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Abstract 

A circuit is reversible if it maps each input vector into a 
unique output vector, and vice versa. Reversible circuits 
lead to power-efficient CMOS implementations. 
Reversible logic synthesis may be applicable to optical 
and quantum computing. Minimizing garbage bits is the 
main challenge in reversible logic synthesis. 

This paper introduces an algorithm to generate the 
cascade of reversible complex Maitra terms (called here 
reversible wave cascade) implementing incompletely 
specified Boolean functions. The remarkable property of 
the presented method compared to other reversible 
synthesis methods is that it creates at most one constant 
input and no additional garbage outputs. Preliminary 
estimation suggests that the method may be applicable to 
small and medium-sized benchmarks. 

1 Introduction 

Reducing power becomes the main task of modern 
digital circuit design. One may ask, what are the limits of 
low-power design? The answer was given in the paper of 
Bennett and Landauer [2], who proved that losing 
information is equivalent to losing power. An example of 
a circuit that loses information is a two-input AND gate, 
which produces value 0 for the three combinations of 
input values: 00, 01 and 10. Thus, the values of inputs 
cannot be determined from the value of the output.  

The gate that does not lose information is called 
reversible. For instance, the Feynman gate described by 
the equations {P = A, Q =A ⊕  B} is reversible, because 
for each combination of signals {P, Q}, there is exactly 
one combination of signals {A, B}.  

Logic circuits consume energy because of technological 
factors (such as power dissipation while switching) and 
because of the loss of information. While the first 

component is constantly decreasing due to the 
improvement of the implementation technologies and the 
emergence of new design principles, such as adiabatic 
design, the second part of the energy consumption is 
related to information and can be decreased (to zero) only 
by adopting the reversible design principles.  

As of year 2002, the second component of energy 
consumption is much smaller but if the progress in low-
power technology follows Moore’s law, the second 
component will start dominating around year 2020. 
According to [2], it is a necessary condition to use only 
reversible gates to build a logic circuit that does not 
consume energy1.  

It was shown that reversible gates can be built in CMOS 
[5][6], DNA [19], optical and other technologies, and that 
all quantum logic gates are reversible [20]. A challenging 
goal might be to develop a system to synthesize reversible 
implementations of Boolean functions and state machines.  

The difference of reversible logic synthesis compared to 
binary logic synthesis can be summarized as follows: 
1. The gates used to implement the circuit have the 

equal number of inputs and outputs. 
2. Every output of a gate, which is not used in the 

circuit, is a garbage signal. A good synthesis method 
minimizes the number of garbage signals. 

3. The total number of constants at inputs of the gates is 
kept as low as possible. 

4. A gate output can be used only once (the fanout count 
of each output is equal to one).  If two copies of a 
signal are required, a copying circuit is used. 

5. The resulting circuit is acyclic. 
In addition to the Feynman gate mentioned above, the 

literature discusses Toffoli [23] and Fredkin [7] gates and 
their construction using existing and future technologies. 
Three-input three-output gate families have been analyzed 

                                                           
1 Energy may be lost for input and output operations. 



in [8]2. As a result of this analysis, several new types of 
binary and multiple-valued reversible gates have been 
created.  

In another line of research, the concepts of regular 
structures, such as PLAs [19], 2-dimensional lattices 
[15][16], three-dimensional lattices and nets were adapted 
to reversible logic. The methods based on decision 
diagrams have been proposed, as well as composition and 
decomposition methods [16][9]. Most of the reversible 
gates in literature are three-input three-output or four-
input four-output gates, except for papers [5][6][20], in 
which restricted multi-input, multi-output gates are 
presented without systematic design methods.  

In this paper, we introduce k-input k-output reversible 
gates for k > 4. To our knowledge, no systematic methods 
for synthesis using gates with k > 3 have been published. 
The proposed synthesis method satisfies all of the 
requirements for reversible logic synthesis. The algorithm 
heuristically minimizes the number of Maitra terms [13], 
and therefore reduces the delay of the resulting circuit. 
The method is based on Boolean properties of functions 
and employs satisfiability implemented using Binary 
Decision Diagrams [3]. 

The rest of the paper is organized as follows. Section 2 
gives the overview of Toffoli family of gates.  Section 3 
describes the structure of the reversible wave cascade 
constructed using Toffoli family of gates. Section 4 
introduces the mathematical background to discuss logic 
synthesis of wave cascade. Section 5 presents the logic 
synthesis algorithm. Section 6 shows preliminary 
experimental results.  Section 7 concludes the paper. 

2 Toffoli Family of Gates 

Feynman gate is described by equations:  
P = A, Q = A ⊕  B. 

Toffoli gate [23] is described by equations:   
P = A, Q = B, R = AB ⊕  C. 

Feynman gate can be generalized to the following family 
of gates called 1*1 family of Toffoli gates:  

P = A, Q = f1(A)  ⊕  B, 
where f1 is an arbitrary function of one variable. There are 
only four functions of one variable in binary logic.  

Similarly, Toffoli gate can be generalized to the family 
called 2*2 family of Toffoli gates:  

P = A, Q = B, R = f2(A, B) ⊕  C,  
where f2 is an arbitrary function of two variables.  

                                                           
2 Such gates are the minimal universal gates in binary reversible logic, 
but interestingly, two-input two-output gates are the minimal universal 
gates in quantum logic [20]. 

Next, the concept of Toffoli gate can be generalized to a 
Toffoli family with an arbitrary number of inputs called 
k*k family of Toffoli gates:  

P1 = A1, P2 = A2, …, Pn-1 = An-1,  
Pn = fn-1(A1, A2, …, An-1) ⊕  An,  

where  fn-1 is an arbitrary function of n-1 variables.  
It is easy to prove using the definition of reversible logic 

that all gates in the 1*1, 2*2, and k*k families of Toffoli 
gates are reversible.  

In particular, functions fi can be arbitrary conjunctions 
of Boolean variables and, therefore, the cascade of k*k 
gates can realize the circuit described by Positive Polarity 
Reed-Muller Form (PPRM). This cascade has as many 
gates as there are terms in PPRM and as many horizontal 
lines as there are input variables plus one (see Figure 1). 

The additional input is an input to the first EXOR gate 
in the cascade. It can be set to constant 0 or constant 1 
Boolean function3. Thus, an arbitrary k-input single-output 
function can be realized by a reversible circuit constructed 
from the gates of the (k+1)*(k+1) family of Toffoli gates, 
in which functions fn-1 are conjunctions of some of the 
input variables, A1, A2, …, An-1. 

In Fixed Polarity Reed-Muller Form (FPRM), every 
input variable can be negated (negative variable) or not 
negated (positive variable) but cannot be both positive and 
negative at the same time. The cascade can also realize 
FPRM. This is done using inverters4 for the inputs 
corresponding to the negated input variables.  

Finally, ESOP can be realized in two ways:  
(1) by inserting inverters into the input lines if the 

given term has a negated variable,  
(2) by building reversible gates with internal 

inverters5. 
In this paper, we present the circuit structure called 

reversible wave cascade based on k*k family of Toffoli 
gates, in which fn-1 are arbitrary two-variable functions. In 
CMOS, the complex k*k gates can be built directly from 
transistors, which saves constant inputs and outputs. 

3 Structure of Wave Cascade  

The definitions presented in this section are based on 
[12] and [13], with some modifications. 

Definition. A complex Maitra term is recursively 
defined as follows: 
(1) Constant 0 (1) Boolean function is a Maitra term. 
(2) A literal is a Maitra term. 
(3) If Mi is a Maitra term, a is a literal, and G is an 

arbitrary two-input Boolean function, then 
Mi+1 = G( a, Mi+1 ) is a Maitra term.  

                                                           
3 Constant 1 corresponds to the first term of PPRM. 
4 Inverter is a reversible gate. 
5 The second implementation is likely to be faster. 



Additionally, it is required that each variable appears in 
each Maitra term only once and that the same variable 
ordering is used to represent all Maitra terms. 

Previous authors [10][11][12] restricted the two-input 
functions used in the Maitra terms to only functions AND, 
OR, and EXOR. For them, it was important to have a 
small number of logic functions, because they considered 
the Maitra term as a basic structure to build programmable 
logic devices. For the purposes of reversible logic 
synthesis, on the other hand, it is better to use the above 
more general definition. 

In a variation of our algorithm targeting low-power 
CMOS implementation, we do impose a restriction on the 
type of functions G motivated by the technological 
consideration. In this case, G cannot be an EXOR function 
and its complement, NEXOR. The mathematical 
formulation of the problem introduced in the following 
sections accommodates this restriction. 

 Definition. The reversible wave cascade for a 
completely specified Boolean function F is a set of Maitra 

terms, Mi, 1 ≤ i ≤ n, such that F = ∑
=
⊕

n

i
iM

1
.  

Definition. The reversible wave cascade for an 
incompletely specified Boolean function F is the cascade 
implementation of a completely specified Boolean 
function C belonging to function interval F = (Q, R). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Reversible Wave Cascade. 

The general structure of the Wave Cascade is shown in 
Figure 1. The inputs variables (a1, a2, …, an) are the 
primary inputs of function F. In the direct computation 
flow, they propagate from left to right and feed the two-
input gates that form the individual stages of the cascade. 
It is assumed, without the loss of expressive power of the 

cascade, that one of the inputs of the topmost gate is the 
constant 0 Boolean function.  

The outputs of the Maitra terms feed the inputs of the 
EXOR gates at the bottom. The EXOR gates form the 
cascade producing the output of function F. Without the 
loss of expressive power of the cascade, the input of the 
first EXOR gate is set to the constant 1 Boolean function.  

The constant-1 input of the cascade is the only garbage 
input in the reversible representation of the cascade. In 
this implementation, the individual cascades enclosed in 
the dashed lines can be viewed as n+1 reversible gates 
belonging to (k+1)* (k+1) family of Toffoli gates. 

Logic synthesis of the cascades starts with the 
incompletely specified function F = (Q, R) and returns the 
set of gates implementing the stages. The logic synthesis 
methods developed in this paper use the mathematical 
concepts summarized below.  

4 Mathematical Background 

This introduction assumes the familiarity of the reader 
with Boolean algebra and Binary Decision Diagrams [3]. 

4.1 Fundamentals 
Definition. A completely specified Boolean function of 

n variables is a mapping of Bn → B, where B ∈  {0,1}. An 
incompletely specified Boolean function F is a function 
interval (Q, R), where Q and R are completely specified 
Boolean functions, known as the on-set (lower bound) and 
the off-set (complemented upper bound).  

The incompletely specified function is well-defined if 
the on-set and the off-set do not overlap: Q ∧  R ≡ 0. 

Definition. A completely specified function G belongs 
to the interval F = (Q, R) iff G ∧  R ≡ 0 and G ∧  Q ≡ 0. 

Definition. The support of a completely specified 
function is the set of variables, on which the function 
depends. The support of the incompletely specified 
function F = (Q, R) is the union of supports of Q and R. 

Definition. The existential quantification of a 
completely specified function F(a) w.r.t. variable a0 is the 
completely specified function  

∃ a0F(a) = Fa0=0(a) ∨  Fa0=1(a). 
This function can depend on all variables in a, except a0. 

Similarly, the universal quantification is the function 
∀ a0F(a) = Fa0=0(a) ∧  Fa0=1(a). 

The following property holds: ∃ a0F(a) = )(0 aFa∀ . 
Definition. The result of removing a0 from the support 

of an incompletely specified function F(a) = (Q(a), R(a)) 
is the set of completely specified functions G(a), which 
belong to the interval F(a) and do not depend on a0. If this 
set is not empty, variable a0 can be removed from the 
support of F(a). 
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Theorem 1. Variable a0 can be removed from the 
support of F(a) = (Q(a), R(a)) iff  

∃ a0Q(a) & ∃ a0R(a)  ≡  0. 
The result of removing variable a0 from the support of the 
incompletely specified function F(a) is another 
incompletely specified function: F’(a) = (∃ a0Q, ∃ a0R).   

Theorem 1 requires that the resulting incompletely 
specified function was well-defined. 

Example. An incompletely specified function F = (Q, R) 
in shown in Figure 2. This function contains four 
completely specified functions derived by four different 
assignment of don’t-care minterms (101) and (010). In 
particular, when the value of the function is 0 in both 
minterms, the corresponding completely specified 
function is the same as Q. This function does not depend 
on variable a. Therefore, variable a can be removed from 
the support of F. 

 F  Q  R  
 bc\a 0 1  bc\a 0 1  bc\a 0 1  
 00 0 0  00 0 0  00 1 1  
 01 0 -  01 0 0  01 1 0  
 11 1 1  11 1 1  11 0 0  
 10 - 0  10 0 0  10 0 1  

Figure 2. Example of incompletely specified function. 

4.2 Sets of Functions 
Definition. An encoded representation of a set of 

completely specified functions, which depend on the set of 
variables a, is a completely specified function ϕ(a,z) such 
that substituting the assignment z0 of variables z into 
ϕ(a,z) yields function ϕz0(a), which belongs to the set. 

If the set consists of n functions, a unique encoding 
representation can be constructed with k ≥ log2 µ 
variables z.  

Example. The set of functions { a1a2, 21aa , 1a } can be 

encoded using codes { 21zz , 21zz , 21zz }, which leads to 
the following encoded representation: 

ϕ(a,z) = a1a2 21zz  ∨   21aa 21zz  ∨   1a 21zz . 

4.3 Encoded Representation of Maitra Terms 
All implementations of one stage of the wave cascade, 

shown Figure 1, are represented using the primary input 
variables a and the additional variables z encoding 
individual gates of the cascade.  

The functionality of each two-input gate is represented 
using four encoding variables (one variable per minterm). 
However, this representation is wasteful because the 
simultaneous complementation of the gate’s input and the 
previous gate’s output leads to an equivalent cascade.  

Therefore, without limiting the expressive power of the 
representation, we set the value of all two-input gates in 
minterm (11) to be 0. We use the set of variables z with 
double indices. The first index stands for the number of 
the gate. The second stands for the number of the 
corresponding minterm in the gate’s Karnaugh map. 

The functional representation of all implementation of 
one stage of wave cascade with n inputs is derived 
recursively, assuming that the representation of the stage 
with n-1 inputs is known: 

ϕ0(a,z) = 0; 
ϕk(a,z) = zk0 ka ),(1 zak −ϕ  ∨  zk1 ka ),(1 zak −ϕ  ∨  

zk2ak ),(1 zak −ϕ ,  1 ≤ k ≤ n; 
It is important that the size of the BDD representing 

ϕn(a,z) is linear in the number of gates if variables a and 
zki are interleaved in the variable ordering.  

Table 1. The number of BDD nodes and minterms in the 
encoding of all implementations of one stage of wave 

cascade. 

n N(n) M(n) 
2 9 16
3 14 52
4 19 408
5 24 3,280
6 29 26,208
7 34 209,728
8 39 1,677,696
9 44 13,421,824

10 49 107,374,080
 
Table 1 gives the number of nodes, N(n), including the 

terminal node, in the complement-edge BDD of ϕn(a,z) 
assuming that variables are ordered as follows: 
(a1, z10, z11, z12, a2, z20, z21, z22, …, an, zn0, zn1, zn2). The 
table shows that the number of nodes is linear in the 
number of variables: N(n) = 5n – 1. M(n) is the number of 
on-set minterms in ϕn(a,z) computed using the BDD 
minterm counting procedure.  

In the cascade synthesis, we use constraints representing 
several stages of the cascade connected by EXOR gates. 
The size of this representation is not linear in the number 
of input variables but it is manageable for small number of 
stages and functions of less than 10 variables. 

5 Wave Cascade Synthesis Algorithm 

In this section, it is assumed that the incompletely 
specified function to be implemented as the wave cascade 
is F(a) = (Q(a), R(a)). The set of encoded completely 



specified functions representing one or more stages of the 
cascade is ϕ(a,z).  

Definition. The remainder is the set of incompletely 
specified functions resulting from implementing the 
remaining part of the cascade, assuming that the first 
stages of the cascade are represented by ϕ(a,z).  

Using the linearity of the EXOR operation, the 
remainder is computed as follows: 
FR(a,z) = (QR(a,z), RR(a,z)) = (Q(a)⊕ ϕ(a,z), R(a)⊕ ϕ(a,z)). 

The algorithm for wave cascade synthesis is iterative. It 
generates one or more stages of the cascades at a time, in 
such a way that when the cascades are added to the 
implementation, the support of the remainder is reduced 
by at least one variable. 

The following theorem allows us to select the 
representatives of the encoding set of functions, which do 
not depend on some input variables. 

Theorem 2. Let FR(a,z) be the remainder of F(Q,R) 
after introducing several stages of the cascade represented 
by ϕ(a,z). Let the set of variables a be divided into two 
parts, those to be removed from the support, ar, and those 
to remain in the support, as. The implementation with 
variables ar removed from the support exists iff 

χ(z) = ∃ as [∃ ar QR(a,z) & ∃ ar RR(a,z)] ≠ 1. 

Taking any assignment z0 of variables z such at z0∈ )(zχ  
gives one feasible implementation. 

Using this theorem we can find an implementation of 
several stages of the wave cascade at a time. When z0 is 
computed, we set z = z0 in FR(a,z) = (QR(a,z), RR(a,z)) and 
derive the incompletely specified implementation of the 
remainder FRI(a) = (QR(a,z0), RR(a,z0)), which replaces 
F(a) in the next iteration of the algorithm.  

The proposed algorithm does not work for complex 
functions for the following reasons. The representation of 
several stages of the cascade (in the case when one stage 
does not lead to the support reduction) may become too 
large. The runtime need to compute χ(z) in Theorem 2 
requires three BDD traversals and tends to timeout for 
complex functions. 

6 Experimental results  

Implementation of the algorithm in Section 5 is not 
completed. In this section, we provide an upper bound on 
the number of generalized Maitra terms in the reversible 
wave cascade. It was shown in Section 2 that ESOPs of 
Boolean functions can be mapped into reversible wave 
cascades by implementing each product in the ESOP as a 
generalized Maitra term.  

The upper bound on the number of stages in the 
reversible wave cascade is computed for selected MCNC 

benchmarks as the number of terms in the heuristically 
minimized ESOP of the Boolean functions [14]. Note that 
this upper bound works for multi-output functions. 

 
Table 1. Upper bound on the number of stages in 

reversible wave cascades. 

Benchmark 

Name Inputs Outputs 

Upper 
Bound 

5xp1 7 10 31 
9sym 9 1 51 
add6 12 7 127 

addm4 9 8 89 
b12 15 9 28 
clip 9 5 63 
ex7 16 5 81 

f51m 8 8 31 
in7 26 10 35 
intb 15 7 268 
life 9 1 48 

m181 15 9 29 
m4 8 16 76 

max512 9 6 82 
rd53 5 3 14 
rd73 7 3 36 
rd84 8 4 58 
ryy6 16 1 40 
sao2 10 4 28 
seq 41 35 246 

sym10 10 1 79 
t3 12 8 24 

t481 16 1 13 
vg2 25 8 184 
z4 7 4 29 

Average 13.0 7.0 71.6 
 
The first three columns in Table 1 characterize the 

benchmarks. “Names” gives the benchmarks name. 
“Inputs” gives the number of inputs. “Outputs” gives the 
number of outputs. “Upper Bound” gives the maximum 
number of stages in the reversible wave cascade.  

7 Conclusions  

This paper presents an algorithm to generate reversible 
wave cascades implementing incompletely specified 
Boolean functions. Minimizing garbage bits is the main 
challenge of reversible logic synthesis. The remarkable 
property of the presented method, compared to other 
reversible synthesis methods, is that it creates at most one 
constant input and no additional garbage outputs.  
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