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Difficult and interesting problems.

* Mapping: automatic, manual, guided?

= Probabilistic localization: landmarks?,
odometer!,

= Route planning: collision avoidance
= Mine Mapping?
How can we solve them?

....probabilistic
robolics...



Localization

Mapping (2D, 3D)

Humans detection

Moving objects avoidance
Language dialogs/generation
Robot Vision

Sound source detection
Movement control - planning of paths
Sensor integration

Probabilistic Neural Nets

Hidden Markov Models
Probabilistic Finite State Machines
Bayesian Nets

Fault Diagnosis

Case Based Reasoning

Image Processing

Pattern Recognition

The list goes
on and on...
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Probabilistic Robotics

1. Why should we use probabilistic techniques?

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)
= Perception = state estimation
= Action = utility optimization
* Probabilistic State Estimation
* Localization
« Mapping
* Probabilistic Decision Making

» Planning
« Exploration




New robots are in dynamic complex real life
environments such as museums or battlefields




System must be robust...




The Problems with Localization and
Mapping

Measurement noise
« Sensor and Position noise is not independent

Map size
« High resolution maps can be very large

Correspondence

« Do multiple measurements at different times correspond to the
same object?

Dynamic environments
* Most current algorithms assume a static environment



Command Noise

= Qdometry Errors: heading and distance measurements accumulate errors
with time

Odometry Data
Robots are Inherently Uncertain

Range Data



Animation of Localization




Five Sources of Uncertainty

Environment Approximate

stochastic, v
Random Inaccurate

v Sensor v
Robot 1s stochastic W

unpredictable




Trends in Robotics

Classical Robotics (mid-70’s)
* exact models

* NO sensing necessary
\ Reactive Paradigm (mid-80’s)

* N0 models
* relies heavily on good sensing

Hybrids (since 90’s)
* model-based at higher levels
e reactive at lower levels

Probabilistic Robotics (since mid-90’s)
« seamless integration of models and sensing
* ijnaccurate models, inaccurate sensors




Advantages of Probabilistic Paradigm

= Can accommodate inaccurate models
= Can accommodate imperfect sensors
= Robust in real-world applications
= Best known approach to many hard robotics problems
= Pays Tribute to Inherent Uncertainty
 Know your own ignorance
= Scalability
= No need for “perfect” world model
* Relieves programmers
Pitfalls
- Computationally inefficient
« Consider entire probability densities
* False assumptions
* Approximate
 Representing continuous probability distributions




Probabilistic Sensor Model
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Probabilistic sensor model for laser range finders



Bayes

Rule bla) p(a)
pn - Plla) p
pla|b) 0)
e - POlE9) pald
pla|b,c) .

* px|d) = n p(d|x) p(x)

«  p(x|d) is the probability of (the map) x being true given the (sensor)
measurement d

« p(d]|x) is the probability of the (sensor) measurement being being d given
(an object at) x

* p(x) is the prior probability (of the map)




Law of Total Probability

p(a) = ), planb)

Discrete - Z p(a|b)p(b,)
Continuous p(a)=[ p(a|b)p(b)db
it follows that:

pla|b) = p(a|b,c)p(c|b)de




Markov Assumption

Future is Independent of Past Given Current State

“Assume Static World”

Probabilistic Model

Bel(s,) = p(s,|dy,)

0 i (610,00,611 o,K,a t—l’ )




Probabilistic Action model

= Choose a motion model which considers the error in measuring the
robots ego-motion (Odometry)

p(sda.,8.) —

7 \

1
Clt_ 1

= Continuous probability density Bel(s,) after moving
40m (left figure) and 80m (right figure). Darker area
has higher probablity.

B, |m) = 1.0, 5,m) s, |51, 1m) B,y | m) .




Idea: Represent Belief Through Samples

=  Particle filters [Doucet 98,
deFreitas 98]

=  Condensation algorithm
[Isard/Blake 98]

= Monte Carlo localization
= [Fox/Dellaert/Burgard/Thrun 99]

Sampling-based model of position belief

Sampling the Action Model



here Am | ?

- Buildin' a mp With an accdft set of sensors — Easy!

= |ocalization with an accurate map — Simple!

= Fact: You start off with noisé¥1
d no map
Sensors




The Localization Problem

= Estimate robot’s coordinates

= s = (x,y,0) from sensor data
 Position tracking (error bounded)
+ Global localization (unbounded error)
» Kidnapping (recovery from failure)

= |ngemar Cox (1991):
“Using sensory information to locate the robot in

its environment is the most fundamental problem to provide a
mobile robot with autonomous capabilities.”

see also [Borenstein et al, 96]



Bayes Filters in Localization

P 1z o) = 1pz]%) j P [, % ) P62 05t ) A

[Simmons/Koenig 95]
[Kaelbling et al 96]
[Burgard, Fox, et al 96]



Florence
The Dancing
Robot

Nursebot Pearl
Assisting Nursing

Home Residents

Longwood, Oakdale, May 2001
CMU/Pit/Mich Nursebot Project

With: Greg Armstrong, Greg Baltus, Jacqueline
Dunbar-Jacob, Jennifer Goetz, Sara Kiesler, Judith
Matthews, Colleen McCarthy, Michael Montemerlo,
Joelle Pineau, Martha Pollack, Nicholas Roy, Jamie
Schulte



Robin performs global localization moving from

left to right in the lower hallway

Localization
In Museum

Animation of
two robots
for
localization




Bayes Rule in time

= Notation
« s =pose of robot (x, y, ®)
* u=command given to robot
e Z=sensor measurement
°* m=map

= All are functions of time
* Z,= sensor measurements at time t
- 2zt = all sensor measurements up to time t
* (same for s, u, and m)

Bayes Filters

= Assume static world (map m constant)
= p(z]|s, m)is the sensor model
= p(slu, s,)is the motion model

= p(s.,, m|zt7, ut") is the probability we were where we thought we
were last time

= Generally the sensor model and the motion model are static



Derivation : Markov Localization

Bel(s,)=p(s,

Bayes

= npols,

Markov

= npo,ls

Total Probability

= npo,

Markov

= npo,

= npo,

d =data

0 =observation
a = action
t=time

0,,d, , tl?K OO) = s = state
a._,,0,K,0) pls, |a_,0_,K,0,)
s,) s, |a4,0.,,.K,0))

S,) | s, 1s.a..K,0) s |a . K,0) ds,
$,) ] s, s ,a.) XS lo,a.,K,0) ds
$,) ] oS, |8 a) Ps | dy,) ds

Bel(s,) = n p(o,|s,) j p(s, |8, ,a,,) Bel(s, ) ds,

[Kalman 60, Rabiner 85]

The desired posterior is calculated using recursive formula



Markov Assumption

A0,18,4.1,05,--50)) = PO $,) }
used above
S| 8,1,G.4,0,4,..50)) = AS,|8,.4,G.)

< A0p.505G,--50|S) = KOy 50| 5) PG50, 5))

= Knowledge of current state renders past, future
Independent:
« “Static World Assumption”
* “Independent Noise Assumption”




x = state

t =time

m = map

g = measurement
= control

| PG | X Ze 1o Ui 1) XX | Zge o U »T1D) AX

| PG| X ,1) PG | Zo o U5 T1) A

[Kalman 60, Rabiner 85]



Mapping: Structured Generative Model

Landmark

robot pose

control @ @ Q

N
P, se | Zog otk ,) = P(So s |ZOKt7u0Kt)Hp(mn | Sok 1> Zok 1o Mok 1)

n=l1

With K. Murphy, B. Wegbreit and D. Koller



Markov localization

It equally represents the basic update equation in:
« Kalman filters,

* Hidden Markov models,
» dynamic belief networks.

Kalman filter represents beliefs by Gaussians

Vanilla Kalman Filter also assumes Gaussian
noise and linear motion equations.

Applied to tracking and mapping.

Not good for global localization and kidnapped
robot problem.



Path, highlighting
four robot poses

Robot Rhino - CMU.
Example of grid-based
Markov localization in a

symmetric environment
based on sonar measurements

[Burgard et al 96] [Fox 99]

Posterior belief b Belief b at fourth pose

Belief b at third s !
at second pose pose (robot is certain)




Localization flashback

= The Kalman Filter
« Concise, closed form equations
* Robust and accurate for tracking position

« Does not handle non-Gaussian or non-linear motion and measurement
models

* Restricted sub-optimal extensions with varying success
= Topological Markov Localization

* Feature-based localization

- Bayesian Landmark Learning (BaLLl)

 Very coarse resolution

 Low accuracy
= Grid-based Markov Localization

* Fine resolution by discretizing state space

* Very robust

« A priori commitment to precision

* Very high computational burden, with effects on accuracy Sampling-
based methods



Sampling-based Methods

® Invented in the 70’s!

m  Rediscovered independently in target-
tracking, statistical and computer
vision literature

=  Bootstrap filter
=  Monte-Carlo filter
= Condensation algorithm \Particle Filters




Monte Carlo Localization

= Probabilistic Localization = Bayes filters
= Particle filters: Approximate posterior by random samples

= Approximate Bayes Filtering
* Full posterior estimation
« Converges in O(1/[Ja#samples)[Tanner’93]
« Robust: multiple hypothesis with degree of belief
« Any-time: by varying number of samples
« Easy to implement



Monte-Carlo Localization

Represent the probability density Bel(s,) by a set of
randomly drawn samples

From samples, we can always approximately reconstruct
density (e.g. histogram)

Reason: The discrete distribution defined by the sample
will approximate the desired one.

Goal: Recursively compute at each time instance f the set
of samples S, that is drawn from Bel(s,)




Algorithm: Prediction phase

1. Draw a random sample S, , from the current belief Bel(s,,)

continuous - Bel(s; 1)

discrete ﬁ S




Algorithm: Update phase - |

2. For this S, ,, guess a set of successor poses s,, as per the distribution
p(s{daq,S.4,m) to form S’ .

- p(sdag,S.,m)




Algorithm: Update phase - |l

3. Weight each sample in S, , by m, = p(o,|s;,m), or what is called the
importance factor.

. o O m, = p(0s,,m)

ﬁ E 6 weighted S’ |

B TR
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Algorithm: Resampling

4. Draw each element s’ , in S’ with probability equal to its weight mi to
form the new set S,

r
. O # | Bel(s)

- il .
R e S A
POV Y -

Ay A i B8 A
- R LEE t
Se ' Aot

" N E?__}-j-‘: i oy
TR




Algorithm

5. Normalize the importance factors and repeat from (2).

r
. O # | Bel(s)




Justification

= Predictive phase retrieves an empirical predictive density
(stratified sampling) that approximates the real one.

= Update phase retrieves an empirical posterior density
(importance sampling) by weighting more likely states.

The entire procedure is called Sampling / Importance
Resampling (SIR)



Monte-Carlo Localization (MCL)

Solves the global localization and kidnapped robot
problem

Multi-modal (unlike the Kalman filter)
Drastic reduction in memory requirement
More accurate than ML with a fixed cell size
Easy to implement

Fast

= References:
« AAAI Tutorial on Probabilistic Robotics (Sebastian Thrun)
* Probabilistic Algorithms in Robotics (Thrun)

« Robust Monte Carlo Localization for Mobile Robots (Thrun, Fox, Burgard,
Dellaert)

» Monte Carlo Localization for Mobile Robots (Dellaert, Fox, Burgard, Thrun)




Monte Carlo Localization

* Probabilistic
« 1. Start with a uniform distribution of possible poses (x, y, ©®)

« 2. Compute the probability of each pose given current sensor data
and a map

« 3. Normalize probabilities
« Throw out low probability points
 Blur current points (we never know exactly where we are)

= Performance
« Excellent in mapped environments
* Need non-symmetric geometries

SLAM Thrun, Sebastian. “Animation of On-line mapping with Monte Carlo Localization”

Thrun, Sebastian. “Animation of Monte Carlo Localization using laser range finders”



SLAM

= SLAM

« Simultaneous Localization And Mapping

» Figure out where we are and what our world looks like at the same
time

= |Localization
« Where are we?
* Position error accumulates with movement

= Mapping
« What does the environment look like?
« Sensor error (not independent of position error)



Learning Maps

aka Simultaneous Localization and Mapping (SLAM)
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Mapping: The Problem

= Continuous variables

= High-dimensional (eg, 1,000,000+ dimensions)
= Multiple sources of noise

= Simulation not acceptable



Results of Mapping




CMU’s Wean Hall (80 x 25 meters)
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Accuracy: “The Tech” Museum, San Jose




Animation of On-line Mapping with
Monte Carlo Localization

Multi-Robot Mapping -
Animation of 3D Map of Wean Hall

Multi-Robot Exploration with Monte
Carlo Localization




Outdoor Mapping (no GPS)

With Juan Nieto, Jose Guivant, Eduardo Nebot, Univ of Sydney



Outdoor Mapping (no GPS)
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3D Mapping

Konolige et al, 2001 Teller et al, 2000



3D Volumetric Mapping




Learning Object Models




Nearly Planar Maps

|ldea: Exploit fact that buildings posses many planar surfaces
= Compacter models

= Higher Accuracy

= Good for capturing environmental change



3D Mapping Result

Real Time Autonomous Robotic Mapping
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The Robotie Volumetric Ma
Carnegie Mellon University  Sponsored

Sebastian Thrun, Christian Martin



U nderwater Mappl ng (with University of Sydney)

| _
Sebastian Thrun, Hugh Durrant-Whyte, Somajyoti Majunder, Marc de Battista, Steve Scheding



Robotic Mine Mapping Project

The Carnegie Mellon
Robotic Mine Mapping Project

Sebastian Thrun, Michael Montemerlo, Dirk Haehnel,
RudolphTriebel, Wolfram Burgard, Red Whittaker

sposored by: DARPA IPTO (MARS)

mine1-video



Mine Mapping




Mine Mapping Project







3D Texture Mapping

Fife Mavigate Anchors BDisplay Help
B T T | NRuweb

Drag mouse to walk/mowve/look around

VRML, 80470 polvgons, t«




Fine-Grained Structure:
Can We Do Better?




Results With EM

Without EM (95% of data explained by 7 surfaces)

With: Deepayan Chakrabarti, Rosemary Emery, Yufeng Liu, Wolfram Burgard, ICML-01



Dynamic Environments

= Kalman filters

= Decaying occupancy grids

= Dogma
* Dynamic occupancy grid mapping algorithm
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Combining Trackina and Mannino

&

With Dirk Hahnel, Dirk Schulz and Wolfram Burgard



Tracking Moving Features

With: Michael Montemerlo



Tracking Moving Entities Through Map
Differencing




Map-Based People Tracking
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With: Michael Montemerlo



Robot Control

Start Position

P
Starting Position  Goal

IV THSIA

= Coastal plans: the robot actively seeks the proximity of
obstacles to improve its localization.

= The large open area in the center of this Smithsonian museum
Is approximately 20 meters wide and usually crowded with




Robot Puppets -
Natural Language
Dialogs and
Emotional Behavior
Animation

Many talking toys exist, but
they are still very primitive Dog.com from Japan

Actors for robot theatre, agents
for advertisement, education

. Machine Learning techniques used
and entertainment.

to teach robots behaviors, natural

IDICSTSR LD GISINAYCREINN I [anguage dialogs and facial
size humanoid caricature and gestures.

realistic robot heads

Probabillistic techniques



Robot with a Personality?

Future robots will interact closely
with non-sophisticated users,
children and elderly, so the
question arises, how they should
look like?

If human face for a robot, then
what kind of a face?

Handsome or average, realistic or
simplified, normal size or
enlarged?

Hightly Hews

*The famous example
of a robot head
1s Kismet from MIT.

* Why is Kismet so successful?
*We believe that a robot that will interact with humans
should have some kind of “personality” and Kismet so far
1s the only robot with “personality™.



Behavior, Dialog and
Learning

Words communicate only about
35 % of the information
transmitted from a sender to a
receiver in a human-to-human
communication.

The remaining information is

included in para-language.
Emotions, thoughts, decision
and intentions of a speaker
can be recognized earlier than
they are verbalized.

Probabillistic techniques



Robot face should be friendly and funny

The Muppets of Jim Henson are hard to match examples of puppet artistry and

animation perfection.

We are interested in robot’s
personality as expressed
by its:

* behavior,

 facial gestures,

* emotions,

 learned speech patterns.

o - -

= Robot activity as a mapping of the sensed environment and internal states to
behaviors and new internal states (emotions, energy levels, etc).

= Our goal is to uniformly integrate verbal and non-verbal robot behaviors.

Portland State University and KAIST: work in progress



- Learning Behaviors as Mappings from
environment’s features to interaction procedures

probability Verbal response
S b generation (text
pece hrom response and TTS).
fHETOPHONES Stored sounds
Image features Head
from cameras movem.ents
and facial
Sonars and other emOtIOI,lS
Sensor generation
Neck and shoulders
movement generation

Emotions and
knowledge memory



Professor Perky

Professor Perky with
automated speech recognition
(ASR) and text-to-speech
(TTS) capabilities

* We compared several
commercial speech systems
from Microsoft, Sensory and
Fonix.

*Based on experiences in
highly noisy environments and
with a variety of speakers, we
selected Fonix for both ASR
and TTS for Professor Perky
and Maria robots.

* We use microphone array

. from Andrea Electronics.

P =
1 dollaflatex”
ol has rm‘:#:;-ﬁ"'-. g



Probabilistic Grammars for performances

Speak “Professor Perky”, blink eyes twice

Speak “Professor Perky”

Speal/*in some

99 . locafion”, smiles
Speak “Doctor Lee bradly

Speak “In the
classroom”,
akes head

Speak “Was
singing ang
dancing,

Speak “Was
drinking

Ine







Construction
details of Maria



Probabilistic State Machines to describe emotions of MARA

“you are beautiful”

/ ”Thanks for a compliment”

“you are blonde!”

>’ am not an 1diot”

'99

“you are blonde

/ Do you suggest I am
an 1diot?”



Facial Behaviors of Maria

W ke Do llook like younger than twenty
three?

Response:

11 JJ

ves

Maria smiles .
Maria frowns



Quantum Gates and “generalized
Probability “

//'

We cannot achieve this in standard or
probabilistic logic



H | Hadamard and
’ Phase gates
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Quantum Circuit
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Probabilistic versus Quantum Computation

; <, P PPAPP Probabilistic
& ./4' \
/o=

Input Possible outputs

Quantum




Generalizations of Concepts

Discrete

= Probabilistic

Mapping
Finite State

>

Mapping
= Probabilistic
» State Machine

Machine

= Probabilistic

Algorithm
Turing

> Algorithm

Machine
Cellular

g Turing Machine

= Probabilistic
> Cellular

Automaton
Neural Net

Automaton
= Probabilistic

> Neural Net

= Quantum
Mapping

= Quantum State
Machine

> Quantum

Algorithm

= Probabilistic > Quantum Turing

Machine
= Quantum

- Cellular

Automaton

= Quantum Neural
Net




Current and Future Research

Representations.
= The choice of representation is crucial in the design of any probabilistic
algorithm

= |t determines its robustness, efficiency, and accuracy.
Learning.

» The probabilistic paradigm lends itself naturally to learning.

» Very little work has been carried out on automatically learning models (or
behaviors) in real-world robotic applications using probabilistic representations.
* Many of today’s best learning algorithms are grounded in statistical theory
similar to the one underlying the current approach.

High-Level Reasoning and Programming.

Theory of Robotics.

Innovative Applications



Lecture Summary

= |n Robotics, there is no such thing as
A perfect sensor
A deterministic environment
A deterministic robot
An accurate model
= Therefore:
* Uncertainty inherent in robotics
= New Approach, creatively combines model-based and model-less
approaches

= Many opportunities possible

= Sources
Sebastian Thrun http:// www. cs. cmu.edu/~ thrun/
Dieter Fox http:// www. cs. washington.edu/ homes/ fox/
Wolfram Burgard http:// www. informatik.uni- freiburg. de/~ burgard/
Ranjith Unnikrishnan
Marc Zinck
David Black-Schaffer
Kristof Richmond
Ekert, Oxford Univ.




...And Can We Actually Do Sebast/an Thrun
Something Useful? DLF N,

Intel




