such as stopping, turning left quickly, going forward
slowly, going forward quickly, etc. which are perceived by the supervisor – a child teaching the robot. Each of the
behaviors is evaluated as good or bad using human’s voice. All positive reinforcements are used to create an
object/attribute table from Figure 2. Only those input/output combinations of LS, RS, LM and RM that got human
praise are stored. This table plays then a role of a characteristic function of a relation. As a result of synthesizing the
MV functions LM = F1(LS,RS) and RM = F2(LS,RS) using the bi-decomposer, functions F1 = MAX(LS,RS) and F2
= MIN(LS,RS) are created. Observe that many other relations (and particularly functions) can fit the data of the
characteristic function from Figure 2, and thus many different rules can be induced from the provided examples and
their reinforcements. But the solution above is the simplest solution, thus satisfying the Occam Razor principle of
learning. The synthesize rule means that if both sensors give no light, the robot stops. With small lights from both
sensors robot moves forward slowly, with strong lights from both sensors robot moves forward quickly. Robot turns
always right in case of unequal strengths of light sources in sensors. Turning right is faster and sharper if the difference
of light strengths is larger. Many similar examples of light following and light avoiding robots can be induced from
relations. The same principles are applied to robot head and hand movements, but much more complex functions are
induced since there are many sensors , motors, timings, voice and vision. The method can be generalized to stochastic
relations [1].

7. Conclusions

 There are two aspects of the research and development presented here. First, we introduced a new method of
teaching new behaviors to robots. This method is an adaptation of approaches used in the past for data mining and
circuit design. By this, we demonstrated that the previously introduced by us “learning by relation decomposition” is a
truly general method of machine learning. We plan to use this method also for other robot learning tasks such as
learning walking gaits for a hexapod robot [8]. Second, we proved that advanced robotics can be taught with success to
high school students. Please look to figures below and [18] for photographs of our robots and more technical details of
this project.

8. Literature

1. A. Al.-Rabadi, M. Zwick, and M. Perkowski, “A Comparison of Enhanced Reconstructability Analysis and
Ashenhurst Curtis Decomposition of Boolean Functions”, 12th International WOSC Congress and the 4th

International Institute for General Systems Studies Workshop, Pittsburgh, Pennsylvania, USA, March 24-26, 2002.
2. R.A. Brooks, ``A Robust Layered Control System for a Mobile Robot,'' IEEE Journal of Robotics and

Automation, 2(1):14, 23,March 1986.
3. M. Domsch, ``MIT 6.270 LEGO Robot Design Competition,'' World Wide Web, URL

ishttp://www.mit.edu/courses/6.270/home.html.
4. C. Espinosa, “Low Level Image Processing for Mobile Robots”, M.S. Thesis, PSU.
5. J. Iovine, ``Robots, Androids, and Animatrons. 12 Incredible Projects You Can Build.'' Mc Graw Hill, 1998.
6. C. Files, and M. Perkowski, “New Multivalued Functional Decomposition Algorithms Based on MDDs”, IEEE

Transactions on CAD, Vol. 19, September 2000, pp. 1081-1086.
7. S. Grygiel, M. Zwick and M. Perkowski, “Multi-level decomposition of probabilistic relations”, 12th International

WOSC Congress and the 4th International Institute for General Systems Studies Workshop, Pittsburgh,
Pennsylvania, USA, March 24-26, 2002.

8. M. Levy and M. Perkowski, “Gait generation for a hexapod robot via functional decomposition”, to be submitted.
9. A. Mishchenko, C. Files, M. Perkowski, B. Steinbach, and Ch. Dorotska, ``Implicit Algorithms for Multi-Valued

Input Support Manipulation,'' Proc. of 4th Intl. Workshop on Boolean Problems, September 2000, Freiberg,
Germany, pp. 9 - 20.

10. A. Mishchenko, B. Steinbach, and M. Perkowski, ``An Algorithm for Bi-Decomposition of Logic Functions,''
Proc. Design Automation Conference, DAC 2001, June 18-22, Las Vegas, pp. 103 - 108.

11. A. Mishchenko, B. Steinbach, and M. Perkowski, ``Bi-Decomposition of Multi-Valued Relations,'' Proc. 10-th
International Workshop on Logic and Synthesis, IWLS'01 , pp. 35 - 40, Granlibakken, CA, June 12 - 15, 2001,
IEEE Computer Society and ACM SIGDA

12. H. Moravec, ``Robot. Mere Machine to Transcendent Mind,'' Oxford University Press, 1999.
13. R.E. Murphy, “An Introduction to AI Robotics”,
14. M. Perkowski, S. Grygiel, Q. Chen, and D. Mattson, ``Constructive Induction Machines for Data Mining,'' Proc.

Conference on Intelligent Electronics, Sendai, Japan, 14-19 March, 1999. Invited speaker.
15. M.A. Perkowski, A.N. Chebotarev, A.A. Mishchenko, ``Evolvable Hardware or Learning Hardware? Induction of

State Machines from Temporal Logic Constraints,'' The First NASA/DOD Workshop on Evolvable Hardware
(NASA/DOD-EH 99), Jet Propulsion Laboratory, Pasadena, California, USA, July 19-21, 1999, pp. 129 – 138.

16. M. Perkowski, ``Oregon Cyber Theatre,'' Proc. 3rd Oregon Symposium on Logic, Design and Learning, May
2000.

17. M. Perkowski, and S. Grygiel, `` Decomposition of Relations: A New Approach to Constructive Induction in
Machine Learning and Data Mining - An Overview'' Proc. Workshop of National Institute of Telecommunications
and Polish Association for Logic and Philosophy of Science, May 25, 2001, pp. 91 - 111, Warsaw, Poland.

18. M. Perkowski’s webpage, http://www.ece.pdx.edu/~mperkows/
19. S. Russell and P. Norvig, ``Artificial Intelligence: A Modern Approach,'' Prentice Hall, Englewood Cliffs, NJ,

1995.
20. W. Savitch, “Problem Solving in C++,”
21. B. Steinbach, M. Perkowski, and Ch. Lang, ``Bi-Decomposition in Multi-Valued Logic for Data Mining,'' Proc.

ISMVL'99, May, 1999, pp. 50 – 58.
22. S.E Umbaugh, “Computer Vision and Image Processing”,
23. www.codeproject.com.
24. www.freshmeat.com. This website offers a variety of source code and activeX controls available for download.
25. The bi-decomposer of relations and other useful software is available at http://www-cad.eecs.berkeley.edu/mvsis/.

See also several papers by R. Brayton and his coworkers in IWLS 20

Figure 1. Big Ugly Robot BUG
Figure 2. Teaching
LS RS LM RM

0 0 0 0

0 1 1 0

2 2 2 2

1 1 1 1

2 0 2 0

1 2 2 1

reinforcement

yes

yes

yes

yes

yes

yes

 a mobile robot to react to light sources

http://www.ece.pdx.edu/~mperkows/

Figure 4. Details of a four-fingered hand

Figure 6. Uland Wong as seen by the robot camera.
Black hair is easy to find and locate.

Figure 3. Head can talk and move towards you

Figure 5. Each finger is controlled by 4
servos. There is a total of 16 servos in the
hand. This allows for many programmable
gestures

Figure 7. Locating fingers.
Figure 8. Locating hand or face.

	A New Approach to Robot’s Imitation of Behaviors by Decomposition of Multiple-Valued Relations

