An Algorithm for Bi-Decomposition of Logic Functions

Bernd Steinbach
Freiberg University of Mining and Technology
Institute of Computer Science
D-09596 Freiberg, Germany
steinb@informatik.tu-freiberg.de

Abstract

We propose a new BDD-based method for bi-
decomposition of multi-output incompletely specified logic
functions into a netlist of two-input logic gates. Our
algorithm makes use of the internal don’t cares generated
in the process of decomposition to produce compact well-
balanced netlists with short delay. The resulting netlists are
provably non-redundant and facilitate test pattern
generation. Experimental results over MCNC benchmarks
show that our approach outperforms SIS and other BDD-
based decomposition methods in the quality of final results
with comparable CPU time.

1 Introduction

Decomposition of boolean functions consists in breaking
down large logic blocks into smaller ones while keeping the
network functionality unchanged. Decomposition plays an
important role in logic synthesis. Research in this area has
started in 1950 [1,2]. Almost every year new techniques
and improvements of the old ones are proposed. The recent
years have been marked by the reviving of interest to
disjoint decompositions of logic functions [3,4,5].

Decomposition methods can be classified according to the
following criteria:

e Each block of the resulting network has single binary

output, or may have multiple binary outputs
(Ashenhurst and Curtis decomposition, respectively).

¢ Blocks have non-overlapping, or overlapping Sﬂpports
(the former is known as disjoint decomposition)-.

e Each block has two or less inputs, or the number of
inputs may be larger than two (the former is known as
bi-decomposition).

e Decomposition is performed as technology mapping
for FPGAs (in this case, the blocks have the upper limit

' Some authors [3,4] use the term disjunctive decomposition instead of
disjoint decomposition. In our opinion, this is misleading. The term
disjunctive is suggestive of “disjunction” in the sense of the boolean OR.
Therefore disjunctive decomposition may be mistaken for decomposition
using OR-gates.

Alan Mishchenko, Marek Perkowski
Portland State University

Department of Electrical and Computer Engineering

Portland, OR 97207, USA
[alanmi,mperkows]@ee.pdx.edu

on the number of inputs, typically, five), as a
technology-independent  transformation of logic
circuits, or as a specialized mapping technique.

e The decomposed structure is derived by breaking down
the large initial block, or the decomposition structure is
assembled by iteratively adding small components until
the network is funtionally equivalent to the initial
specification.

e BDDs are used in the decomposition algorithm, or not.

e If yes, BDDs are used to represent function and
store intermediate results, or BDDs are used as the
essential data structure directing the decomposition
process itself.

e Decomposion shares blocks between multiple-outputs
(if specified) or decomposes each output
independently.

e Decomposition algorithm allows for incompletely
specified functions, or not.

This classification can be extended using other criteria
such as methods for variable partitioning, methods for
deriving the decomposed functions, cost functions used to
evaluate the results of decomposition, etc.

In terms of the above classification, the algorithm
proposed in this paper is characterized as follows:

e Each decomposed block has single binary output

¢ Blocks may have overlapping supports

e Each block has two or less inputs (bi-decomposition)

e [t is a technology-independent transformation

e Larger components are broken down into smaller ones

e BDDs are used in decomposing to store functions

e The decomposed blocks are shared between outputs

¢ Incompletely specified functions are welcome

According to the above classification, there are other
approaches similar to ours in a number of ways. None of
them, however, has exactly the same list of characteristics.
The closest match are previous versions of the our
algorithm [6,7,8,9] and the recent BDD-based approach
[10,11]. As evidenced by our experiments, the algorithm
presented in this paper significantly outperforms its
previous versions in both its speed and the quality of final



results. A more detailed analysis of the differences of our
approach from [10,11] is given in Section 8§ of the paper.

The rest of the paper is organized as follows: Section 2
introduces the notations and decomposition models used in
the paper. Section 3 introduces necessary and sufficient
conditions for bi-decomposition of the given type (AND,
OR, EXOR) to exist. Section 4 gives the formulas for
deriving the decomposed functions. Section 5 discusses the
variable grouping strategy. Section 6 presents efficient
techniques to simplify the resulting netlist by using the
decomposed functions more than once. Section 7 gives the
pseudo-code and discusses the general outline of
decomposition algorithm. Section 8 presents experimental
results. Section 9 summarizes the paper.

2 Preliminaries

Let £ B" — B, Be{0,1}, be a completely specified
boolean function (CSF). The varibale set X, on which f
depends, in called support of f. Support size is denoted [X|.
Let F: B" — {0,1,-} be an incompletely specified boolean
function (ISF) given by its on-set (Q) and its off-set (R).
It is easy to convert the on-set/off-set representation of an
ISF into the interval specifying the set of permissible CSFs:
(Q,R). A CSF fis said to be compatible with (or belong to)
the ISFF=(Q,R),iffQ<f<R.

This paper considers decomposition of ISFs into netlists
of two-input gates, or bi-decomposition [12]. One-step
bi-decomposition is schematically represented in Fig. 1.
Symbol ® stands for AND, OR, or EXOR gate, while
components A and B are arbitrary ISFs. The support X of
the initial function is divided into three parts: variables X4
that feed only into block A, variables X5 that feed only into
block B, and the common variables Xc. By definition, sets
Xa, Xp, and X are disjoint. If X, or Xp is empty, the
resulting bi-decomposition is called weak. Otherwise it is a
strong (or non-weak) bi-decomposition. In this paper, we
consider both types of bi-decomposition and use the term
“bi-decomposition” to denote strong bi-decomposition.

Xa =]\ X, =,

Xc _ XC_E
B B

XB _— XB=®

Fig. 1. Schematic representation of two types of
bi-decompositoin: strong (left) and weak (right)

Notice that the function in Fig. 1 (right) has one
component with five inputs before weak bi-decomposition
and two components after the decomposition, one of them
with five inputs. Weak bi-decomposition may seem to give
no advantage, only increase the complexity of the network.
The advantage, however, consists in increasing the number

of don’t-cares of component A. Before the decomposition
the function may be not decomposable in the strong sense,
while after the weak bi-decomposition both created blocks
may have strong bi-decomposition.

This paper assumes the reader’s familiarity with Binary
Decision Diagrams (BDDs) [13]. The functions and their
supports are represented by BDDs. Two BDD operators,
known as existential and universal quantification, are used
extensively in the formulas of this paper. Quantifications of

a CSF w.r.t. a variable x is defined as follows: 3,f = f. + f,
(existential) and V,f = f; & f,, (universal). Symbols “+”
and “&” stand for boolean OR and AND, while f; and f,

are the cofactors of fi fi= fl,o, fi = flo [13]

Quantification over a set of variables in a straight-forward
generalization of the above definition.

Speaking informally, if a CSF is represented by its
Karnaugh map (Fig.2), existential (universal) quantification
w.r.t. the column-encoding variables is a function, whose
Karnaugh map is the sum (product) of columns.

A..F F(ab,c,d) VaF
cd cd\ab 00 01 11 10 cd
00] 1 0] 1 0 1 0 0] 0
01l 1JOR 0|0 |0 |1|1]JAND 01]0
mlo|l < 1mfojojojo| = 110
10] 1 w1101 1 10] 1

Fig. 2. Karnaugh map illustration of quantifications.

3 Checking decomposability

3.1 Bi-decomposition with OR-gate

Consider a four-input CSF in Fig. 3 (left). This function is
bi-decomposable using OR-gate with X, = {c,d} and X =
{a,b}. The result of bi-decomposition is:

F =OR(a@b, cd)

cd\ab 00 01 11 10 cd\ab 00 01 11 10
Wlo|1, 0|1 W|-|1,0]1
o101 |01 oo |1 |-|-
mjoj|1|/0]1 mjoj|-/011
0wlP1 111 0p1]-]1]1

Fig. 3. Examples of OR bi-decomposition.

From the Karnaugh map in Fig. 3 (left) it follows that, for
the function to be OR-bi-decomposable, it should have all
1’s grouped in a subset of columns and a subset of rows in
such a way that none of the columns and rows contain 0’s.
The requirement does not change for functions with don’t-
cares, as witnessed by an ISF in Fig. 3 (right), which is
OR-bi-decomposable using the same formula.

The above observation motivates the following statement:



Property: F(X) is not OR-bi-decomposable with
variable sets (X,,Xp,X;) iff in the Karnaugh map there
exists a cell containing 1 such that O’s appear in both
the row and the column to which this cell belongs.

For the lack of space, the proof of this and the following
statements is left to the reader.

Bi-decomposability of ISFs can be checked by applying
the existential quantification to Q and R, representing the
on-set and the off-set, because the existential quantification
over variables representing columns (rows) consists in
adding all the 1’s contained in the rows (columns).

Theorem 1: Function F(X) = { Q(X), R(X) } is
OR-bi-decomposable with variable sets (Xa, Xg, Xc) iff
Qs& HXAR & HXBR =0.

Due to the duality of AND and OR operations, the
formula for checking AND-bi-decomposition can be
derived by replacing on-set (Q) by off-set (R) in the
formulas. For this reason, the rest of the paper considers
only OR and EXOR bi-decomposition.

Formulas for checking OR-bi-decomposability of strong
and weak types are summarized in Table 1.

3.2 Bi-decomposition with EXOR-gate

Because checking for EXOR-bi-decomposition is rather
complicated, the following theorem is formulated for a
simpler case of X, and Xp consisting of one variable only.

Theorem 2: Function F(X) = { Q(X), R(X) } is EXOR-
bi-decomposable with variable sets (Xa, Xg, X¢), such
that [Xa| = |Xg| = 1 iff

Qp & HXBRD =0,

where Qp and Rp are the on-set and off-set of the
derivation of F w.r.t. the variable in Xa:

QD = HXAQ & HXAR, RD = VXAQ + VXAR.

Checking for EXOR-bi-decomposition with arbitrary
(non-overlapping) variable sets X, and Xp is performed
using a specialized algorithm in Fig. 4. The procedure
CheckExorBiDecomp() takes four arguments. The first two
are the on-set (Q) and the off-set (R) of an ISF. The next
two are variable sets X, and Xg. If the
EXOR-bi-decomposition exists, the procedure returns the
on-sets and off-sets of ISFs implementing components A
and B, otherwise it returns zero BDDs. A detailed
discussion of this algorithm can be found in [9].

procedure CheckExorBiDecomp( bdd Q, bdd R, bdd XA, bdd XB)
{ bddQa=0,Ra=0,Qs=0,Rs=0;
bddga=0,ra=0,q8 =0, 15 =0;
while (Q!=0) {
bdd Cube = SelectOneCube( Q );
ga = ga + JsCube;
while (ga+ra!=0) {
ge=Jn(Q&ra +R&Qa); rs =3a(Q&qga +R&ra);
if (qa & ra!=0) return (0, 0, 0, 0);
Q =Q-(ga*tra); R =R-(ga+*ra)

Qa =Qa +Qa; Ra=Ra+ra;
ga=Ts(Q&rs +R&Qs);, A =T (Q&qgs +R&TB);
if (gg & rg!=0) return (0, 0, 0, 0);
Q =Q-(gs*+m), R=R-(gs+rs)
Qg = Qs + Qg; Rs = Rs + rg;
}
}

if(R1=0){ Ra=Ra+TsR; Re=Rs + s R; }
return (Qa, Ra, Qs, Rs);
}
Fig. 4. Algorithm for checking the existence of
EXOR-bi-decomposition with arbitrary sets X and Xg.

4 Deriving decomposed functions

This section presents formulas for deriving ISFs
implementing components A and B (see Fig. 1). The case
of AND-bi-decomposition is not considered due to its
duality with OR. The case of EXOR-bi-decomposition has
been adressed in the previous section, because checking for
the existence of EXOR-bi-decomposition derived the ISFs
of the decomposed functions as a by-product.

Theorem 3: Let F(X) = { Q(X), R(X) } be OR-bi-
decomposable with variable sets (Xa, Xg, Xc). The ISF
Fa ={Qa(X), Ra(X) } of the component A is:

QA = HXB(R & HXAR), RA = HXBR.

Theorem 4: Let F(X) = { Q(X), R(X) } be OR-bi-
decomposable with variable sets (Xa, Xg, Xc) and a
CSFs fa belonging to the ISF F, is selected to
represent component A. The ISF { Qg(X), Rs(X) }
representing component B is:

QB = HXA(Q - fA), RB = HXAR.
Formulas to derive the ISFs representing components A

and B are summerized in Table 1. Symbol “-“ in the
formulas stands for boolean SHARP (A-B = A & B).

Type Checking Deriving A Deriving B

OR [Qa(@x:R)&(@x:R) =0 | Qa=Te(R8Tx:R) | Qs =Ta(Q ~Fa)

Ra=3x:R Re=3x:R
Weak Q-3IxR =0 Qa=Q&IxR | Qe=3Ixa(Q-fa)
OR Ra=R Re=3x\R

Table 1. Checking OR-bi-decomposability and deriving
ISFs for components A and B.

5 Variable Grouping

An important task arising during the bi-decomposition
consists in finding variable sets X, and Xg, for which the
given type of bi-decomposition is feasible. This task is
solved in two steps. On the first step, varible sets X, and Xp
are initialized to include one variable. On the second step,




attempts are made to add new variables to the sets while
preserving the set sizes as close to being equal as possible.

procedure FindInitialGrouping( bdd Q, bdd R, bdd S )
{ forallxe S {
Xa = {x};
forallye S—{x} {
X = {y}
if (CheckDecomposability( Q, R, Xa, Xz ) )
return ( Xa, Xg );
}

}
return (&, 9);
}
Fig. 5. Algorithm to find the initial grouping of variables
in sets X, and Xg.

Consider procedure FindInitialGrouping() implementing
the first step of variable grouping (Fig. 5). It takes three
arguments: the on-set Q, the off-set R, and the support S of
an ISF. Itreturns two singleton sets, X, and Xp, if the
function is strongly bi-decomposable with these sets, or two
empty sets, if the function is not bi-decomposable in the
strong sense under any variable grouping. The internally
called procedure CheckDecomposability() performs OR-,
AND-, or EXOR-bi-decomposability check, as discussed in
Section 3, depending on what initial grouping is sought.
procedure GroupVariables( bdd Q, bdd R, bdd S ')

{ (Xa, Xg) = FindInitialGrouping( Q, R, S );
if ((Xa, Xg) == (&, @) ) return (&, D);
forallze S — (Xa U Xg)
if ( [Xal < [Xs| )
/I try adding new variable z, first to Xa, next to Xg
if ( CheckDecomposability( Q, R, Xau {z}, Xg) )
XA = XA | {Z},
else if ( CheckDecomposability( Q, R, Xa, Xs U {z} ) )
XB = XB | {Z},
else ... // similarly if ( |Xa| > |Xsg| )
return ( Xa, Xg );
}

Fig. 6. Procedure to find the variable grouping.

Procedure GroupVariables() (Fig. 6) implements the
second step. The arguments and the return values are the
same as in procedure FindInitialGrouping(). Having found
a non-empty initial grouping, GroupVariables() considers
the remaining support variables one by one and tries to add
them to sets X, and Xp. Depending on sizes of X, and Xg,
it tries to add the new variable to the smaller set first. The
rationale for first considering the smaller set is to bring the
variable set sizes as close to being equal as possible.

Notice that the above greedy way of building X, and Xp
does not quarantee that they will be the largest possible
(meaning that the support sizes of components A and B will
be minimum). In practice, however, it gives reasonably
good good trade-off between the size and quality of the
resulting variable sets, on the one hand, and the
computation time needed to evaluate the quantified
formulas on each step of variable grouping.

We tried a number of ways to increase the sizes of X, and
Xg, for example, by excluding one variable at a time while
trying to add others, and accepting the change only if
excluding one variable led to the addition of two or more.
This strategy improved the netlist area to an insignificant
degree (less than 3%) but the CPU time grew up to 100%.

The above algorithm for variable grouping has another
important consequence related to the testability of the
netlist resulting from the bi-decomposition. Here we only
formulate this result and refer the reader to [8] for details.

Theorem 5: If function F(X) = { Q(X), R(X) } is OR-,
AND-, or EXOR-bi-decomposable with variable sets
(Xa, Xg), that has been selected using the algorihtm in
Fig. XXX, and the ISFs were derived using the
formulas of Theorems 3 and 4, then the resulting
netlist does not have redundant internal signals, i.e. it
is completely testable for all stuck-at-0 and stuck-at-1
faults assuming the single stuck-at fault model.

6 Reusing decomposed blo cks

While developing the approach to bi-decomposition, we
experimented with a number of strategies to enable the
efficient reuse of components across the netlist. One of the
strategies we explored consisted in modifying the variable
grouping algorithm to prefer groupings that create functions
existing among the decomposed components. However, this
approach tended to degrade the delay of the resulting
circuits by creating variable subsets of disballanced sizes.

The solution to the problem of component reuse has been
found in developing an original caching technique, which
allows for fast search among the already existent
components. The idea of this technique is suggested by the
observation that functions prior to the decomposition are
incompletely specified (given by on-set Q and off-set R)
while the decomposed functions are completely specified.
So the problem of component reuse can be reduced to the
efficient way of checking that among the set of CSFs there
exists function F such that F (or it complement) belongs to
the interval (Q,R).

Theorem 5: Let an ISF F be specified by the on-set
Q and the off-set R. A CSF f belongs to the ISF F iff

Q& f=0andR&f=0.
The complement of f belongs to the ISF F iff

R&f =0 andQ&f=0.

Checking many functions for belonging can be performed
efficiently if the completely specified functions are grouped
by their supports. This can be done by introducing a
lossless hash table hashing supports (represented as BDDs)
into pointer to linked lists of completely specified functions
(also represented as BDDs). In this case, checking reduces
to getting the pointer to the linked list of all functions with
the given support and walking through the list of functions



to determine whether one of them (or its complement)
belongs to the given interval.

This technique turned out to be very efficient in practice
by achieving up to 20% component reuse. The gain in area
and CPU time is, in fact, more substatial, especially when a
gate is reused on an early stage of the decomposition
process, because in this case there is no need to generate
any gates belonging to the fanin cone of the given gate.

7 Bi-decomposition algorithm

This section present the upper-level procedure that
performs one step of recursive bi-decomposition (Fig. 7).

procedure BiDecompose( bdd Qi, bdd Ri )
{ bdd Q, R, S, Fa, Fg, F;
(Q, R) =RemovelnessentialVariables( Qi, Ri );
S = Find_Support( Q, R );
if ( LookupCacheForACompatibleComponent(Q, R, S) ) {

F = GetCompatibleComponent( Q, R, S );

return F; }
if (1SI<2){

(Fa, Fs, gate) = FindGate( Q, R );

F = AddGateToDecompositionTree( Fa, Fg, gate );

return F; }
bdd XAOR, XBOR, XAAND, XBAND, XAEXOR, XBEXOR, XABEST, XBBEST;

( X%, XBOR’) = GroupVariablesOR( Q, R, S);
AND X" Dg = GroupVariablesAND( Q, R, S );
( XaFR Xg°R) = GroupVariablesEXOR(Q, R, S );
( XaP5T, X5"F°T gate ) = FindBestVariableGrouping(
(XAO : XBOR)’ (XAAND’ XBAND)’ (XAE OR’ XBEXOR) );
if ( (XABEST’ XBBEST) == (3, @))

(XaPEST, Xg®%T, gate) = GroupVariablesWeak( Q, R, S )
(Qa,Ra) = DeriveComponentAFunctions( Q,R, X,*7, Xg®°T);
Fa = BiDecompose(Qa,Ra);
(Qg,Rs)=DeriveComponentBFunctions(Q,R,Fa,Xa
Fgs = BiDecompose(Qs,Rs);

F = AddGateToDecompositionTree( Fa, Fg, gate );
return F;

¥
Fig. 7. The pseudo-code of bi-decomposition algorithm.

BEST BEST
Xs~ )

Procedure BiDecompose() is called with two arguments,
Qi and Ri, the initial on-set and off-set of the ISF to be
decomposed. It returns a CSF in the range (Qi, Ri)
representing the network of gates implementing the ISF.

If the ISF has inessential variables, they are removed
using a simple greedy algorithm and a new ISF (Q,R) is
created. In practice, inessential variables occur in less than
1% of recursive calls for typical MCNC benchmarks.

Next, support S of the ISF is determined and the cache is
searched for a compatible component. If the component is
found, there is no need to perform decomposition because
the netlist implementing the function already exists and the
CSF representing it can returned right away.

If there is no compatible component in the cache, the
procedure starts decomposing the function. First, support S
is checked for being less than two. If it is the terminal case,
an approapriate two-input gate is added to the
decomposition tree and the gate’s CSF 1is returned.
Otherwise, the procedure calls functions GroupVariables(),

to find variable sets X, and X, leading to strong bi-
decomposition with OR, AND, and EXOR gates.

Procedure FindBestVariableGrouping() considers the
variable sets and determines the best one. The cost function
evaluating the variable sets takes into account two factors:
how many variables are included into X, and Xg (the more,
the better), and whether X, and Xy are well-ballanced (the
closer their sizes are, the better). The procedure returns the
best variable grouping and the indication what
decomposition to perform (OR, AND, or EXOR).

If variable grouping with non-empty variable sets X, and
Xp is not available (this happens in 20-30% of recursive
calls for typical MOCNC benchmarks), procedure
GroupVariablesWeak() finds the best grouping to perform
weak AND- or OR-bi-decomposition, which always exists.
The variable grouping in this case is reduced to determining
X, that introduces as many don’t-cares into the ISF of
component A as possible (recall that in the case of weak bi-
decompositon, Xg is empty). After some experimentation,
we found that the best results are achived when X, includes
only one variable. The reasons is that, in this case, X, and
Xpg have close sizes, which leads to well-ballanced netlilsts,
which in turn reduces the delay.

Given the variable sets and the type of decomposition, the
on-set and off-set Q4 and R, of the ISF of component A are
derived using the formulas of Section 4. Next procudure
BiDecompose() is called recursively for component A,
returning the completely specified function f, representing
this component by a netlist of gates. The CSF f, together
with variable sets X, and X are used to compute the on-set
and off-set Qg and Rp of the ISF of component B.
Procedure BiDecompose() is called again for component B.

Finally, CSFs f, and fz derived in the process of
decomposition and the information about the decomposed
gate is used to find the CSF f, which represent the netlist
implementing the initial ISF. At the end of BiDecompose(),
the CSF f'is returned to the calling procedure.

8 Experimental results

The algorithm has been implemented in the program
BI-DECOMP written in platform-independent C++ using
the BDD package “BuDDy”, Ver. 1.9 [14]. The program
has been tested on a Pentium 266Mhz PC under Microsoft
Windows 98. Table 2 shows the experimental results for
running BI-DECOMP on MCNC benchmarks. /6Sym$ is a
16-variable totally symmetric function with polarity
“00001111000011110”. The results of area-oriented
mapping into the two-input gate library produced by
SIS[15] is given for comparison.

Columns “Ins” and “Outs” give the number of inputs and
outputs in the benchmark function. Columns “Gates” and
“Exors” give the number of all two-input gates and EXOR
gates in the resulting netlist. Column “Cascades” gives the
number of logic levels. Columns “Area” and “Delay” show



the area and delay of the resulting circuit computed
assuming the typical area/delay ratio for two-input gates.
For example, the ratio of area and delay of EXOR and NOR
is assumed to be 5/2 and 2.1/1.0 respectively. Finally,
column “Time” gives the CPU time in seconds needed to
perform the bi-decomposition and write the results into a
BLIF file (the input file reading time is not included). The
correctness of the resulting networks has been tested using
a BDD-based verifier.

Table 2 shows that in almost all cases BI-DECOMP
outperforms SIS in both area and delay. Both programs
used the PLA input files. In case of SIS, after reading input

files and before applying mapping, the function was
optimized using commands “resub —a; simplify —m” (as
suggested in the SIS manual). We deciced not to use the
curcuits preoptimized with script.rugged, because even
though it gave significant advantage in the number of gates,
in most cases it led to the increase in the delay compared to
the circuits generated using mapping only.

The large area and delay of two-input-gate circuits
generated by SIS can be explained by the fact that SIS used
mostly NOR/NAND gates and all but ignored other two-
input gates, even through they were listed in the library (see
column “Exors” in the SIS section of Table 2).

Benchmark SIS BI-DECOMP
name | ins |outs| gates | exors | area | casc | delay |time,c| gates | exors | area | casc | delay |time,c
9sym 9 1 | 255 5 526 15 1210 3.1 65 27 230 | 11 | 171 | 017
alu4 14 | 8 |1305] 4 [2687| 21 [37.6]129.0] 288 | 26 | 785 | 13 | 18.2 | 3.35
cps 24 110912354 | 12 [4782| 25 | 422 149.0 1608 | 152 | 4382 | 12 | 184 | 7.74
duke2 | 22 | 29 | 706 0 |1466 | 17 232 | 49 1 608 | 70 |1695| 11 | 17.1 | 3.19
e64 65 | 65 ] 2141 0 |4301 8 130 | 8.8 11443 0 [3607| 7 8.4 | 4.51
misex3 | 14 | 14 | 1524 | 11 |[3134| 17 [33.0 | 27.8] 897 | 186 | 2707 | 15 | 22.1 | 5.88
pdc 16 | 40 | 1320 0O [2653| 17 [26.6 274 ] 866 | 8 |2375| 14 | 20.7 | 3.02
spla 16 | 46 | 1201 | 44 [2541| 16 | 274|532 ] 811 | 81 |2227| 15 | 219 | 2.52
vg2 25 | 8 920 0 195 | 11 | 14.2 | 1.00 | 216 | 38 | 635 11 | 14.5 | 3.90
16sym8 | 16 | 1 958 0 [2123 ] 37 | 56.0 [488.6] 299 | 113 [ 1030 | 21 | 33.1 |11.87

Table 2. Comparison of decomposition results with SIS [15].

Table 3 shows the results of comparison of BI-DECOMP
with a BDD-based bi-decomposition package, BDS [10,11].
Notice that measurements in [11] are made in terms of the
standard library mcnc.genlib, which includes three-input
and four-input gates, while measurements of BI-DECOMP
are in terms of two-input gates. BDS performs numerious
preprocessing steps in order to achieve better partitioning
before bi-decomposition, while our approach applies the
above algorithms to the input functions without any
preprocessing. Therefore it is not quite clear why BI-
DECOMP outperforms BDS (e.g. benchmark alu4.pla).

Bench BDDlopt[11] BI-DECOMP
mark [“oates | exors | time, c | gates | exors |time, c
Sxpl 67 4/16 0.4 70 17 0.11
9sym 42 0/4 1.0 65 27 0.17
alu2 230 13/53 2.8 221 52 0.82
alu4 582 | 23/124| 15.9 288 26 3.35

Cordic| 47 6/16 0.5 44 15 18.80
rd84 62 6/12 1.4 55 18 0.17
1481 15 5/5 0.3 17 5 0.49

Table 3. Comparison of decomposition results with [11].
We conjecture that BDS does not make the most of the
strong bi-decomposability of the functions. Using the
terminology introduced above, BDS applies only weak

bi-decomposition (when one of the decomposed functions
can potentially depend on all input variables). Meanwhile,
in our experience, it is the strong bi-decomposition with
both XA and XB (see Fig. 1) different from the empty set
that leads to the fast reduction in the size of component
supports (resulting in smaller area) and facilitates creating
well-ballanced netlists (resulting in shorter delay).

9 Conclusions

We presented a new approach to decomposition of
incompletely specified multi-output functions into netlists
of two-input AND/OR/EXOR gates. The decomposition is
based on boolean formulas with quantifiers which can be
efficiently evaluated using a standard BDD package.

Our algorithm can be characterized as follows:

e The generated netlists are compact because it uses the
EXOR gates for EXOR-intensive circuits, exploits
external and internal don’t cares, and achieves
significant degree of component reuse by applying an
original caching technique.

e The netlists are well-ballanced (i.c., the subnetworks
for both inputs of a logic gate are typically similar in
the number of gates), which significantly reduces the
delay of the resulting circuit.



e Netlists created by our algorithm are 100% testable.
A test pattern generation technique can be integrated
into the decomposition algorithm with little if any
increase in the complexity and running time.

The future work includes extending the algorithm to work
with arbitrary standard cell libraries, integration of ATPG
into the process of decomposition, and generalization of the
algorithm for multi-valued logic with potential applications
in datamining.

References

[1] R. L. Ashenhurst. “The decomposition of switching
functions”. Ann. Computation Lab, Harvard University, Vol. 29,
pp. 74-116, 1959.

[2] A. Curtis. New approach to the design of switching circuits.
Van Nostrand, Princeton, NJ, 1962.

[3] V. Bertacco, M. Damiani. "The Disjunctive Decomposition
of Logic Functions". Proc. of ICCAD '97, pp. 78-82.

[4] S. Minato, G. De Micheli. "Finding All Simple Disjunctive
Decompositions Using Irredundant Sum-of-Products Forms".
Proc. of ICCAD' 98, pp. 111-117.

[5] T.Sasao, M.Matsuura. “DECOMPOS: An Integrated System
for Functional Decomposition”. Proc. of IWLS ’98, pp. 471-477.

[6] D.Bochmann, F.Dresig, B.Steinbach, “A new decomposition
method for multilevel circuit design”. Proc. of Euro-DAC,
Amsterdam, 1991, pp. 374 — 377.

[7] B. Steinbach, F. Schumann, M. Stockert. “Functional
Decomposition of Speed Optimized Circuits”. In Power and
Timing Modelling ..., D. Auvergne, R. Harternskin, eds., Springer-
Verlag, 1993, pp. 65-77.

[8] B. Steinbach, M. Stockert. “Design of Fully Testable
Circuits by Functional Decomposition and Implicit Test Pattern
Generation”. Proc. of VLSI Test Symposium, New Jersey, 1994,
pp. 22-27.

[9] B. Steinbach, A. Wereszczynski, “Synthesis of Multi-Level
Circuits Using EXOR-Gates”. Proc. of "IFIP WG 10.5 -
Workshop on Applications of the Reed-Muller Expansion in
Circuit Design”, Japan, 1995, pp. 161 - 168

[10] C. Yang, M. Ciesielski, V. Singhal. "BDS: A BDD-based
Logic Optimization System". Proc. of DAC 2000, pp. 92-97.

[11] C.Yang, M.Ciesielski. “BDD-Based Logic Optimization
System”. Tech. Report CSE-00-1, February 2000.

[12] T. Sasao, J. Butler, “On bi-decomposition of logic
functions”, Proc. of IWSL, Lake Tahoe, California, May 1997.

[13] R. E. Bryant, "Graph-Based Algorithms for Boolean
Function Manipulation", IEEE Trans. on Comp., Vol. C-35, No. 8
(August, 1986), pp. 677-691.

[14] J. Lind-Nielsen. BDD Package BuDDy, v.1.9, August
2000, http://www.itu.dk/research/buddy/index.html

[15] E. Sentovich, et al. “SIS: A System for Sequential Circuit

Synthesis”, Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS,
Univ. of California, Berkeley, 1992.



	Introduction
	Preliminaries
	Checking decomposability
	Bi-decomposition with OR-gate
	Bi-decomposition with EXOR-gate

	Deriving decomposed functions
	Variable Grouping
	Reusing decomposed blocks
	Bi-decomposition algorithm
	Experimental results
	Conclusions

