
7.     DECOMPOSITION OF FUZZY RELATIONS.  
 

Multi valued relation is introduced in [13] as a table in which for certain combination of input variables values 
one of several specified output values can be selected. For instance, in Figure 15g in cell for z = 1, G = 0 there are 
two values, 0 and 1.  It means that any ternary value other than value 2 can be taken for this combination of input 
variable values. This is called a generalized don’t care and it generalizes a standard don’t care concept where any 
set of values of a given output is allowed for given input combination. Thus, the generalized don’t cares of a 
ternary signal are: {0,1}, {1,2} and {0,2}. The standard don’t care is {0,1,2}. Let us observe that the generalized 
and standard don’t cares correspond to the following values in fuzzy logic:  {0,1} = x’ i or  x i x’ i  (when an 
undecided shape is between the one from Fig.2b and the one from Fig. 3a).  {1,2} = x i x’ i  or x i (when an 
undecided shape is between  the one from Fig. 3a and the one from Fig. 2a).  {0,2} x’ i  or x i  (when an undecided 
shape is between the one from Fig. 2b and the one from Fig. 2a). {0,1,2} when the shape of x i is irrelevant. There 
are several ways to specify the initial fuzzy relations A graphical method is illustrated in Figure 15a. The OR 
relations among groups of terms denote that the choice of any of the groups of terms pointed by the two arrows 
originating from word OR can be made. Thus the function from Fig. 15  is specified by the expression:  F(x, y, z) 
=  yz CHOICE-OF[ x’  y’ z z ‘  OR ( z  z‘ x  x’  y’ +  z  z’  y y’ x’) ] +  xz.  In general, a fuzzy relation can be 
specified by an arbitrary multi-level decision unate function on variables G I , each of these variables denoting 
Max of terms for a sum-of-products form of fuzzy relation. Such unate function uses functors AND and OR and 
variables G I corresponding to Max groups of terms. The above fuzzy relation is specified by the unate decision 
function: A AND B AND (C OR D) = (A AND B AND C) OR (A AND B AND D) where: A = yz , B = xz,  C = 
x’ y’ z z’ ,  D = ( z z’ x x’ y’ + z z’ y y’ x’).  Thus, every fuzzy relation corresponds to a set of sum-of-products 
fuzzy functions among whichwe can freely choose. 
 
       Example 8. Given is a fuzzy relation F r (x, y, z) =  yz +  CHOICE-OF[ x’ y’ z z’ OR (z z’ x x’ y’ + z z’ y y’ 
x’ )] + xz , illustrated also in the map from Figure 16a. This is modification of Example in which more choices of 
fuzzy terms are given to the optimization tool. We specify that the tool has a freedom of choice between the 
groups of terms C = x’ y’ z z’ or D = ( z z’ x x’ y’ + z z’ y y’ x’), which ever simplifies the final solution more. 
 
        For this fuzzy relation the map of ternary relation from Figure 15e is created by the operation of Maxing the 
ternary maps of functions xz (Fig. 15b), yz (Fig. 15d), and the map of the ternary relation corresponding to fuzzy 
relation [CHOICE-OF x’ y’ z z’  OR (z z’ x x’ y’ +  z z’ y y’ x’ )]  (Fig. 15c). Observe that there are two entries, 0 
and 1 in the cell  x = 0, y = 1, z = 1 in Fig. 15e; this cell is called a generalized don t care and thus Fig. 15 stores a 
ternary relation, not a ternary function. The characteristic patterns found for Ashenhurst-like decomposition are 
encircled in Fig. 15e. Other patterns found are 011 and 0(0,1)0. The last pattern corresponds to either pattern 000 
or to pattern 010. Thus, in any case there are three patterns, and the decomposition exists. Ternary function G 
after decomposition is shown in Figure 15f and ternary relation H is shown in Figure 15g . In general, both G and 
H can be relations in our approach, so our decomposition decomposes a relation to relations. Interestingly, 
sometimes also a function can be decomposed to relations. As we see, there is a choice of 0 and 1 in cell z=1, G = 
0 in Figure 15g. Choice of value 0 (Fig. 15g, H = GZ ) leads to the simpler solution from Figure 15h. Alternately, 
the choice of value in Fig. 15g leads to the more complex solution from Figure 15i, which was found earlier in 
Example 7, when function F was assumed instead of relation Fr . Transforming, when possible, a fuzzy function 
to a fuzzy relation, has thus a similar effect as replacing some of cares of a function by don’t cares - it can be 
better minimized. 
 
8.  EXPERIMENTAL RESULTS. 

 
We decomposed correctly all functions from [3,6] and from other papers on fuzzy logic and the computer times 
were negligible.  The decomposer from can be set to any fixed number of values in all intermediate signals, so it 
is set to the value of three for ternary logic that corresponds to fuzzy logic. The decomposer from [14] 
decomposes to arbitrary-valued intermediate signals, in order to maximally decrease the total circuit’s complexity 
and decrease the recognition error. It requires then encoding the signals that have more than three values to 
ternary vectors which is done by hand. For instance an intermediate signal with values 0, 1, 2 and  3 is encoded to 
two ternary signals as follows: 0 = [00], 1 = [01], 2 = [02] and 3 = [1X], where X means any of values 10, or 11,  
or 12.  Thus, our encoding method introduces the don’t cares and in general the relations to the MV data for 
decomposition. It proves thus that the concept of decomposing relations, introduced by us for Machine Learning 
and circuit design applications in program GUD-MV [12,13], is also useful for fuzzy logic.  Currently we keep 



looking for more fuzzy logic benchmarks, especially large ones, but unfortunately all examples from books and 
conference proceedings that we were able to find are too small for the power of our decomposers. Perhaps the 
answer to this problem is to create large fuzzy data on our own. We intend to generate them automatically as the 
results of image processing procedures that create fuzzy features for pattern recognition experiments. Next our 
Constructive Induction approach to Machine Learning based on uniform approach to the decomposition of binary 
multi valued and fuzzy functions will be used in the final stage of pattern recognition instead of a Gaussian 
Classifier that we currently use [15,16].  Currently we are able to generate automatically multi-valued functions 
and relations from robot data (image and sensors) [24].  
 
9.  CONCLUSION 
 
The new method of converting fuzzy functions to multiple-valued functions for decomposition allows not only for 
Ashenhurst-like, but also for Curtis-like decompositions. By converting fuzzy functions to multiple-valued 
functions we eliminate the time-consuming conversion to the canonical form. The need for special and complex 
methods like Kandel’s decomposition method does no longer exist, and any existing MV decomposer can be used. 
Thus, various decomposers lead to different kinds of fuzzy functions decompositions. Our method can be 
expanded to arbitrary shape of fuzzy literals, and not only the literals x discussed above. Such an extension leads 
to multi-valued encodings of these fuzzy functions with logic radices higher than 3. In addition, our method can 
be used with no modification to relations. Several decomposers [12 -- 24] can be used for this task, again leading 
to different decompositions that can be evaluated and compared. 
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Figure 15. Stages of decomposition of a 
fuzzy relation to Example 8. (a) Original 
fuzzy relation Fr . (b) – (e) stages of 
creating a ternary relation corresponding to 
fuzzy relation Fr , (f) ternary function G 
from decomposition, (g) ternary function H 
from decomposition, (h) (i) 
Two realizations of fuzzy  relation Fr  , 
corresponding to two realizations of 
ternary relation H. 



 
 
 
 
 
 
 


