
Evolving quantum circuits and an FPGA-based
Quantum Computing Emulator

Goran Negovetic, Marek Perkowski, Martin Lukac, Andrzej Buller*
Portland Quantum Logic Group, Portland State University; *Human

Information Science Laboratories
Email: mperkows, negovetg, martinl@ee.pdx.edu; buller@atr.co.jp

Abstract

The goal of the PQLG group is to develop complete methodologies, software tools and circuits for
quantum logic. Our interests are mainly in logic synthesis for quantum circuits and quantum
system design [10]. This paper proposes emulation of quantum circuits using standard
reconfigurable FPGA technology and FPGA-based Evolvable Quantum Hardware. These are
research areas not yet dealt with by other research groups.

1 Introduction

1.1 Quantum Logic and Gates

Unlike classical bits that are realized as electrical voltages or currents present on a wire, quantum
logic operations manipulate qubits [12]. Qubits are microscopic entities such as a photon or atomic
spin. Boolean quantities of 0 and 1 are represented by a pair of distinguishable different states of a
qubit. These states can be a photon’s horizontal or vertical polarization denoted by |1> or |2>, or an
elementary partice’s spin denoted by |#> or |∃> for spin up and spin down, respectively. After
encoding these distinguishable quantities into Boolean constants, a common notation for qubit states is
|0> and |1>.

Qubits exist in a linear superposition of states, and are characterized by a wavefunction ψ. As an
example, it is possible to have light polarizations other than purely horizontal or vertical, such as slant
45° corresponding to the linear superposition of ψ=½[√2|0>+√2|1>]. In general, the notation for this
superposition is α|0>+β|1>. These intermediate states cannot be distinguished; a measurement will
yield that the qubit is in one of the basis states, |0> or |1>. The probability that a measurement of a
qubit yields state |0> is |α|2, and the probability is |β|2 for state |1>. The absolute values are required
since, in general, α and β are complex quantities.

Pairs of qubits are capable of representing four distinct Boolean states, |00>, |01>, |10> and |11>, as
well as all possible superposition of the states. This property is known as “entanglement”, and may be
mathematically described using the Kronecker product operation ⊗ [5]. As an example, consider two
qubits with ψ1=α1|0>+β1|1> and ψ2=α2|0>+β2|1>. When the two qubits are considered to represent a
state, that state ψ12 is the superposition of all possible combinations of the original qubit, where

ψ12= ψ1⊗ψ2 = α1α2|00> + α1β2|01> + α2β1|10> + β1β2|11>. (1)

This property permits qubit states to grow dimensionly much faster than classical bits. In a
classical system, N bits represents 2N distinct states, whereas N qubits corresponds to a superposition
of 2N states.

In terms of logic operations, anything that changes a vector of qubit states can be considered as an
operator. We can model this phenomena using the analogy of a “quantum circuit”, where wires do not
transmit signals corresponding to Boolean constants, but transmit pairs of complex values, α and β.
Logic gates with this quantum circuit transform the complex values on their inputs to new set of values
on their outputs. Quantum logic gates can be modeled as matrix operations. Typically the notation |0>
and |1> are not present in the matrix formulation of the equations, only the probability amplitudes (i.e.
α and β) are included; however, there are kept in Equation (2) for illustrative purposes.

| 0 | 0 |1

|1 | 0 |1

a b a b

c d c d

α α β
β α β

> > + > = > > + >
 (2)

Because the qubit probabilities must be preserved at the output of the quantum gate, it is noted that
all matrices representing them are unitary, i.e. U*U=I. An important unitary matrix property is that of
full rank. This property implies that quantum gate matrix rows and columns are orthonormal.
Therefore, past results from spectral methods for classic digital logic are directly applicable to quantum
logic synthesis. Furthermore, since quantum logic gates are represented by unitary orthonormal
matrices, they represent logically reversible gates. These observations mean that the single
input/output quantum logic gates as represented in Equation (2) are rotation matrices characterized by
some particular rotation angle θ, where, for example, a=cosθ, b=sinθ, c=-sinθ and d=cosθ. With this
viewpoint, it can be seen that there are, in fact, an infinite number of single input/output qubit gates.
However, three elementary gates can be used to generate any rotation [1]. These are the R, S, and T
gates described in matrix notation by:

cos sin 1 0 0

sin cos 0 0

j

j j

e
R S T

e e

θ

θ θ

θ θ
θ θ −

 = = = −
. (3)

A quantum gate that is often mentioned in the literature is the quantum XOR gate. This gate allows
inputs of |00> and |01> to appear unchanged at the outputs, but interchanges the pairs |10> and |11>.
For example, consider the quantum XOR gate’s operation in matrix notation:

=

c

d

b

a

d

c

b

a

0100

1000

0010

0001

 (4)

It is a significant fact that the unitary gates described by Equations (3) and (4) can realize any
quantum logic function [1] (including standard binary). There are several strong similarities of
quantum logic and classic digital circuit design using AND/XOR logic which are used in our research.

 2. Standard Hardware Implementation of Quantum Circuit Models

2. 1 Advantages of Modern FPGAs

Since truly quantum computers are for very small functions at present and many research groups
cannot afford even those, verification of most of the research in this area is done now using software-
based quantum circuit simulators. Several such simulators have been developed and are available
either in public domain or commercially. However, because of massive parallelism of quantum
algorithms, only small circuits can be simulated because of an excessive time. We believe therefore
that it will be beneficial for the research community to develop a fast hardware simulator (emulator) of
quantum circuits. Our approach proposed here uses electrically reconfigurable Field Programmable
Gate Arrays (FPGAs). In our preliminary research, we developed a small FPGA-based quantum
hardware simulator. Our goal is a further development of simulator technology and employing it to
practical quantum circuits such as Quantum: Search, Factorization, Associative Memories, Spectral
Memories and Neural Nets [4,6,7,9,11,14,15,16]. Below we will explain in a simplified way the main
ideas of our simulator.

Quantum calculations obey the laws of quantum mechanics - quantum computation performs
exponential amount of calculation in a polynomial amount of space and time. As observed by
Feynman, this is the reason why simulating in classical computer technologies even limited size
circuits requires exponential amount of memory and processing time. However, quantum circuit
operation exhibits a large amount of regularity and micro-scale parallelism, which suggests that
classical supercomputers may not be the best medium for quantum simulations. This led us to an idea
of using FPGA-based hardware for this application. It is important to realize that this circuit can be
only of a finite size to meet the hardware resources. However, today's FPGA offer very large amount

of memory, flip-flops, and dedicated circuits for arithmetic operation. One of possible approaches is to
build a special board with powerful Xilinx or Altra chips. Other approach is to use the CBM FPGA-
based computer of ATR and adopt the software developed for it [12]. Below we present work done so
far and we discuss how it can be expanded.

2.2. Emulating Quantum Circuits in standard binary hardware

Quantum circuits are composed of quantum logic gates. In theory, there are an infinite number of
elementary quantum gates. However, only a subset of these is required to implement an arbitrary size
quantum circuit. Penalty for smaller set of gates is paid with a larger overall circuit.

As presented in previous section, the basic storage unit in a quantum computer is a qubit. A qubit
can take value of zero, one, and a superposition of |0> and |1>. For a register of N bits, there are
superpositions of 2N states. This is the root of parallelism, since all possible states are calculated in
parallel; this is also a fundamental difference of standard and quantum computing and is reflected in
our simulator design. When the state of a qubit is observed, its probability collapses to either 0 or 1 and
superposition is destroyed. This is another quantum peculiarity that calls for massive probabilistic
circuits in a simulator. Also, since only finite precision can be employed for either software or
hardware quantum circuit simulation, there is accumulated error that propagates through the system.

Quantum gate operations can be expressed as matrix operations. Each gate operation is expressed
as multiplying 2N-dimensional vector by the 2N x 2N transformation matrix. Techniques used in DSP,
image processing, and other classical areas can be borrowed. Going from M x 2N-dimensional
Quantum vectors to one 2M+N vector, we employ the Kronecker product (tensor product) matrix
operation. In addition, since in our prototype hardware simulator we will use only gates that operate on
a small number of qubits (N = 1 or 2), these matrices are 2x2 or 4x4 matrices, respectively, replicated
many times.

To simplify our presentation, most of the following text is based on an example. A simple three-
gate quantum circuit is presented. Different issues and aspects of the hardware implementation are
discussed subsequently. At the end, algorithms for conversion of quantum netlist to HDL description
of hardware circuit are briefly outlined. In addition, open research and development issues are
presented.

2.3. Example

2.3.1. Basics

Figure 1 presents a simple quantum circuit with unitary quantum gates: inverter δx , and Hadamard
H. The transform matrix is: T = δx ⊗ δx ⊗ H, where ⊗ denotes the Kronecker product.

Figure 1: A simple Quantum circuit

In matrix notation: XTYandHx =

−

=

= ,

11

11
,

01

10
2

1δ

In this case, Y and X are 1-by-8 vectors, and T is an 8-by-8 matrix. This type of matrix operations
is done in hardware via butterflies. We will show how to generalize and explore the notion of
butterflies in our hardware simulator.

2.3.2. Model of Quantum Circuit as a network of butterflies

Generalized butterfly structure is shown in Figure 2. ‘I’ is a multiplying coefficient and ‘S’ is a
logic or arithmetic operation.

Figure 2: Generalized butterfly structure

A single qubit requires two registers: one to store value α for |0> and another to store value β for
|1>. Thus, δx requires four registers. It is a permuter. All quantum circuits that are also circuits of
classical reversible (binary) logic are permuters. This simplifies the logic of the simulator. The first
part of the quantum circuit (δx gates) is implanted in hardware as shown in Figure 3.

Figure 3: Two δx gates implementation

This piece of the circuit means that there are four possible states the circuit can be in (2N, N=2).
Unlike bits in normal circuits, qubits are entangled (using matrices, this entanglement is achieved by
taking the Kronecker product). Note that stages I and II are identical; they just operate on different
numbers of channels (bits or groups of bits). Is it possible to make a general butterfly, regardless of
number of channels?

2.3.3. Generalized butterfly element

Two-by-two δx quantum gate is described as follows. For any input vector [A, B]T (where T is the
matrix transpose), the output vector is [B, A]T. By analogy, N-by-N δx quantum gate is described: for
input vector [(a1, a2,…, aN), (b1, b2,…, bN)]T, the output is [(b1, b2,…, bN), (a1, a2,…, aN)]T, where ‘N’
is the number of channels of the δx gate. For example, 2-channel δx gate is shown in Figure 4.

Figure 4: 2-channel δx gate

The circuit segment from Figure 3 can be built with three of these gates. On the first level, though,
only two channels are needed, and N-2 channels are wasted (where N is total number of channels).
Direct hardware implementation would be very inefficient, wasting many registers (in the case of δx
gate only registers, but in others, like Hadamard, multipliers and adders as well). However, consider
the whole FPGA quantum simulator design flow: after the quantum netlist is transformed (synthesized)
to the regular circuit design (HDL file), the subsequent steps are exactly the same as for any other
circuit: logic synthesis, technology mapping, place and route. It is possible to remove unutilized
resources (unused channels of the δx gate) in the subsequent processing stages.

2.3.4. HDL Experiment

To test these ideas, we wrote a Hardware Description Language model of the multi-channel δx gate.
These modules are instantiated in the fashion of Figure 3. In the first level, there are two instances of
the δx gate, with only one channel par gate used. In the secon level, one instance with two channels

utalized is used. Synthesis tool realized the unused combinatorial logic (registers in this case) and
removed it from the implementation. This is an important result: even if the source code is very
resource inefficient, if parts of codes are instantiated properly (with knowing what the tool will do), the
tool will remove unused parts of the design leading to an efficient implementation. Figure 5 shows an
RTL view of one two chanel “qnot” (δx) gate.

Figure 5: 2-channel “qnot” gate

Next, the example circuit will be implemented with these findings in mind.

2.3.5. Example circuit implementation

Our example circuit consists of two quantum inverters (δx gates) and one Hadamard gate (Figure
1). Direct matrix multiplication looks as follows:

In general, inputs a, b,…,h are complex numbers, each occuping two registers. Aside from needing
gates of sufficient number of inputs and outputs, it is also required to mix the bits between the gates.
This mixing is always ordered, for example bit reversal or logic shift of bits. Bit swapping is known
from many algorithms, like FFT. We instantiated our universal gates and connected them as in our
example circuit. Many inputs and outputs were left unconnected, but the synthesis tool we used easily
removed unused logic, leaving an optimized hardware circuit.

2.3.6. Observation Gate

In the quantum circuit, states of the bits are superposed, and the circuit is in many states at the same
time. Once the circuit state is observed, the uncertainty is destroyed, and all bits collapse to the familiar
‘0’ and ‘1’ state. In the simulation circuit, there must be a gate to simulate this behavior: from all

(5)

superimposed circuit states, only one will be valid after this gate; the state is chosen based on
probabilities. Output state is then: |α1> A1 + |α2> A2 + … + |α2

n>A2
n, where A1, A2, … are n-bit

binary states, α1, α2, … are square roots of probabilities of the output being in that state; and from
probability theory, magnitude of probability is equal to one.

In order to build a hardware circuit to simulate the “observe” gate, a random number generator is
needed. A circuit often used for pseudo-random number generation in hardware is LFSR (Linear
Feedback Shift Register) circuit. LFSR provides ½ probability. If two LFSR are uncorrelated, ANDing
them will give ¼ probability. Hence, logic AND multiples probabilities: A ⊗ B = A * B (where ⊕ is
logic AND, and * arithmetic operator). Similarly, logic OR and XOR operators give following
probabilistic (arithmetic) operations: A ‘+’ B = A + B – A*B (logic OR), and A ⊕ B = A + B –
2*A*B (logic XOR). Using these operators on the probabilities available, all probabilities can be
derived. However, this approach is not feasible to implement for large number of probabilities. Larger
set of probabilities can be achieved either by some other hardware method, or offline, in software.

One way to implement the quantum observation gate would be by using RAM memory and
LFSR’s. For N Q-bits, there are 2N possible quantum states the observed quantum wires (registers)
could be in at a time. If there is a RAM memory with 2N locations, N address lines are needed to
encode all memory locations. Filling the RAM with appropriate values, randomly generated address
would choose the output value of the observation gate. For instance, out example circuit has 3
input/outputs. There 23 = 8 possible output states (000, 001, 010… 111), each associated with a certain
probability (based on input values and circuit content). Lets say our input was [010]. In vector
notation, input vector is [00100000]; this can be interpreted as probability of zero for [000], zero for
[001], one for [010], zero for [011], etc.

Matlab function represents the example quantum circuit in matrix notation :

function OutVector = qcir(InVector) %Gate definitions
r = 1/sqrt(2);
H = [r -r; r r];
inv = [0 1;1 0];
[sizeX, sizeY] = size(InVector);
if(([sizeX, sizeY] == [1 8]) ~= [0 1]),
 error('Invalid Input Vector Size!'); end
%Circuit definitions
Transform = kron(H, kron(inv, inv));
OutVector = (Transform * InVector').^2;
% expressed as probability

Running the function with the input vector, we get output vector: [0, 0.5, 0, 0, 0, 0.5, 0, 0] –
expressed in probability. It means that output [001] and [101] both occur with ½ probability (50% of
time).

How to implement this in hardware? We need a RAM with 8 addresses (to account for each
possible state). It has to be filled with states according to the probability, as in Table 1.

Ordering of the RAM content is not important. Address is randomly generated using LSFR. Three
LFSR outputs are needed, one for each address bit. One possible hardware implementation of the
observation gate is presented on Figure 6.

Figure 6: Hardware implementation of the observation gate

There are many technical question that we skip here: quantum circuit netlist representation,
quantum netlist to HDL conversion, and others. We developed CAD tools for them which will be
further extended and improved, possibly using the CBM tools developed in ATR Japan [2]. The
technical questions solved and to be solved are similar as in standard CAD tools for translation from
high level languages (Verilog, VHDL and higher) to logic descriptions, using libraries and optimizing
designs on logic and register-transfer levels. Concluding, we can tell that our tool is a dynamic

Address Content
1 001
2 001
3 001
4 001
5 101
6 101
7 101
8 101

Table 1

preprocessor to convert quantum netlist to a standard HDL FPGA-based design system.

3. Extrinsic and Intrinsic Evolvable Quantum Hardware (EQHW)

There are different views on what is evolvable hardware (EHW). For instance, A. Hirst defines
EHW as “applications of evolutionary techniques to circuit synthesis." This very broad definition
includes any evolutionary software applied to any kind of synthesis or optimization in circuit design.
Using this definition in quantum domain, we obtain the following definition: “Evolvable Quantum
Hardware (EQHW) is application of evolutionary techniques to quantum circuit synthesis”.
Example of such an approach realized in software (extrinsic approach) is presented in Ref. [10]. T.
Higuchi et al define EHW as “hardware that is capable of on-line adaptation through reconfiguring
its architecture dynamically and autonomously”. In quantum domain, this definition would correspond
to any kind of learning and adapting quantum circuits [4,7,9,11,14,16], but evolutionary algorithms
would be not required. Finally, Hugo De Garis defines EHW as “a Genetic Algorithm realized in
hardware”. This narrowest definition is called Intrinsic Evolvable Hardware, in contrast to extrinsic
EHW in which the entire learning is performed in software. Following this definition, “Evolvable
Quantum Hardware is a Genetic Algorithm realized in quantum hardware.”

With present technology, Evolvable Quantum Hardware is still a speculation since no
programmable quantum hardware is available. It is possible, however, to develop evolvable technology
for FPGA models of quantum circuits, as presented in the previous sections. Using this understanding,
the combination of our evolutionary software for designing automatically quantum circuit netlists [10]
and the presented above method of building FPGA accelerators for quantum netlists, leads to the
realization of a complete quantum-system-modeled-in-a-binary-system evolvable hardware, based on
the available standard FPGA technology. In this proposed by us approach, the GA-based software
program will generate a new netlist satisfying problem constraints. Next, this netlist is translated to
HDL as above, and finally HDL-based CAD tools are used for mapping to FPGA hardware. The
difference between extrinsic and intrinsic hardware is whether the fitness function is calculated in
software or in hardware. If calculated in software, then the approach would be extrinsic. If calculated
in hardware and the process of GA-based net-list generation is repeated for populations, this would be
an example of software-hardware extrinsic-intrinsic approach to quantum evolvable hardware. Another
approach would be to realize the QC-generating GA entirely in hardware, where it would directly
configure RAM bits that program logic and connections of the model. One argument for the direct
approach is to exploit emulator hardware resources for unconstrained hardware evolution. Such work
is as an attempt towards adaptive hardware, not necessarily following the human-provided circuit
description (like unitary matrix of a truth table) as a design specification for GA [10]. The difference
would be here the same as between the binary logic function synthesis and data mining. In logic
synthesis the truth table must be strictly followed and a solution candidate with even one minterm not
verified in fitness function is bad. In contrast, in data mining the fitness function attempts to satisfy
predominantly the Occam’s Razor and to minimize the learning error so that solution that differ from
the specification are acceptable. Such adaptive quantum learning will explore larger design spaces and
thus may be able to discover novel designs for which unitary matrices are even not known but some
other constraints are given. It will not assume a priori knowledge and thus can be applied to various
domains and obtain feedback from the environment rather than from the human designer. By not
requiring exact problem specifications complex systems can be possibly designed, which cannot be
handled by conventional specification-based evolutionary and non-evolutionary (such as backtracking
or A* search [17,18]) design approaches to quantum circuit synthesis.

4. Conclusions and future work

We presented two new ideas: (1) design of an FPGA-based hardware accelerator for quantum
computing, (2) design of an FPGA-based hardware evolver of quantum computers. These approaches
can work together. We did not discuss the sizes of quantum circuits that can be simulated, because the
reported work was for single FPGA chip only. In future, we will design the board with many chips and
this board will be linked to a PC development workstation. The problem of building the board with
chips, selection of best chips, how many boards - are all technical questions that will be addressed in

future research. It is possible that after a more detailed analysis we will come to the conclusion that
instead of building the entire simulator from scratch we should purchase one of existing FPGA-based
programmable emulators and only develop a new software for it, or that we should use CBM.

Although quantum computers are still in early research phase, the quantum accelerator and the
quantum evolver, when build, can be directly used for practical tasks; such as simulation of quantum
search, cryptography or robot control. They can be also used in research on quantum computing and
for simulation of tough problems in quantum mechanics.

Acknowledgment. We appreciate help of Mitch Thornton, Jerry Bruce, Jong-Hwan Kim, Igor
Markov, Alan Mishchenko, George Lendaris, and Mikhail Pivtoraiko.

BIBLIOGRAPHY

1. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Schor, T. Sleator, J.
Smolin and H. Weinfurter, Elementary Gates for Quantum Computation, Physical Rev (A), no. 52,
pp. 3457-3467, March 1995.

2. H. de Garis, A. Buller, T. Dob, J. Honlet, P. Guttikonda, and D. Decesare, Building Multimodule
Systems with Unlimited Evolvable Capacities from Modules with Limited Evolvable Capacities
(MECs), Proceedings of The Second NASA / DoD Workshop on Evolvable Hardware, July 13-15,
Palo Alto, California, pp. 225-234, 2000.

3. E. Fredkin and T. Toffoli, Conservative Logic, Intern. J. Theor.l Physics, vol. 21, Nos. 3-4, pp.
219-253, 1982.

4. Y. Z. Ge, L. T. Watson, and E. G. Collins. Genetic algorithms for optimization on a quantum
computer. In Unconventional Models of Computation, pp. 218-227.

5. A. Graham, Kronecker Products and Matrix Calculus With Applications, Ellis Horwood Limited,
Chichester, U.K., 1981.

6. L.K. Grover, A Framework for Fast Quantum Mechanical Algorithms, ACM Symposium on
Theory of Computing (STOC), 1998.

7. Kuk-Hyun Han, Kui-Hong Park, Ci-Ho Lee, and Jong-Hwan Kim, Parallel quantum-inspired
genetic algorithm for combinatorial optimization problems, Proc.2001 Congress on Evolutionary
Computation, volume 2, pp. 1422-1429, 2001.

8. J. P. Hayes and I. Markov, Principle Investigators, Quantum Approaches to Logic Circuit
Synthesis and Testing, http://vlsicad.eecs.umich.edu/Quantum/summary.html

9. T. Hogg, Solving Highly Constrained Search Problems with Quantum Computers, J. Artificial
Intelligence Research, Vol. 10, 1999, pp. 39–66; http://www.jair.org/ abstracts/hogg99a.html.

10. M. Lukac and M. Perkowski, Evolving Quantum Circuits Using Genetic Algorithm, Proc.
Evolvable Hardware 2002.

11. A. Narayanan and M. Moore, Quantum-Inspired Genetic Algorithms, Proc. IEEE Int’l Conf.
Evolutionary Computing, IEEE Press, Piscataway, N.J., 1996, pp. 61–66.

12. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information,
Cambridge Univ. Press, September 2000.

13. K.M. Obanland, and A.M. Despain, A Parallel Quantum Computer Simulator.
14. M. Perus, Neuro-Quantum Parallelism in Brain-Mind and Computers, Informatica 20, pp. 173-

183, 1996.
15. P.W. Shor, Algorithms for Quantum Computation: Discrete Logarithms and Factoring, Proc. 35th

Symp. Found. of Comp. Sci., IEEE Computer Soc. Press, Los Alamitos, Calif., pp. 124–134, 1994.
16. D. Ventura, Implementing Competitive Learning in a Quantum System, Proc. Int’l Joint Conf.

Neural Networks, IEEE Computer Soc. Press, Los Alamitos, Calif., 1999.
17. A. Khlopotine, M. Perkowski and P. Kerntopf, Reversible Logic Synthesis by Gate Composition,

Proc. IWLS 2002.
18. V.V. Shende, A. K. Prasad, I.L. Markov, and J.P. Hayes, Synthesis of Optimal Reversible Logic

Circuits, Proc. IWLS 2002.

http://vlsicad.eecs.umich.edu/Quantum/summary.html

	Goran Negovetic, Marek Perkowski, Martin Lukac, Andrzej Buller*
	BIBLIOGRAPHY

