
Logic Synthesis of Reversible Wave Cascades

 Portland Quantum Logic Group

 Alan Mishchenko and Marek Perkowski
 Department of Electrical and Computer Engineering
 Portland State University
 Portland, OR 97207, USA
 [alanmi, mperkows]@ece.pdx.edu

Abstract

A circuit is reversible if it maps each input vector into a
unique output vector, and vice versa. Reversible circuits
lead to power-efficient CMOS implementations.
Reversible logic synthesis may be applicable to optical
and quantum computing. Minimizing garbage bits is the
main challenge in reversible logic synthesis.

This paper introduces an algorithm to generate the
cascade of reversible complex Maitra terms (called here
reversible wave cascade) implementing incompletely
specified Boolean functions. The remarkable property of
the presented method compared to other reversible
synthesis methods is that it creates at most one constant
input and no additional garbage outputs. Preliminary
estimation suggests that the method may be applicable to
small and medium-sized benchmarks.

1 Introduction

Reducing power becomes the main task of modern
digital circuit design. One may ask, what are the limits of
low-power design? The answer was given in the paper of
Bennett and Landauer [2], who proved that losing
information is equivalent to losing power. An example of
a circuit that loses information is a two-input AND gate,
which produces value 0 for the three combinations of
input values: 00, 01 and 10. Thus, the values of inputs
cannot be determined from the value of the output.

The gate that does not lose information is called
reversible. For instance, the Feynman gate described by
the equations {P = A, Q =A ⊕ B} is reversible, because
for each combination of signals {P, Q}, there is exactly
one combination of signals {A, B}.

Logic circuits consume energy because of technological
factors (such as power dissipation while switching) and
because of the loss of information. While the first

component is constantly decreasing due to the
improvement of the implementation technologies and the
emergence of new design principles, such as adiabatic
design, the second part of the energy consumption is
related to information and can be decreased (to zero) only
by adopting the reversible design principles.

As of year 2002, the second component of energy
consumption is much smaller but if the progress in low-
power technology follows Moore’s law, the second
component will start dominating around year 2020.
According to [2], it is a necessary condition to use only
reversible gates to build a logic circuit that does not
consume energy1.

It was shown that reversible gates can be built in CMOS
[5][6], DNA [19], optical and other technologies, and that
all quantum logic gates are reversible [20]. A challenging
goal might be to develop a system to synthesize reversible
implementations of Boolean functions and state machines.

The difference of reversible logic synthesis compared to
binary logic synthesis can be summarized as follows:
1. The gates used to implement the circuit have the

equal number of inputs and outputs.
2. Every output of a gate, which is not used in the

circuit, is a garbage signal. A good synthesis method
minimizes the number of garbage signals.

3. The total number of constants at inputs of the gates is
kept as low as possible.

4. A gate output can be used only once (the fanout count
of each output is equal to one). If two copies of a
signal are required, a copying circuit is used.

5. The resulting circuit is acyclic.
In addition to the Feynman gate mentioned above, the

literature discusses Toffoli [23] and Fredkin [7] gates and
their construction using existing and future technologies.
Three-input three-output gate families have been analyzed

1 Energy may be lost for input and output operations.

in [8]2. As a result of this analysis, several new types of
binary and multiple-valued reversible gates have been
created.

In another line of research, the concepts of regular
structures, such as PLAs [19], 2-dimensional lattices
[15][16], three-dimensional lattices and nets were adapted
to reversible logic. The methods based on decision
diagrams have been proposed, as well as composition and
decomposition methods [16][9]. Most of the reversible
gates in literature are three-input three-output or four-
input four-output gates, except for papers [5][6][20], in
which restricted multi-input, multi-output gates are
presented without systematic design methods.

In this paper, we introduce k-input k-output reversible
gates for k > 4. To our knowledge, no systematic methods
for synthesis using gates with k > 3 have been published.
The proposed synthesis method satisfies all of the
requirements for reversible logic synthesis. The algorithm
heuristically minimizes the number of Maitra terms [13],
and therefore reduces the delay of the resulting circuit.
The method is based on Boolean properties of functions
and employs satisfiability implemented using Binary
Decision Diagrams [3].

The rest of the paper is organized as follows. Section 2
gives the overview of Toffoli family of gates. Section 3
describes the structure of the reversible wave cascade
constructed using Toffoli family of gates. Section 4
introduces the mathematical background to discuss logic
synthesis of wave cascade. Section 5 presents the logic
synthesis algorithm. Section 6 shows preliminary
experimental results. Section 7 concludes the paper.

2 Toffoli Family of Gates

Feynman gate is described by equations:
P = A, Q = A ⊕ B.

Toffoli gate [23] is described by equations:
P = A, Q = B, R = AB ⊕ C.

Feynman gate can be generalized to the following family
of gates called 1*1 family of Toffoli gates:

P = A, Q = f1(A) ⊕ B,
where f1 is an arbitrary function of one variable. There are
only four functions of one variable in binary logic.

Similarly, Toffoli gate can be generalized to the family
called 2*2 family of Toffoli gates:

P = A, Q = B, R = f2(A, B) ⊕ C,
where f2 is an arbitrary function of two variables.

2 Such gates are the minimal universal gates in binary reversible logic,
but interestingly, two-input two-output gates are the minimal universal
gates in quantum logic [20].

Next, the concept of Toffoli gate can be generalized to a
Toffoli family with an arbitrary number of inputs called
k*k family of Toffoli gates:

P1 = A1, P2 = A2, …, Pn-1 = An-1,
Pn = fn-1(A1, A2, …, An-1) ⊕ An,

where fn-1 is an arbitrary function of n-1 variables.
It is easy to prove using the definition of reversible logic

that all gates in the 1*1, 2*2, and k*k families of Toffoli
gates are reversible.

In particular, functions fi can be arbitrary conjunctions
of Boolean variables and, therefore, the cascade of k*k
gates can realize the circuit described by Positive Polarity
Reed-Muller Form (PPRM). This cascade has as many
gates as there are terms in PPRM and as many horizontal
lines as there are input variables plus one (see Figure 1).

The additional input is an input to the first EXOR gate
in the cascade. It can be set to constant 0 or constant 1
Boolean function3. Thus, an arbitrary k-input single-output
function can be realized by a reversible circuit constructed
from the gates of the (k+1)*(k+1) family of Toffoli gates,
in which functions fn-1 are conjunctions of some of the
input variables, A1, A2, …, An-1.

In Fixed Polarity Reed-Muller Form (FPRM), every
input variable can be negated (negative variable) or not
negated (positive variable) but cannot be both positive and
negative at the same time. The cascade can also realize
FPRM. This is done using inverters4 for the inputs
corresponding to the negated input variables.

Finally, ESOP can be realized in two ways:
(1) by inserting inverters into the input lines if the

given term has a negated variable,
(2) by building reversible gates with internal

inverters5.
In this paper, we present the circuit structure called

reversible wave cascade based on k*k family of Toffoli
gates, in which fn-1 are arbitrary two-variable functions. In
CMOS, the complex k*k gates can be built directly from
transistors, which saves constant inputs and outputs.

3 Structure of Wave Cascade

The definitions presented in this section are based on
[12] and [13], with some modifications.

Definition. A complex Maitra term is recursively
defined as follows:
(1) Constant 0 (1) Boolean function is a Maitra term.
(2) A literal is a Maitra term.
(3) If Mi is a Maitra term, a is a literal, and G is an

arbitrary two-input Boolean function, then
Mi+1 = G(a, Mi+1) is a Maitra term.

3 Constant 1 corresponds to the first term of PPRM.
4 Inverter is a reversible gate.
5 The second implementation is likely to be faster.

Additionally, it is required that each variable appears in
each Maitra term only once and that the same variable
ordering is used to represent all Maitra terms.

Previous authors [10][11][12] restricted the two-input
functions used in the Maitra terms to only functions AND,
OR, and EXOR. For them, it was important to have a
small number of logic functions, because they considered
the Maitra term as a basic structure to build programmable
logic devices. For the purposes of reversible logic
synthesis, on the other hand, it is better to use the above
more general definition.

In a variation of our algorithm targeting low-power
CMOS implementation, we do impose a restriction on the
type of functions G motivated by the technological
consideration. In this case, G cannot be an EXOR function
and its complement, NEXOR. The mathematical
formulation of the problem introduced in the following
sections accommodates this restriction.

 Definition. The reversible wave cascade for a
completely specified Boolean function F is a set of Maitra

terms, Mi, 1 ≤ i ≤ n, such that F = ∑
=
⊕

n

i
iM

1
.

Definition. The reversible wave cascade for an
incompletely specified Boolean function F is the cascade
implementation of a completely specified Boolean
function C belonging to function interval F = (Q, R).

Figure 1. Reversible Wave Cascade.

The general structure of the Wave Cascade is shown in
Figure 1. The inputs variables (a1, a2, …, an) are the
primary inputs of function F. In the direct computation
flow, they propagate from left to right and feed the two-
input gates that form the individual stages of the cascade.
It is assumed, without the loss of expressive power of the

cascade, that one of the inputs of the topmost gate is the
constant 0 Boolean function.

The outputs of the Maitra terms feed the inputs of the
EXOR gates at the bottom. The EXOR gates form the
cascade producing the output of function F. Without the
loss of expressive power of the cascade, the input of the
first EXOR gate is set to the constant 1 Boolean function.

The constant-1 input of the cascade is the only garbage
input in the reversible representation of the cascade. In
this implementation, the individual cascades enclosed in
the dashed lines can be viewed as n+1 reversible gates
belonging to (k+1)* (k+1) family of Toffoli gates.

Logic synthesis of the cascades starts with the
incompletely specified function F = (Q, R) and returns the
set of gates implementing the stages. The logic synthesis
methods developed in this paper use the mathematical
concepts summarized below.

4 Mathematical Background

This introduction assumes the familiarity of the reader
with Boolean algebra and Binary Decision Diagrams [3].

4.1 Fundamentals
Definition. A completely specified Boolean function of

n variables is a mapping of Bn → B, where B ∈ {0,1}. An
incompletely specified Boolean function F is a function
interval (Q, R), where Q and R are completely specified
Boolean functions, known as the on-set (lower bound) and
the off-set (complemented upper bound).

The incompletely specified function is well-defined if
the on-set and the off-set do not overlap: Q ∧ R ≡ 0.

Definition. A completely specified function G belongs
to the interval F = (Q, R) iff G ∧ R ≡ 0 and G ∧ Q ≡ 0.

Definition. The support of a completely specified
function is the set of variables, on which the function
depends. The support of the incompletely specified
function F = (Q, R) is the union of supports of Q and R.

Definition. The existential quantification of a
completely specified function F(a) w.r.t. variable a0 is the
completely specified function

∃ a0F(a) = Fa0=0(a) ∨ Fa0=1(a).
This function can depend on all variables in a, except a0.

Similarly, the universal quantification is the function
∀ a0F(a) = Fa0=0(a) ∧ Fa0=1(a).

The following property holds: ∃ a0F(a) =)(0 aFa∀ .
Definition. The result of removing a0 from the support

of an incompletely specified function F(a) = (Q(a), R(a))
is the set of completely specified functions G(a), which
belong to the interval F(a) and do not depend on a0. If this
set is not empty, variable a0 can be removed from the
support of F(a).

0

⊕

…

a1

a2

a3

an

0

⊕

…

0

⊕

…

1 F … …

 …

 …

 …

 …

Theorem 1. Variable a0 can be removed from the
support of F(a) = (Q(a), R(a)) iff

∃ a0Q(a) & ∃ a0R(a) ≡ 0.
The result of removing variable a0 from the support of the
incompletely specified function F(a) is another
incompletely specified function: F’(a) = (∃ a0Q, ∃ a0R).

Theorem 1 requires that the resulting incompletely
specified function was well-defined.

Example. An incompletely specified function F = (Q, R)
in shown in Figure 2. This function contains four
completely specified functions derived by four different
assignment of don’t-care minterms (101) and (010). In
particular, when the value of the function is 0 in both
minterms, the corresponding completely specified
function is the same as Q. This function does not depend
on variable a. Therefore, variable a can be removed from
the support of F.

 F Q R
 bc\a 0 1 bc\a 0 1 bc\a 0 1
 00 0 0 00 0 0 00 1 1
 01 0 - 01 0 0 01 1 0
 11 1 1 11 1 1 11 0 0
 10 - 0 10 0 0 10 0 1

Figure 2. Example of incompletely specified function.

4.2 Sets of Functions
Definition. An encoded representation of a set of

completely specified functions, which depend on the set of
variables a, is a completely specified function ϕ(a,z) such
that substituting the assignment z0 of variables z into
ϕ(a,z) yields function ϕz0(a), which belongs to the set.

If the set consists of n functions, a unique encoding
representation can be constructed with k ≥ log2 µ
variables z.

Example. The set of functions { a1a2, 21aa , 1a } can be

encoded using codes { 21zz , 21zz , 21zz }, which leads to
the following encoded representation:

ϕ(a,z) = a1a2 21zz ∨ 21aa 21zz ∨ 1a 21zz .

4.3 Encoded Representation of Maitra Terms
All implementations of one stage of the wave cascade,

shown Figure 1, are represented using the primary input
variables a and the additional variables z encoding
individual gates of the cascade.

The functionality of each two-input gate is represented
using four encoding variables (one variable per minterm).
However, this representation is wasteful because the
simultaneous complementation of the gate’s input and the
previous gate’s output leads to an equivalent cascade.

Therefore, without limiting the expressive power of the
representation, we set the value of all two-input gates in
minterm (11) to be 0. We use the set of variables z with
double indices. The first index stands for the number of
the gate. The second stands for the number of the
corresponding minterm in the gate’s Karnaugh map.

The functional representation of all implementation of
one stage of wave cascade with n inputs is derived
recursively, assuming that the representation of the stage
with n-1 inputs is known:

ϕ0(a,z) = 0;
ϕk(a,z) = zk0 ka),(1 zak −ϕ ∨ zk1 ka),(1 zak −ϕ ∨

zk2ak),(1 zak −ϕ , 1 ≤ k ≤ n;
It is important that the size of the BDD representing

ϕn(a,z) is linear in the number of gates if variables a and
zki are interleaved in the variable ordering.

Table 1. The number of BDD nodes and minterms in the
encoding of all implementations of one stage of wave

cascade.

n N(n) M(n)
2 9 16
3 14 52
4 19 408
5 24 3,280
6 29 26,208
7 34 209,728
8 39 1,677,696
9 44 13,421,824

10 49 107,374,080

Table 1 gives the number of nodes, N(n), including the

terminal node, in the complement-edge BDD of ϕn(a,z)
assuming that variables are ordered as follows:
(a1, z10, z11, z12, a2, z20, z21, z22, …, an, zn0, zn1, zn2). The
table shows that the number of nodes is linear in the
number of variables: N(n) = 5n – 1. M(n) is the number of
on-set minterms in ϕn(a,z) computed using the BDD
minterm counting procedure.

In the cascade synthesis, we use constraints representing
several stages of the cascade connected by EXOR gates.
The size of this representation is not linear in the number
of input variables but it is manageable for small number of
stages and functions of less than 10 variables.

5 Wave Cascade Synthesis Algorithm

In this section, it is assumed that the incompletely
specified function to be implemented as the wave cascade
is F(a) = (Q(a), R(a)). The set of encoded completely

specified functions representing one or more stages of the
cascade is ϕ(a,z).

Definition. The remainder is the set of incompletely
specified functions resulting from implementing the
remaining part of the cascade, assuming that the first
stages of the cascade are represented by ϕ(a,z).

Using the linearity of the EXOR operation, the
remainder is computed as follows:
FR(a,z) = (QR(a,z), RR(a,z)) = (Q(a)⊕ ϕ(a,z), R(a)⊕ ϕ(a,z)).

The algorithm for wave cascade synthesis is iterative. It
generates one or more stages of the cascades at a time, in
such a way that when the cascades are added to the
implementation, the support of the remainder is reduced
by at least one variable.

The following theorem allows us to select the
representatives of the encoding set of functions, which do
not depend on some input variables.

Theorem 2. Let FR(a,z) be the remainder of F(Q,R)
after introducing several stages of the cascade represented
by ϕ(a,z). Let the set of variables a be divided into two
parts, those to be removed from the support, ar, and those
to remain in the support, as. The implementation with
variables ar removed from the support exists iff

χ(z) = ∃ as [∃ ar QR(a,z) & ∃ ar RR(a,z)] ≠ 1.

Taking any assignment z0 of variables z such at z0∈)(zχ
gives one feasible implementation.

Using this theorem we can find an implementation of
several stages of the wave cascade at a time. When z0 is
computed, we set z = z0 in FR(a,z) = (QR(a,z), RR(a,z)) and
derive the incompletely specified implementation of the
remainder FRI(a) = (QR(a,z0), RR(a,z0)), which replaces
F(a) in the next iteration of the algorithm.

The proposed algorithm does not work for complex
functions for the following reasons. The representation of
several stages of the cascade (in the case when one stage
does not lead to the support reduction) may become too
large. The runtime need to compute χ(z) in Theorem 2
requires three BDD traversals and tends to timeout for
complex functions.

6 Experimental results

Implementation of the algorithm in Section 5 is not
completed. In this section, we provide an upper bound on
the number of generalized Maitra terms in the reversible
wave cascade. It was shown in Section 2 that ESOPs of
Boolean functions can be mapped into reversible wave
cascades by implementing each product in the ESOP as a
generalized Maitra term.

The upper bound on the number of stages in the
reversible wave cascade is computed for selected MCNC

benchmarks as the number of terms in the heuristically
minimized ESOP of the Boolean functions [14]. Note that
this upper bound works for multi-output functions.

Table 1. Upper bound on the number of stages in

reversible wave cascades.

Benchmark

Name Inputs Outputs

Upper
Bound

5xp1 7 10 31
9sym 9 1 51
add6 12 7 127

addm4 9 8 89
b12 15 9 28
clip 9 5 63
ex7 16 5 81

f51m 8 8 31
in7 26 10 35
intb 15 7 268
life 9 1 48

m181 15 9 29
m4 8 16 76

max512 9 6 82
rd53 5 3 14
rd73 7 3 36
rd84 8 4 58
ryy6 16 1 40
sao2 10 4 28
seq 41 35 246

sym10 10 1 79
t3 12 8 24

t481 16 1 13
vg2 25 8 184
z4 7 4 29

Average 13.0 7.0 71.6

The first three columns in Table 1 characterize the

benchmarks. “Names” gives the benchmarks name.
“Inputs” gives the number of inputs. “Outputs” gives the
number of outputs. “Upper Bound” gives the maximum
number of stages in the reversible wave cascade.

7 Conclusions

This paper presents an algorithm to generate reversible
wave cascades implementing incompletely specified
Boolean functions. Minimizing garbage bits is the main
challenge of reversible logic synthesis. The remarkable
property of the presented method, compared to other
reversible synthesis methods, is that it creates at most one
constant input and no additional garbage outputs.

References

[1] W.C. Athas and L."J." Svensson. Reversible Logic
Issues in Adiabatic CMOS. Exploratory Design
Group, University of Southern California,
Information Sciences Institute, Marina del Rey, CA.

[2] C. Bennett. Logical Reversibility of Computation.
IBM Journal of Research and Development, 17,
1973, pp. 525-532.

[3] R. E. Bryant. Graph-Based Algorithms for Boolean
function Manipulation. IEEE Trans. Computers,
C-35(8), pp. 677-691, 1986.

[4] R. Cuykendall and D. McMillin. Control-Specific
Optical Fredkin Circuits. Applied Optics, 26,
pp. 1959-1963, 1987.

[5] A. De Vos. Design of Reversible Logic Circuits by
Means of Control Gates. Proc. Patmos 2000
Conference, Goettinge (Springer Lecture Notes in
Computer Science, Vol. 1918), pp. 255-264.

[6] A. De Vos. Control Gates as Building Blocks for
Reversible Computers. Proc. Patmos 2001
Conference, Yverdon.

[7] E. Fredkin and T. Toffoli. Conservative Logic. Int.
Journal of Theor. Phys., 21 (1982), pp. 219-253.

[8] P. Kerntopf. A Comparison of Logical Efficiency of
Reversible and Conventional Gates. Proc. IWLS’01.

[9] A. Khlopotin, P. Kerntopf, M. Perkowski. Reversible
Logic Synthesis by Iterative Compositions. Proc.
IWSL’02.

[10] G. Lee. Logic synthesis for cellular architecture
FPGA using BDD. Proc. ASP-DAC, pp. 253-258,
1997.

[11] G. Lee and R. Drechsler. ETDD-Based Synthesis of
Term-Based FPGAs for Incompletely Specified
Boolean Functions. Proc. ASP-DAC, pp.75-80, 1998.

[12] G. Lee, R. Drechsler, and M. Perkowski. ETDD-
Based Synthesis of Two-Dimensional Cellular Arrays
for Multi-Output Incompletely Specified Boolean
Functions,'' IEE Proc. Comput. Digit. Tech, Vol. 146,
No. 6, November 1999, pp. 302 - 308.

[13] K. K. Maitra. Cascaded switching networks of two-
input flexible cells. IRE Trans. Electron. Comput.,
pp, 136-143. 1962.

[14] A. Mishchenko and M. Perkowski. Fast Heuristic
Minimization of Exclusive Sum-of-Products. Proc.
Reed-Muller Workshop, 2001, Starkville, Mississippi,
pp. 242-250.

[15] M. Perkowski, E. Pierzchala. New Canonical Forms
for Four-Valued Logic. Technical Report, Electrical
Engineering Department, PSU, 1993.

[16] M. Perkowski, L. Jozwiak, P. Kerntopf, A.
Mishchenko, A. Al-Rabadi, A. Coppola, A. Buller,
X. Song, Md. M. Khan, S. Yanushkevich, V.
Shmerko, and M. Chrzanowska-Jeske. A General
Decomposition for Reversible Logic. Proc. RM 2001,
Missisipi State University, August 2001.

[17] M. Perkowski, P. Kerntopf, A. Buller, M.
Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-
Rabadi, L. Jozwiak, Alan Coppola, B. Massey.
Regularity and Symmetry as a Base for Efficient
Realization of Reversible Logic Circuits. Proc. IWLS
2001.

[18] M. A. Perkowski, A. Sarabi, F. R. Beyl. Universal
XOR Canonical Forms of Switching Functions. Proc.
of IFIP W.G. 10.5 Workshop on Applications of the
Reed-Muller Expansion in Circuit Design. Hamburg,
Germany, September 16-17, pp. 27 - 32, 1993.

[19] P. Picton. A Universal Architecture for Multiple-
valued Reversible Logic. MVL Journal, 5, 2000,
pp.27-37.

[20] J. Preskill. Lecture Notes in Quantum Computing.
http://www. Theory.caltech.edu/~preskill/ph229

[21] A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A.
Perkowski. A Comprehensive Approach to Logic
Synthesis and Physical Design for Two-Dimensional
Logic Arrays. Proc. DAC'94, pp. 321 - 326.

[22] N. Song, M. Perkowski. Minimization of Exclusive
Sum of Products Expressions for Multi-Output
Multiple-Valued Input, Incompletely Specified
Functions. IEEE Trans. CAD, Vol. 15, No. 4, April
1996, pp. 385-395.

[23] T. Toffoli. Reversible Computing. In Automata,
Languages and Programming, Springer Verlag,
1980, pp. 632- 644.

