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Difficult and interesting problems.

MappingMapping: automatic, manual, guided?
Probabilistic localization:Probabilistic localization: landmarks?, 
odometer!,
Route planningRoute planning: collision avoidance
Mine Mapping?

How can we solve them?
….probabilistic 

robotics...
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Localization
Mapping (2D, 3D)
Humans detection
Moving objects avoidance
Language dialogs/generation
Robot Vision
Sound source detection
Movement control - planning of paths
Sensor integration
Probabilistic Neural Nets
Hidden Markov Models
Probabilistic Finite State Machines
Bayesian Nets
Fault Diagnosis
Case Based Reasoning
Image Processing
Pattern Recognition

The list goes 
on and on...



© sebastian thrun, CMU, 2000 4

Sebastian Thrun 
Dieter Fox
Wolfram Burgard
Maja Mataric
Gourav Soukhatme
Kris Konolidge
Ilyah Nourbankhsh
Judea Pearl
Manuela Veloso
Luis Enrique Sucar

Top 
Research 

Teams



© sebastian thrun, CMU, 2000 5

Probabilistic RoboticsProbabilistic Robotics

Key idea: Explicit representation of uncertainty
(using the calculus of probability theory)

Perception = state estimation
Action = utility optimization
• Probabilistic State Estimation

• Localization
• Mapping 

• Probabilistic Decision Making
• Planning
• Exploration

1. Why should we use probabilistic techniques?
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New robots are in dynamic complex real life 
environments such as museums or battlefields
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System must be robust...

RobotRobot
MinervaMinerva
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The Problems with Localization and 
Mapping

Measurement noise
• Sensor and Position noise is not independent

Map size
• High resolution maps can be very large

Correspondence
• Do multiple measurements at different times correspond to the 

same object?

Dynamic environments
• Most current algorithms assume a static environment
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Odometry Data Range DataRobots are Inherently Uncertain

Odometry Errors: heading and distance measurements accumulate errors 
with time

Command Noise
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Animation of LocalizationAnimation of Localization

40s-localization
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Five Sources of Uncertainty

Environment
Dynamics

Random
Action Effects Sensor

Limitations 
and Noise

Inaccurate
Models

Approximate
Computation

stochastic,
unpredictable

Robot is stochastic
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Trends in Robotics

Reactive Paradigm (mid-80’s)
• no models
• relies heavily on good sensing

Probabilistic Robotics (since mid-90’s)
• seamless integration of models and sensing
• inaccurate models, inaccurate sensors

Hybrids (since 90’s)
• model-based at higher levels
• reactive at lower levels

Classical Robotics (mid-70’s)
• exact models
• no sensing necessary
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Advantages of Probabilistic ParadigmAdvantages of Probabilistic Paradigm
Can accommodate inaccurate models
Can accommodate imperfect sensors
Robust in real-world applications
Best known approach to many hard robotics problems 
Pays Tribute to Inherent Uncertainty
• Know your own ignorance

Scalability
No need for “perfect” world model
• Relieves programmers

Pitfalls
• Computationally inefficient

• Consider entire probability densities
• False assumptions 
• Approximate 

• Representing continuous probability distributions
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Probabilistic Sensor Model

Probabilistic sensor model for laser range finders
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Bayes
Rule
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p(x|d) =  η p(d|x) p(x)

• p(x|d) is the probability of (the map) x being true given the (sensor) 
measurement d

• p(d|x) is the probability of the (sensor) measurement being being d given 
(an object at) x

• p(x) is the prior probability (of the map)
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Law of Total Probability
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Probabilistic Model
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Action Data Observation Data

Markov Assumption
Future is Independent of Past Given Current State 

“Assume Static World”
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Probabilistic Action model

Continuous probability density Bel(st) after moving 
40m (left figure) and 80m (right figure). Darker area 
has higher probablity.

st-1 st-1

at-1

at-1

p(st|at-1,st-1)

Choose a motion model which considers the error in measuring the
robots ego-motion (Odometry)
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Idea: Represent Belief Through Samples

Particle filters [Doucet 98,
deFreitas 98]
Condensation algorithm 
[Isard/Blake 98]
Monte Carlo localization
[Fox/Dellaert/Burgard/Thrun 99]

Sampling-based model of position belief

Sampling the Action Model
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Where Am I ?

Building a map with an accurate set of sensors – Easy!

Localization with an accurate map – Simple!

Fact: You start off with noisy 
sensors and no map
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The Localization ProblemThe Localization Problem

Estimate robot’s coordinates
s = (x,y,θ) from sensor data
• Position tracking (error bounded)
• Global localization (unbounded error)
• Kidnapping (recovery from failure)

Ingemar Cox (1991):
“Using sensory information to locate the robot in
its environment is the most fundamental problem to provide a 

mobile robot with autonomous capabilities.”
see also [Borenstein et al, 96]
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Bayes Filters in Localization

[Simmons/Koenig 95]
[Kaelbling et al 96]

[Burgard, Fox, et al 96]

11...11...111...1...1 ),|(),|()|(),|( −−−−−∫= tttttttttttt dxuzxpxuxpxzpuzxp η
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With: Greg Armstrong, Greg Baltus, Jacqueline 
Dunbar-Jacob, Jennifer Goetz, Sara Kiesler, Judith 
Matthews, Colleen McCarthy, Michael Montemerlo,
Joelle Pineau, Martha Pollack, Nicholas Roy, Jamie 
Schulte



© sebastian thrun, CMU, 2000 24

Localization Localization 
in Museumin Museum

sampling2

Animation of Animation of 
two robots two robots 

for for 
localizationlocalization
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Bayes Filters
Assume static world (map m constant)
p(zt|st, m) is the sensor model
p(st|ut, st-1) is the motion model
p(st-1, m|zt-1, ut-1) is the probability we were where we thought we 
were last time
Generally the sensor model and the motion model are static

BayesBayes Rule in timeRule in time
Notation

• s = pose of robot (x, y, Θ)
• u = command given to robot
• z = sensor measurement
• m = map

All are functions of time
• zt = sensor measurements at time t
• zt = all sensor measurements up to time t
• (same for s, u, and m)
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Derivation : Markov Localization

1111 )(),|()|()( −−−−∫= tttttttt dssBelasspsopsBel η
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Bayes

),,,|()|( 011 ooaspsop ttttt Κ−−= ηMarkov
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[Kalman 60, Rabiner 85]

Markov
1021111 ),,|(),|()|( −−−−−−∫= ttttttttt dsoaospasspsop Κη

1011011 ),,|(),,,|()|( −−−−−∫= tttttttt dsoaspoasspsop ΚΚη
Total Probability

d =data
o =observation
a = action
t = time
s = state

The desired posterior is calculated using recursive formula
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Markov Assumption

Knowledge of current state renders past, future 
independent:
• “Static World Assumption”
• “Independent Noise Assumption”
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Probabilistic Localization

),,|(),,,|( 010010 muzxpmuzxzp ttttttt ΚΚΚΚ −−∝
Bayes

[Kalman 60, Rabiner 85]

x = state
t = time
m = map
z = measurement
u = control

Markov
),,|(),|( 010 muzxpmxzp ttttt ΚΚ −=
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laser data p(z|x,m)
map m

xt-1
ut

p(xt|xt-1,ut)



© sebastian thrun, CMU, 2000 29

∏
=

=
N

n
tttntttttt uzsmpuzspuzsmp

1
000000000 ),,|(),|(),|,( ΚΚΚΚΚΚΚΚΚ

Mapping: Structured Generative Model

s1 s2 st

u2 ut

m2

m1

z1

z2

s3

u3

z3

zt

. . .

Landmark

robot pose

control

measurement

With K. Murphy, B. Wegbreit and D. Koller
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Markov Markov localizationlocalization
It equally represents the basic update equation in:
• Kalman filters,
• Hidden Markov models,
• dynamic belief networks.

Kalman filter represents beliefs by Gaussians
Vanilla Kalman Filter also assumes Gaussian 
noise and linear  motion equations.
Applied to tracking and mapping.
Not good for global localization and kidnapped 
robot problem.
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Robot Rhino - CMU: 
Example of grid-based 
Markov localization in a 
symmetric environment
based on sonar measurements

Path, highlighting 
four robot poses

Posterior belief b 
at second pose Belief b at third 

pose
Belief b at fourth pose 

(robot is certain)
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Localization flashback

The Kalman Filter
• Concise, closed form equations
• Robust and accurate for tracking position
• Does not handle non-Gaussian or non-linear motion and measurement 

models
• Restricted sub-optimal extensions with varying success

Topological Markov Localization
• Feature-based localization
• Bayesian Landmark Learning (BaLL)
• Very coarse resolution
• Low accuracy

Grid-based Markov Localization
• Fine resolution by discretizing state space
• Very robust
• A priori commitment to precision
• Very high computational burden, with effects on accuracy Sampling-

based methods
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Sampling-based Methods

Bootstrap filter
Monte-Carlo filter
Condensation algorithm Particle Filters

Invented in the 70’s!
Rediscovered independently in target-
tracking, statistical and computer 
vision literature
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Monte Carlo LocalizationMonte Carlo Localization

Probabilistic Localization = Bayes filters
Particle filters: Approximate posterior by random samples 

Approximate Bayes Filtering
• Full posterior estimation
• Converges in O(1/�ã#samples)[Tanner’93]
• Robust: multiple hypothesis with degree of belief
• Any-time: by varying number of samples
• Easy to implement
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Monte-Carlo Localization

Represent the probability density Bel(st) by a set of 
randomly drawn samples
From samples, we can always approximately reconstruct 
density (e.g. histogram)
Reason: The discrete distribution defined by the sample 
will approximate the desired one.
Goal: Recursively compute at each time instance t the set 
of samples St that is drawn from Bel(st)



© sebastian thrun, CMU, 2000 36

Algorithm: Prediction phase

1. Draw a random sample St-1 from the current belief    Bel(st-1)

Bel(st-1)

St-1

continuous

discrete
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Algorithm: Update phase - I

2. For this St-1, guess a set of successor poses st, as per the distribution 
p(st|at-1,st-1,m) to form S’t-1

p(st|at-1,st-1,m)

S’t-1
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Algorithm: Update phase - II 

3. Weight each sample in S’t-1 by mt = p(ot|st,m), or what is called the 
importance factor.

mt = p(ot|st,m)

weighted S’t-1
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Algorithm: Resampling

4. Draw each element s’jt-1 in S’t-1 with probability equal to its weight mj to 
form the new set St

Bel(st)

St
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Algorithm

5. Normalize the importance factors and repeat from (2).

Bel(st)

St
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Justification

Predictive phase retrieves an empirical predictive density 
(stratified sampling) that approximates the real one.
Update phase retrieves an empirical posterior density 
(importance sampling) by weighting more likely states.

The entire procedure is called Sampling / Importance 
Resampling (SIR)
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MonteMonte--Carlo Localization (MCL)Carlo Localization (MCL)
Solves the global localization and kidnapped robot
problem
Multi-modal (unlike the Kalman filter)
Drastic reduction in memory requirement
More accurate than ML with a fixed cell size
Easy to implement
Fast

References:
• AAAI Tutorial on Probabilistic Robotics (Sebastian Thrun)
• Probabilistic Algorithms in Robotics (Thrun)
• Robust Monte Carlo Localization for Mobile Robots (Thrun, Fox, Burgard, 

Dellaert)
• Monte Carlo Localization for Mobile Robots (Dellaert, Fox, Burgard, Thrun)
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Monte Carlo Localization

Probabilistic
• 1. Start with a uniform distribution of possible poses (x, y, Θ)
• 2. Compute the probability of each pose given current sensor data 

and a map
• 3. Normalize probabilities

• Throw out low probability points
• Blur current points (we never know exactly where we are)

Performance
• Excellent in mapped environments
• Need non-symmetric geometries

Thrun, Sebastian. “Animation of Monte Carlo Localization using laser range finders”

SLAM Thrun, Sebastian. “Animation of On-line mapping with Monte Carlo Localization”
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SLAMSLAM
SLAM
• Simultaneous Localization And Mapping
• Figure out where we are and what our world looks like at the same 

time

Localization
• Where are we?
• Position error accumulates with movement

Mapping
• What does the environment look like?
• Sensor error (not independent of position error)
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Learning Maps
aka Simultaneous Localization and Mapping (SLAM)

70 m
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Mapping: The Problem

Continuous variables
High-dimensional (eg, 1,000,000+ dimensions)
Multiple sources of noise
Simulation not acceptable
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Results of Mapping
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CMU’s Wean Hall (80 x 25 meters)

15 landmarks 16 landmarks

17 landmarks 27 landmarks
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CAD map

Accuracy: “The Tech” Museum, San Jose

2D Map, learned
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Animation of OnAnimation of On--line Mapping with line Mapping with 
Monte Carlo LocalizationMonte Carlo Localization

Multi-Robot Mapping -
Animation of 3D Map of Wean Hall

MultiMulti--Robot Exploration with Monte Robot Exploration with Monte 
Carlo LocalizationCarlo Localization
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With Juan Nieto, Jose Guivant, Eduardo Nebot, Univ of Sydney

Outdoor Mapping (no GPS)
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Sebastian Thrun, Juan Nieto, Jose Guivant, Eduardo Nebot, Univ of Sydney

Outdoor Mapping (no GPS)
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3D Mapping

Konolige et al, 2001 Teller et al, 2000

Moravec et al, 2000
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3D Volumetric Mapping
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Learning Object Models
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Nearly Planar Maps

Idea: Exploit fact that buildings posses many planar surfaces
Compacter models
Higher Accuracy
Good for capturing environmental change
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3D Mapping Result

Sebastian Thrun, Christian Martin
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Underwater Mapping    (with University of Sydney)

Sebastian Thrun,  Hugh Durrant-Whyte, Somajyoti Majunder, Marc de Battista, Steve Scheding
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Robotic Mine Mapping ProjectRobotic Mine Mapping Project

mine1-video 
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Mine MappingMine Mapping

mine-mapping-first
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Mine Mapping Project

mine1-anim2
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Mine  MappingMine  Mapping
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3D Texture Mapping
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Fine-Grained Structure:
Can We Do Better?
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Results With EM
(95% of data explained by 7 surfaces)Without EM

With: Deepayan Chakrabarti, Rosemary Emery, Yufeng Liu, Wolfram Burgard, ICML-01

error
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Dynamic EnvironmentsDynamic Environments
Kalman filters
Decaying occupancy grids
DogmaDogma
• Dynamic occupancy grid mapping algorithm
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Combining Tracking and Mapping

With Dirk Hähnel, Dirk Schulz and Wolfram Burgard
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Tracking Moving Features

With: Michael Montemerlo
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Tracking Moving Entities Through Map 
Differencing
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Map-Based People Tracking

With: Michael Montemerlo
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Robot Control

Coastal plans: the robot actively seeks the proximity of 
obstacles to improve its localization.
The large open area in the center of this Smithsonian museum 
is approximately 20 meters wide and usually crowded with 

l
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Robot Puppets Robot Puppets --
Natural Language Natural Language 
Dialogs and Dialogs and 
Emotional Behavior Emotional Behavior 
AnimationAnimation

Many talking toys exist, but 
they are still very primitive
Actors for robot theatre, agents 
for advertisement, education 
and entertainment.
Designing inexpensive natural 
size humanoid caricature and 
realistic robot heads

Machine Learning techniques used 
to teach robots behaviors, natural 
language dialogs and facial 
gestures.

Dog.com from Japan

Probabilistic techniques
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Robot with a Personality?Robot with a Personality?

Future robots will interact closely 
with non-sophisticated users, 
children and elderly, so the 
question arises, how they should 
look like?
If human face for a robot, then 
what kind of a face?
Handsome or average, realistic or 
simplified, normal size or 
enlarged?

• Why is Kismet so successful? 
•We believe that a robot that will interact with humans 
should have some kind of “personality” and Kismet so far 
is the only robot with “personality”.  

•The famous example 
of a robot head 
is Kismet from MIT.
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Behavior, Dialog and Behavior, Dialog and 
LearningLearning

Words communicate only about 
35 % of the information 
transmitted from a sender to a 
receiver in a human-to-human 
communication. 

The remaining information is 
included in para-language.

Emotions, thoughts, decision 
and intentions of a speaker 
can be recognized earlier than 
they are verbalized. 

Probabilistic techniques
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Robot face should be friendly and funny
The Muppets of Jim Henson are hard to match examples of puppet artistry and 

animation perfection.

We are interested in robot’s 
personality as expressed 
by its:
• behavior, 
• facial gestures, 
• emotions,
• learned speech patterns. 

Portland State University and KAIST: work in progress

Robot activity as a mapping of the sensed environment and internal states to 
behaviors and new internal states (emotions, energy levels, etc).
Our goal is to uniformly integrate verbal and non-verbal robot behaviors. 
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Fig. 1. Learning Behaviors as Mappings fromFig. 1. Learning Behaviors as Mappings from
environment’s  features to interaction proceduresenvironment’s  features to interaction procedures

AutomaticAutomatic
softwaresoftware
constructionconstruction
from examplesfrom examples
(decision tree, (decision tree, bibi--
decomposition,decomposition,
AshenhurstAshenhurst, DNF), DNF)

Speech from
microphones

Image features
from cameras

Sonars and other
sensors

Emotions and
knowledge memory

probability Verbal response
generation (text
response and TTS).
Stored sounds

Head
movements
and facial
emotions
generation

Neck and shoulders
movement generation



© sebastian thrun, CMU, 2000 77

Professor Perky Professor Perky 

1 dollar latex 1 dollar latex 
skin fromskin from

• We compared several 
commercial speech systems 
from Microsoft, Sensory and
Fonix. 

•Based on experiences in 
highly noisy environments and 
with a variety of speakers, we 
selected Fonix for both ASR 
and TTS for Professor Perky 
and Maria robots. 

• We use microphone array 
from Andrea Electronics. 

Professor Perky with Professor Perky with 
automated speech recognition automated speech recognition 
(ASR) and text(ASR) and text--toto--speech speech 
(TTS)  capabilities(TTS)  capabilities
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Probabilistic Grammars for performancesProbabilistic Grammars for performances

Who?

What?

Where?

Speak ”Professor Perky”, blink eyes twice

Speak “In the 
classroom”,
shakes head

P=0.1

Speak “Was 
drinking 
wine”

P=0.1

P=0.3

P=0.5

Speak ”Professor Perky”

Speak ”Doctor Lee”

Speak “in some 
location”, smiles 
broadly

Speak “Was 
singing and 
dancing”

P=0.5 P=0.5

P=0.1 P=0.1

….
P=0.1



MariaMaria

20 DOF



Construction Construction 
details of Mariadetails of Maria

location of location of 
controlling controlling 
rodsrods

location location 
of head of head 
servosservos

location location 
of remote of remote 
servosservosCustom 

designed skin

skull
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Probabilistic State Machines to describe emotions of MARAProbabilistic State Machines to describe emotions of MARA

Happy state

Ironic state

Unhappy state

“you are beautiful” 

/ ”Thanks for  a compliment”

“you are blonde!”

/ ”I am not an idiot”

P=1

P=0.3

“you are blonde!” 

/ Do you suggest I am 
an idiot?”

P=0.7



Facial Behaviors of MariaFacial Behaviors of Maria
Do I look like younger than twenty 

three?
Maria asks:Maria asks:

“yes”
“no” “no”

0.3 0.7

Response:Response:

Maria smilesMaria smiles Maria frownsMaria frowns
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Quantum Gates and “generalized 
Probability “

We cannot achieve this in standard or 
probabilistic logic
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Hadamard and 
Phase gates

Quantum Circuit

Single particle 
interference
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Probabilistic versus Quantum Computation

Quantum

Probabilistic
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Generalizations of Concepts

Discrete 
Mapping
Finite State 
Machine
Algorithm
Turing 
Machine
Cellular 
Automaton
Neural Net

Probabilistic 
Mapping
Probabilistic 
State Machine
Probabilistic 
Algorithm
Probabilistic 
Turing Machine
Probabilistic 
Cellular 
Automaton
Probabilistic 
Neural Net

Quantum 
Mapping
Quantum State 
Machine
Quantum 
Algorithm
Quantum Turing 
Machine
Quantum 
Cellular 
Automaton
Quantum Neural 
Net
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Representations. 
The choice of representation is crucial in the design of any probabilistic 
algorithm
It determines its robustness, efficiency, and accuracy. 

• The probabilistic paradigm lends itself naturally to learning.
• Very little work has been carried out on automatically learning models (or 
behaviors) in real-world robotic applications using probabilistic representations. 
• Many of today’s best learning algorithms are grounded in statistical theory
similar to the one underlying the current approach.

Learning. 

Current and Future ResearchCurrent and Future Research

High-Level Reasoning and Programming. 

Theory of Robotics.

Innovative Applications 
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Lecture SummaryLecture Summary
In Robotics, there is no such thing as
• A perfect sensor
• A deterministic environment
• A deterministic robot
• An accurate model

Therefore:
• Uncertainty inherent in robotics

New Approach, creatively combines model-based and model-less 
approaches
Many opportunities possible

Sources
• Sebastian Thrun http:// www. cs. cmu.edu/~ thrun/
• Dieter Fox http:// www. cs. washington.edu/ homes/ fox/
• Wolfram Burgard http:// www. informatik.uni- freiburg. de/~ burgard/ 
• Ranjith Unnikrishnan
• Marc Zinck 
• David Black-Schaffer
• Kristof Richmond
• Ekert, Oxford Univ.
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……And Can We Actually DoAnd Can We Actually Do
Something Something UsefulUseful??

Sebastian Thrun

Intel


