
Automated Synthesis of Generalized Reversible
Cascades using Genetic Algorithms

 Martin Lukac, Mihail Pivtoraiko, Alan Mishchenko, Marek Perkowski
Portland Quantum Logic Group

Department of Electrical and Computer Engineering
Portland State University

lukacm@ece.pdx.edu, mikhail@ece.pdx.edu, alanmi@ece.pdx.edu,
mperkows@ece.pdx.edu

Abstract.
 We propose an automated synthesis of Reversible logic (RL) circuits using Darwinian and
Lamarckian Genetic Algorithms (GA). Our designs are in a form of cascades of generalized
gates which generalize factorized Exclusive-Or-Sum-of-Products (ESOP) circuits. GA can be
used to explore the problem space of combinational functions and here it is used to evolve
reversible logic circuits. We emphasize the role of problem encoding - a well-designed encoding
leads to improved results. Our method with well-encoded circuits is compared to standard
method on classical benchmarks in GA, and shows good results for synthesis of both random
functions and benchmark functions with practical meaning, such as adders.

1. Introduction

 Reversible logic synthesis is an area of high interest because it provides theoretical support for
constructing circuits without the loss of information, and consequently, without energy loss [2,3,4,5].
The necessity for energy loss minimization raises with the increasing number of gates per chip. The
energy lost in a logic circuit has two components: one is related to non-ideality of switches and other
technological factors, the other to the information loss. While the first component is decreased with
time by inventing new technologies and design principles such as adiabatic design, the second is
related to information and can be decreased (to zero) only using the reversible design methodologies.

 Implementation of reversible logic can increase the limits on power imposed by current CMOS
technology at the price of increased area and reduced speed. It has been shown [3] that reversible
circuits built using future logically and physically reversible technologies will minimize the loss of
energy. With the increase of the number of gates per chip, according to Moore’s Law, current
standard CMOS technology will not efficiently reduce the switching energy. Consequently, the real
advantage of RL over alternative existing approaches is the fact that we are able to build reversible
circuits in today’s technologies (contrary to quantum logic). Designing an optimized reversible gate
or circuit is a highly challenging area of practical interest when high speed is traded off for low
power. It is ideal for applications such as cellular telephones, pacemakers, etc. In addition, reversible
logic synthesis is used in quantum logic synthesis.

2. Reversible Logic Gates and Circuits Synthesis Using
Evolutionary Approaches

 In the simplest approach, a Reversible Circuit (RC) is built from Reversible Gates (RG), such as
Toffoli, Fredkin or Feynman. For example, Feynman is a gate with two inputs A and B, and outputs
P = A and Q = P ⊕⊕⊕⊕ B, where ⊕⊕⊕⊕ is an exor functor. Its reversibility is evident because from each pair
of output values one can uniquely determine the pair of input values. A Reversible Circuit will in
general have an equal number of inputs and outputs and will be described by a one-to-one mapping
(a permutation) [5,12].

mailto:lukacm@ece.pdx.edu
mailto:mikhail@ece.pdx.edu
mailto:alanmi@ece.pdx.edu
mailto:mperkows@ece.pdx.edu

 In this paper we focus on the automated synthesis of RG’s and of RC’s, which are designed from
a starting set of given RG’s. This is similar to building classical logic circuits from cell libraries. The
goal is to find an arbitrary function by composing a limited set of gates while minimizing the total
complexity of the circuit by a heuristic method. The goal of approach is to find the best or optimal
combination of gates that satisfies all care minterms of the specified function. By best we mean both
minimizing the number/cost of gates and minimizing the total delay. We are confronted with a logic
synthesis/optimization combinatorial problem. Different approaches have been used to synthesize
reversible logic functions in order to minimize the complexity (see entire literature given below).

 Here the focus is on Evolutionary Algorithms (EA), especially we use a Genetic Algorithm
(GA)[17]. A GA is based on the principle of evolving a solution, by searching the problem space
using evolutionary heuristics, similar to genetic information transmission known from the Nature. It
uses a Population of Individuals, where each individual is a possible solution to the studied problem.
In other words, each Individual in the population is in this case an RC. Each Individual is then
evolved (mutated, crossed-over, or replicated) to the new generation of individuals in order to find
the optimal solution. One of important arguments to use evolutionary algorithms and GA in
particular for solving problems such as circuit synthesis, is the fact that a GA is only globally
optimized by a Fitness function, while all operators on individuals are performed randomly or
proportionally to the fitness value. Consequently, a Genetic Algorithm is well situated for usage in
high noise problems. RC’s and RG’s can be well mapped into individuals, because all gates have the
same number of inputs and outputs, and the encoding makes the evolutionary operators efficient and
easy to apply, as described below. Our primary goal, as already mentioned, is to test a classical
Darwinian GA, without any specific problem-dependant configuration, so that in a later stage we
will be able to select more efficient operators for an optimal convergence. (A similar research has
been already shown to apply to classical binary logic [4] and quantum logic [8,14,15]. There is
however a significant difference between RL and Quantum Logic (QL).) Our next goal is to add
reversible logic specific optimization operators leading to a Lamarckian GA algorithm and compare
the Darwinian and Lamarckian approaches.

 The specification of our GA encoding described below, comes from the RL itself but there are
restrictions specific to RL, making it different from both classical Boolean logic synthesis and
quantum logic synthesis. The main differences of synthesizing a circuit with reversible gates, as
compared to synthesizing a standard binary circuit, are the following:
1. In reversible logic, fan-out of any gate output is not allowed, but such a gate as Feynman can be

used to “copy” a signal
2. Several authors assume that there should be no loops of gates and we follow this assumption

here. This is especially true for pseudo-binary circuits of quantum logic where intersection of
signals is also not possible – circuits must be planar and use swap gates.

 Concluding, the main rules for efficient reversible logic synthesis are the following: (1) use as
many outputs of every gate as possible, and thus do not create garbage outputs, (2) do not create
more constant inputs to gates than it is absolutely necessary. Observe that this is quite different from
traditional logic design where only one output of gate is used in the synthesis process. Dealing with
multi-output gates and the attempt to use all outputs of gate in the best possible way is the difficulty
of reversible logic synthesis which causes that most of the current methods are exhaustive, either
evolutionary or backtracking /search. Here these two approaches are combined for the first time.

 In RL one can introduce constant values on some inputs in order to modify the functionality of
the circuit. This is different from Quantum Logic. Even if both are reversible, only in RL one can
tune a circuit by inserting constant inputs. Following then the Adiabatic synthesis, these constants
can be (in principle) reinserted back into the power supply and they do not cause energy dissipation.

3. Families of Generalized Reversible Logic Gates for Cascades

 Generalized 3*3 Toffoli Gate

A

B

P

f 2

⊕⊕⊕⊕
C

Q

R

 Fig1a,b

 Generalized n*n Toffoli Gate

A1

A n-1

f n-1

⊕⊕⊕⊕
A n-1 ⊕ f n-1 (A1, …, An-1)

An

. . .

 Generalized 4*4 Fredkin Gate

Q

P

f 2

A

C R

B

S

0

0

1

1

D

 Fig.2a,b

 Generalized n*n Fredkin Gate

A n-1 f ‘n-1 (A1, …., A n-1)

+ A n f n-1 (A1, …., A n-1)

A n-1 f n-1 (A1, …., A n-1)

+ A n f ‘n-1 (A1, …., A n-1)

.

f 2

0

0

1

1

A1

A n-2

f n-1

A n

A n-1

.

Standard Toffoli gate, called by him Quantum NAND realizes function P = A, Q = B, R = A*B ⊕⊕⊕⊕
C. Toffoli generalized it to a circuit in which the AND gate has an arbitrary number of inputs, called
multi-input quantum NAND. Figure 1a presents a generalization of standard Toffoli gate with three
inputs and three outputs. We call these gates the Toffoli Family. The symbol of gate at the bottom
is Galois Addition (EXOR in binary) and f1 is an arbitrary binary or multi-valued function. Figure
1b presents a generalized Toffoli gate for arbitrary number of inputs. Such reversible gates called
multi-input quantum NAND have function f n-1 being an multi-input AND [13,30]. They were
generalized as in Fig.1b by De Vos [21,22] to function f n-1 being an arbitrary binary or multi-
valued function. This family of gates was called by De Vos the simple control gates. The concept of
Fredkin gate can be generalized to a Fredkin family with an arbitrary number n of inputs as follows:
P1 = A1, P2 = A2, …. P n-2 = A n-2, Pn-1 = MUX(f n-2, An-1, An) , Pn = MUX(f n-2, An, An-1) where: f n-

2 is arbitrary function of n – 2 variables (in general, binary or multi-valued) being a control variable
of the multiplexer, input An-1 is a data input 0 and input An is a data input 1 of the multiplexer. This
family has the same applications as Toffoli family, but may be easier to realize in some technologies
in which realization of multiplexer is easier than EXOR. Figure 2a presents a 4*4 generalized
Fredkin gate with f1 being an arbitrary binary function. All these gates have been also generalized
to multi-valued logic. Figure 2b illustrates a family of n*n generalized Fredkin gates. Kerntopf
introduced a family of 3*3 gates that have the maximum number of cofactors [6]. These gates were
named Kerntopf gates and found useful for regular structures [7,10,11,12]. The concept of Kerntopf
gate can be generalized to a Kerntopf family with an arbitrary number n of inputs as follows: P1 =
A1, P2 = A2, …. P n-2 = A n-2, Pn-1 = MUX(f n-2, An-1, An) , Pn = DAVIO(f n-2, An, An-1) where:
MUX(x,y,z) = x’y + x z, DAVIO(x,y,z) = x’z + y, f n-2 is arbitrary function of n – 2 variables (in
general, binary or multi-valued) being a control variable of the multiplexer, input An-1 is a data input
0 and input An is a data input 1. The simplest generalized Kerntopf gate is shown in Figure 3a.
Observe that by Kerntopf family we call all gates that have a mixture of Davio and Shannon gates as
they individual output functions. Thus, functions that have only Davio type outputs are Toffoli
family, those that have only Shannon type outputs are Fredkin family and those that have mixtures
of Davio and Shannon outputs are called Kerntopf family. Observe that these three families do not
exhaust of possible reversible gates, because such gates can include other balanced functions as

their single outputs, for instance a majority or EXOR functions. An example of a cascade of
Kerntopf, Toffoli and Fredkin Family gates is shown in Figure 3b.

 Generalized 4*4 Kerntopf Gate

f 2

A

C

Q

R

B

P

S

0

1

D * ⊕⊕⊕⊕
 Fig.3 a,b

 General Cascade of Kerntopf, Toffoli
and Fredkin Family Gates

f 2

A

C
B

0
1

0 * ⊕⊕⊕⊕

g 2

⊕⊕⊕⊕
1

h 2

0

0
1

1

A

B

C

ψ1

ψ2

Derivatives of Perkowski’s Gate
k

f2

g

h

t t.
.
.

f2
De Vos
gates

⊕⊕⊕⊕

f
1

⊕⊕⊕⊕

A

B

P

Q

Feynman
gates

A

B

P

f 2

⊕⊕⊕⊕
C

Q

R

Toffoli
gates

Q

P

f 2

A

C R

B

SD 0

1

0
1

Fredkin gates

Kerntopf
gates

Many
other
gate
families

Generalized multi-
input multiplexer

Generalized
Maitra gates

Maitra
gates

CMOS
gates

 Fig.4.
The generalization of Toffoli, Fredkin, De Vos, Kerntopf and many other families has been called
the Perkowski‘s gate. Figure 4 shows how families of gates can be derived from such gate. This
powerful generalized gate is thus a generator of families of reversible gates. Function f2 in Figure 4
is an arbitrary binary or multi-valued function and multiplexer is a generalized binary or multi-
valued multiplexer, it means it includes not only standard mux but also muxes with several data
inputs and multi-valued address inputs for generalized Shannon expansions [1]. In binary case, the
mux has v address inputs that come from function f2, and it has 2v data inputs. The width of mux is t
wires, which means that each of 2v reversible functions at inputs to the mux have t inputs and t
output, and mux has t wires in its output. The binary gate in Fig.4 has k controlling inputs and t data
inputs. Functions g ,…, h are arbitrary reversible functions. The construction of gate from Figure 4
is thus recursive. Some MV generalizations of such mux are covered in [1] and in the literature
referenced there. In a further generalization [ddd] the data inputs can become control inputs as well,
we call them Perkowski‘s gates with mixed data-control. They generalize what De Vos calls
complex control gates [20,21] (De Vos was restricted to Toffoli-like generalizations only). Synthesis
with some special cases of the generalized gates have been discussed in
[7,9,10,11,12,18,19,20,21,22,25,26,27,28,29,30]. Interestingly, the synthesis methods from papers
before year 2002 were for gates that were not known at this time to be reversible, but now all ESOP-
based, factorized-ESOP based and Two-Dimensional Logic Array – based methods [18,19] methods,
Multi-Valued Complex Terms and XOR family terms methods [20,25,26,28,29] can be easily
adapted to reversible gates presented above. For instance, Figure 5a presents a multi-output ESOP
cascade. Every column is a reversible gate. A circuit with gates in which control and data inputs are

mixed is shown in Figure 5b. This is an optimal 5-gate solution to the so-called Miller function
(based on majority with 3 inputs and 3 polarities). We found optimal solutions to both 3*3 and 5*5
Miller functions (for majority with 5 inputs and 5 polarities. Finally, Figure 6a presents the quantum
notation of an adder realized with only Toffoli and Feynman gates. It shows that circuit is planar
and no intersection of wires is allowed. When a general-purpose reversible circuit diagram is
converted to quantum notation it is done using quasi-optimal planarization and folding algorithms is
[31] which involve adding the (quasi)-minimum number of swap gates. The same adder using
ESOP-like circuit is shown in Figure 6b. As we see, ESOP is a good approximation of the cost of
cascade from arbitrary gates, and this is why we use ESOP minimization in the feedback loop of
genetic algorithms and other exhaustive synthesis methods for quantum and reversible cascades
design, section 8 and [31].

 Example of multi-output ESOP cascade of
Toffoli family gates

A

C

B

1
⊕⊕⊕⊕

1

A

B

C

ψ1

ψ2

⊕⊕⊕⊕

⊕⊕⊕⊕

*

*

⊕⊕⊕⊕

*

⊕⊕⊕⊕

ψ1 = 1 ⊕ C ⊕ ABC ⊕ A’ B

ψ2 = 1 ⊕ C ⊕ A’ B

AC ⊕ BC ⊕AB

A

B

C
+

+

+

+*
i

A⊕B

A⊕C

g

+ h

Optimal Solution to Miller Function

AB
C

00

01

11

10

0 1

1

1
1

AB
C

00

01

11

10

0 1

11

11

AB
C

00

01

11

10

0 1

1

1 1
1

AB
C

00

01

11

10

0 1

1
1

1
1

AB
C

00

01

11

10

0 1

1
1
1

1

AB
C

00

01

11

10

0 1

1

1

1

Figures 5a and 5b
 Quantum Notation for Full Adder realized

using composition
C

A

B

0

A⊕B

AB C(A⊕B) ⊕AB

Width 4 Optimum quantum solution?

C⊕A⊕B

outputs

Not garbage
since these
are primary
inputs

 Quantum Notation for Full Adder realized
using ESOP

C

A

B

0

CB⊕AB ⊕AC

Width 5, six gates, two constant, not optimal but easy to find

C⊕A⊕B outputs

0

Figures 6a and 6b

4. Genetic Algorithm for Reversible Cascade Synthesis

 To synthesize a reversible circuit (or a new reversible gate in particular) we have chosen two
approaches: (1) use only classical gates such as: Feynman, Fredkin, Toffoli (all presented above),
Margolus (there are many Margolus gates, all of them have three muxes, example is
P=MUX(A,B,C), Q=MUX(C,A,B), R=MUX(B,C,A)), Swap (P=B, Q=A), Inverter (P=not(A))
, and Wire (P=A). (2) Use our generalized families of gates from previous section. Various gates
are combined in order to obtain a circuit that optimizes certain synthesis goal. For this purpose we
use similar approach as in [8], where we have obtained correct results that were comparable with
previous results but generated more efficiently. Here we use at first a Genetic Algorithm with
classical genetic operators (Darwinian GA). Representation of binary reversible logic is a special
case of quantum logic representation, thus the automated synthesis of reversible logic circuits is well
suited for parsing circuit into parallel blocks [8]. The GA is used to evolve reversible circuits, by
searching the space of all* possible circuits defined by the initial set of gates (a starting set). The

fitness-optimized recombination of positions of different gates can eventually lead to an optimal
solution. Consequently, the convergence of the whole algorithm is based on the fitness function (1).
Once again our goal is to test a generic approach to RL synthesis, hence we focus on benchmarks
that we propose to be commonly accepted for comparing RL and QL synthesis algorithms.

 A GA has a finite set of individuals, with each individual reversible circuit encoded as in Figure
7. Each circuit is coded into a chromosome, being a unit on which genetic operators act. Each
individual is a potential solution to the searched problem. We use string/object representation and
each individual is encoded in a sequence of parallel blocks, which can be easily manipulated. A good
encoding is one of the major ingredients for fast convergence of evolutionary algorithms. An
inadequate chromosome encoding can result in not finding the optimal solution or even in not
finding a solution at all. The encoding used here is not optimal for minimal circuits but is good for
an exploration of a large problem space. In logic synthesis that uses only a finite number of basic
gates, the method for optimal solution could be an exhaustive search of the problem space. This
results from a fact that since the solution has a limited number of k gates, the complete enumeration
of possible gate connections from a given set of gates and with no more than a total of k gates leads
to the optimal solution. For obvious reasons this method is not applicable to larger functions or to
infinite gate sets of quantum logic, and more sophisticated searching strategies are required.

5. Fitness Function for Darwinian GA

 Fitness Function is another major part of a GA. On one hand each individual is modified with
pseudo random genetic operators (mutation, crossover) so as to explore its neighborhood, while on
the other hand it is the Fitness Function that selects individuals that will survive to the next
generation. It is very important to use a correct fitness function, because the convergence to the
solution can be too fast or too slow. The fitness function used here is described by a single equation,
however other variants of this function were explored in the presented research. The initial fitness
function is defined as:

i
i

i error
=F Λ−

+1

1 (1)

with F is the fitness for i-th individual and error is the calculated error for this individual. ΛΛΛΛ
is the penalization of the circuit, increasing with its length. Initially we were using this Fitness
function. However to explore possibilities of recombination, in later experiments we dropped the
penalization. This consequently leads to obtaining longer circuits, however this is useful for our
exploration.

Table 1: Example of a desired Function

The Fitness of each individual is based on the
evaluation error. This error is obtained by by
comparing the desired output values of the circuit
with the look-up table description of the function
under optimization. It is important to note that
here we evolve the circuits functionally verified
for tautology with their specifications, and not
only the closest possible circuits, as it is common
in data mining and machine learning applications
of GA by other authors. In this case using

constants on circuit’s input terminals is allowed and even necessary to be able to create the desired
function. For example if Fredkin gate which is defined on three pairs of input/output by P,Q,R :
P,PQ+¬PR,¬PQ+PR is used with P = 0, then it permutes the outputs on Q,R to R,Q. The error is
then defined by the following equation, but only on the desired outputs:

A, B,
D

A’ B’ C’

000 0 0 0
001 0 0 1
010 0 1 0
011 0 1 1
100 1 0 0
101 1 0 1
110 1 1 1
111 1 1 0

with U is the correct output value and S is the value obtained from the circuit on the desired
output i for desired pattern j. In other words for each possible input combination of the circuit we
compare the correct output values with the one obtained from the circuit - Table 1. By normalizing
this error by the number of wires and patterns we obtain unitary error for each individual, next used
in the Fitness calculation as in (1) above. The Fitness function applied by us here is good for
arbitrary number of inputs and outputs of the original circuit and applies also to incompletely
specified functions.

Figure 7. Global representation of an Individual and of a population in a GA. In the
upper part the population is represented where each individual has a number. Each
individual is represented by a string of objects representing an RL circuit. First place
on the chromosome is assigned to the number of inputs/outputs of this circuit, followed
by a sequence of parallel blocks, each containing gates with the sum of all wires equal
to the number of wires in the circuit.

6. Role of Encoding in Exploring the Reversible Cascade Design
Space

 Each circuit is modified using evolutionary principles in order to explore the problem space. We
use here only the usual genetic operators that are sufficient to operate on the individual circuits. The
representation of the individuals, as shown in Figure 1, is quite similar to [8]. However, the global
settings are different, so as the operators have to be adapted in a new context. The problem of
encoding complex structures into GA is encountered when the elements of individuals are not simple
strings. Moreover the encoding must provide for fair distribution of application of operators, by
which we mean that each block in any chromosome needs to have the same probability as other
block to be selected for a genetic operation. Different encodings were used [8] and most of them
satisfy the property described above. Similarly, our encoding here is very simple, while all
information necessary is present intrinsically. Figure 8 shows details of a possible chromosome
representation. The representation used by the GA is an array of parallel blocks (ordered from input
to output), and each of these blocks is composed from gates (in wire order). Figure 8 illustrates an
encoding of a Toffoli gate AB ⊕ C with the EXOR gate on C wire. It is an extreme case and needs
to be used only if constants are inserted, but in most of our experiments the SWAP gate as presented

 1 2 3 4 5 6 7 8 9 10 11

 3

 F

 T

S W

W F

 W N W

 T

S N

 M

5

F

T

SW

WF

W N W

T

SN

M

FF

F F

FF

F

FF

FF

FF

FF

)2()2(,
1

2

1

n
n

i j
ijij UUSSUerror

n

∈−= ∑∑
= =

in Figure 8 was not used. As can be seen on both figures, each circuit is parsed into parallel blocks
that determine the overall length of the circuit. The genetic operators will act locally upon these
parallel blocks, and in effect globally on the whole circuit by reducing or increasing its size.

Figure 8. Example
are inputs, W is wir

 The operators us
be simulated on a
individuals can be
replicate them acco
replace parents by c

 Mutation opera
to obtain a big div
(with the same or d
a gate (replacing it
to preserve the cons

Table 2: the compl
in all our simulatio

Number
of wires

Gates

1 Wire, Inv
2 Feynman
3 Fredkin,
4 Margolus

 The Crossover
chromosomes. This
temptation to imple
two different genes
possible without m
the possibility of
crossover randomly
place, and intercha
blocks preservation

 The selection o
the next generatio
Stochastic Univers
the population dive
necessary tools to m

7. Experimen

 Two major setti
impact of this opera
our representation a

 S

 S
A

B B

C

 S

 WA

B

 of encoding of a three input reve
e, S is Swap gate. The major gate

ed here are Mutation, Crossover
parallel machine while evaluatin
 computed at a time. Steps of
rding to selection rule to the new
hild population.

tor here is as simple as possible.
ersity of results. Consequently th
ifferent number of inputs), change
 by wire) and add a new gate (gen
tant number of wires in the circui

ete set of gates used in a non restr
ns.

erter
 (Cnot), Swap
Toffoli

 operator takes generally two
 is done only in the case when bo
ment a crossover operator that w
 has been not yet explored, bec
odifying the structure of both circ
preserving unmodified building
 deciding whether to use one po

nging their respective halves) or t
).

perator selects individuals from th
n will replace the not replicate
al Sampling operator for selectio
rsity and avoids a high number
anipulate chromosomes and did n

tal results of Darwinia

ng of the GA were used, especiall
tor can be separated in two distin
llows parsing the circuit in block

 W WC AC
rsible gate, connected in inverse order. A,B,C
 here is CCnot or Toffoli, AB ⊕ C.

and Replication. A GA is an algorithm that can
g individuals, however only one generation of
a GA are: evaluate fitness of all Individuals,
 population, apply crossover and mutation, and

However specific actions were defined in order
e mutation can: change a gate to another one
 one gate’s position in a parallel block, remove
erally a new parallel block needs to be created

t).

icted starting set. Wire gate was always present

individuals and interchanges parts of their
th circuits have the same number of wires. The
ould be able to interchange arbitrary parts from
ause for a high percentage of cases this is not
uits. This technique would completely remove

blocks in the chromosome. Here we used a
int crossover (cutting two chromosomes at one
o make two-point crossover (better for building

e current population to the next one. Child from
d individuals. In this work we use only the
n, because it provides a higher preservation of
of local minima. These operators provided all
ot require any specific adjustments.

n GA

y the Mutation operator was explored. First the
ct categories of influences: local and global. As
s, the mutation operator can be used to modify

only a single block, i.e. a small random circuit. In this first part, the following settings of the GA
were used:

• Constant size of the population (100 – 150) individuals.
• Probability of mutation is from the interval [0.1, 1.0]
• One point crossover probability from [0.3, 0.8].
• Each time an individual was selected for mutation, a random decision selected whether a

parallel block is inserted or removed. Each new added segment consists of random selected
gates from the starting set.

For the experimentation we use simple benchmarks consisting of any unitary gates used in the
starting set (Table 2). The gate to be found was present in the starting set.

of
inputs

Number
of
individu
als

Number of
generations

Real
gate
found

Real
Time

2 10/50 10/1 * < 1 Min
3 10/50 10/1 * < 1 Min
4 10/50 10/1 * < 1 Min
.
Table 3: Global results on basic benchmarks. A * means the real model of the gate was found
exactly.

 This set of tests was to verify our non-traditional approach to the RL synthesis. The approach we
use here is to use a GA as a block manipulator. Contrary to classical GAs where flipping one
element in the chromosome directly affects the result, the element here is a single parallel block
randomly synthesized. Consequently, the algorithm is confronted with two types of modifications:
one selected by the mutation operator and one completely stochastic (the parallel block).
Consequently each circuit can change its structure in one mutation step, but only by one block. This
limits a too large exploration in one step. That explains the reason for using a high probability of
mutation justified by a local quantified search. This type of exploration is another to the random
mutation. In classical mutation the operators directly modify the chromosome (by flipping a bit)
while here the circuit is modified by a larger block which completely random and placed over all
wires in the circuit. Two consequences are implied from previous statement: first a higher number of
generations will be required in the case the solution is not found randomly and second the
modification of the circuit is normalized. This type of approach can be used especially if one defines
basic parallel blocks instead of using single gates. It can be argued that the high mutation
probability in our approach changes the GA to a random search. This criticism is, however, only
partially true which will be discussed in the last part of the paper.

 Another test was to synthesize a random function. The result is shown in Figure 11. The fitness
of the first individual demonstrates that its outputs correspond to the target function in all minterms.
As it can be seen, 200,000 generations were required to find this solution. This shows that our
approach (using block mutation) does not work well for bigger circuits in which parallel blocks have
to be randomly synthesized. However, once again if one has optimal blocks for some particular
function, they can be efficiently used to evolve a successfully optimized circuit. An important part in
this section of experiments was a synthesis of a full adder taken from [7]. We were only able to find
an alternative with one constant inserted. Number of generations was 450. The circuit found is
presented in Figure 9.

 I

 F

 F

 I

 I

 I

W I

 T

 T

 W a

 b

 c

 0

 p

 q

 T

Figure9. Adder found by the GA. F is
Feynman, I is Inverter, W is wire and T
is Toffoli gate. The optimal design of this
circuit has two Toffoli and two Feynman
gates [7].

 This has a consequence that some gates remain locked in certain particular configurations. The
problem then is to know on which wire to apply the constant input. As our only possibility to
evaluate a circuit (with constants allowed) is to determine the difference between circuit’s output and
the searched function, the search of correct output is computationally very requiring on resources
because of all possible combinations of constants present in the circuit.

 The next experiment set treated mutation in the opposite way: the mutation was used at all levels.
For each mutation, the operator selects what type of mutation will be performed (adding/removing
segment, adding removing a gate, flipping gates on wires). The mutation probability is set to small
values (0.01 to 0.1) and the crossover is maintained in the same range as previously.

 Main goal in this section was to look at the ability of the GA under classic constraints to build
similar or better circuits for a non-trivial function (compare with the case when the GA was
searching for a single gate). For this purpose we first explore the possibility of synthesizing any
unitary gate with the number of inputs higher or equal to 3. For this we have selected to synthesize
the Toffoli, Fredkin gates, and the adder. The summary of the results is given in Table 4. The
number of individuals in the population was set up either to 10 or 100 individuals.

Circuit/Gate Number of
generations

Real
Time

Exact/
Similar

Toffoli 5/1 0 */*
Fredkin 5/1 0 */*
Adder ?/40000 10 min 0/*

Table 4: Summarized results for the synthesis of circuits having three or more inputs.

 There are two types of results in the table. As in the previous experiment sets, one can introduce
constants on some inputs in Table 4, the number of generations required to find a solution is
indicated respectively for a population size of 10 and 100 individuals, respectively. The
Exact/Similar column indicates whether a solution was found (0 – not found, * - found). In the
case of the adder we were looking for one proposed by [7] but we only found the one from Figure
10, which has one Feynman gate more than the exact minimum solution from Figure 6a. Moreover
the mutation operator has the power to turn gates upside down (Feynman gate with control bit on the
second input and XOR on the first one). The number of generations necessary to find the result was
200,000, that is approximately 2 minutes real time. This result indicates the necessity to improve the
quality of our genetic operators. However even if a very big number of iterations were required, the
real time was practically acceptable.

Figure 10. Another Synthesized Adder, which has only one extra gate, IF.

 W W

 W W

 I
 F T

 T

 I
 F

 I
 F

 a

 0

 b

 c

 p

 q

Figure 11. Solution to a random problem search. Here number of individuals in the population is
10. Probability of mutation is 0.8 and of crossover 0.8.

8. Lamarckian Genetic Algorithm for Design of a Cascade with
Generalized Reversible Gates

 As presented above, the role of fitness function is fundamental to the success of any evolutionary
algorithm (or any search algorithm). While entropy and coincidence count methods were tested, as
well as the method presented here, they did not give a good evaluation of the distance of two
functions, given the individual function F represented by a chromosome and the goal function G to
be synthesized (these functions can be both multi-output). It was found that the best function to
evaluate the distance of functions F and G is min(ESOP(F ⊕⊕⊕⊕ G)), which means that an EXOR of the
functions F and G is calculated and the resulting function F ⊕⊕⊕⊕ G is minimized by an ESOP
minimizer [20,26,27,29]. The number of terms, number of literals or weighted sum of numbers
terms and literals in the minimized ESOP expression can be calculated as the distance evaluation
for cascade. Such cascade is designed from gates that are a superset of the quantum NAND gates
used in standard ESOP (see Figure 5a). Thus, the term-cost of ESOP is the upper bound of the
number of gates of the „remainder circuit“ F ⊕⊕⊕⊕ G of the cascade under synthesis. The Lamarckian
GA is similar to the Darwinian GA. It uses all operators and strategies of Darwinian GA presented
above, together with ESOP minimizer Exorcism-4 [27] as its component algorithms. Main difference
is the method to evaluate the fitness function, and Exorcism-4 is used in this process. It is also used
to complete the cascade: FULL_CASCADE (G) = CASCADE(F) ⊕⊕⊕⊕ ESPOP (F⊕⊕⊕⊕G) being a new
chromosome of an Individual. Now the cascades that have best values of fitness function are treated
as new chromosomes and returned back to the population of mixed general/ESOP cascades that are
next subject to Darwinian operators on chromosomes and the above presented Lamarckian operator
based on ESOP. Observe that a mixed cascade has arbitrary gates in its left and multi-input, multi-
output quantum NANDs at its right, but during the run of the Lamarckian GA the part composed of
arbitrary gates grows higher as a percentage of all gates in the cascade, while the total length of the
solution cascade shortens.

 Observe that Lamarckian GA is always convergent, because EXOR of any cascade for F
designed so far by the Darwinian GA and the minimized ESOP of the remainder function F ⊕⊕⊕⊕ G is a
correct realization of the given goal function G, [31]. The algorithm creates thus the sequence of the
cascades of the decreasing cost, with smaller and smaller ESOP component. The experimental
results of Lamarckian GA will be available during the conference.

9. Conclusions

 The paper introduced four new ideas:
(1) The concept of “Perkowski’s Gate” - a very general reversible gate that serves as a generator of

families of reversible gates. These families include the family of Toffoli-like gates from De Vos
[21,22], Fredkin-like and Kerntopf-like gates from [7,9], and others [6,25,26,27,31]. The early
variants of such gates were introduced and used for synthesis in an earlier work of Portland
Quantum Logic Group.

(2) The idea of using ESOP minimizer as a part of the fitness function for genetic algorithm. This
way, a good quality evaluation of the chromosome-circuit can be found.

(3) The concept of Lamarckian genetic algorithm that uses remainder logic which is an ESOP-like
circuit from k*k “quantum NAND gates”, synthesized by Exorcism-4 to complete the cascade
from arbitrary gates found by the standard GA. This way a sort of Lamarckian evolution is
simulated, where the new chromosome is created partly by GA and partly by ESOP
minimization, thus the influence of environment (ESOP minimization) is inherited in the
chromosomes returned to the chromosome pool.

(4) We have shown a successful experiment in RL synthesis. Design of high quality reversible
circuits is a difficult problem. In past, several methods have been tried, based on group theory,
function decomposition, gate composition, regular and symmetric structures, decision diagrams,
wave cascades and backtracking [1,6,7,8,9,10,11,12]. None of them is so far very successful for
larger functions. In present paper we implemented an evolutionary approach to be evaluated and
compared with the previous approaches.

 Current and future research involves:
(1) characterizing systematically properties of the new families of n-input n-output reversible gates

for being used in regular structures and developing logic synthesis methods for them (section 3);
(2) design of reversible/adiabatic CMOS circuits for these families;
(3) improving software presented here to work on larger circuits by investigating various

evolutionary paradigms and mixing evolutionary and backtracking/search algorithms;
(4) comparing Darwinian and Lamarckian GAs, and various heuristic search algorithms for

reversible benchmarks.

10. References

1. Anas Al.-Rabadi and M. Perkowski, “New Classes of Multi-Valued Reversible Decompositions for
Three-Dimensional Layout”, Proceedings of the 5th International Workshop on Applications of
Reed-Muller Expansion in Circuit Design, Starkville, Mississippi, USA, August 10-11, 2001, pp.
185-204.

2. W.C. Athas and L."J." Svensson , “Reversible Logic Issues in Adiabatic CMOS”, USC, Information
Sciences Institute.

3. C. Bennett, "Logical reversibility of computation", I.B.M. J. Res. Dev., 17 (1973), pp. 525-532.
4. K. Dill and M. Perkowski, ``Baldwinian Learning utilizing Genetic and Heuristic Algorithms for

Logic Synthesis and Minimization of Incompletely Specified Data with Generalized Reed-Muller
(AND-EXOR) Forms", Journal of Systems Architecture, Vol. 47, Issue 6, pp. 477 - 489, June 2001.

5. E. Fredkin and T. Toffoli, "Conservative Logic", Int. Journal of Theor. Phys., 21 (1982), pp. 219-
253.

6. P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and Conventional Gates,” Proc.
3rd LDL, Portland, Oregon, May 31, 2000

7. A. Khlopotine, M. Perkowski and P. Kerntopf, “Reversible Logic Synthesis by Gate Composition,”
Proc. 11th International Workshop on Logic and Synthesis, IEEE and ACM, New Orleans, June
2002.

8. M. Lukac and M. Perkowski, “Evolving Quantum Circuits Using Genetic Algorithm,” Proc. of
NASA/DOD Workshop on Evolvable Hardware, Washington, D.C. July 2002.

9. A. Mishchenko and M. Perkowski, “Logic Synthesis of Reversible Wave Cascades,” Proc. 11th

International Workshop on Logic and Synthesis, IEEE and ACM, New Orleans, June 2002.

10. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al.-
Rabadi, L. Jozwiak, A. Coppola and B. Massey, “Regular Realization of Symmetric Functions Using
Reversible Logic”, Proceedings of the EUROMICRO Symposium on Digital Systems Design,
Warsaw, Poland, September 4-6, 2001, pp. 245-252.

11. M. Perkowski and P. Kerntopf, “Fundamentals of Reversible Logic and Computing” (Tutorial),
Proceedings of the EUROMICRO Symposium on Digital Systems Design, Warsaw, Poland,
September 4-6, 2001, pp. 254

12. M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al.-Rabadi, A. Coppola, A. Buller, X.
Song, Md. M. H. Azad Khan, S.N. Yanushkevich, V.P. Shmerko and M. Chrzanowska-Jeske, “A
General Decomposition for Reversible Logic”, Proc. 5th International Workshop on Applications of
Reed-Muller Expansion in Circuit Design, Starkville, Mississippi, USA, August 10-11, 2001, pp.
119-138.

13. J.Preskill, Lecture notes in quantum computing: http://www. Theory.caltech.edu/~preskill/ph229
14. B.I.P. Rubinstein, “Evolving quantum circuits using genetic programming”, Proceedings of the 2001

Congress on Evolutionary Computation (CEC2001), pp. 144-151 (2001)
15. C.W. Williams, and G.G. Alexander, "Automated Design of Quantum Circuits", QCQC '98,

Springer-Verlag, pp. 113-125 (1999)
16. S.G. Younis, “Asymptotically Zero Energy Computing Using Split-Level Charge Recovery Logic,

Ph.D. Thesis, MIT, June 1994.
17. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning Addison

Wesley, 1989
18. N. Song and M. A. Perkowski, "A New Design Methodology for Two-Dimensional Logic Arrays,"

Proc. of IEEE International Workshop on Logic Synthesis, IWLS '93, Tahoe City, CA, pp. 1 - 17,
May 1993.

19. N. Song, M. Perkowski, M. Chrzanowska-Jeske and A. Sarabi, "A New Design Methodology for
Two-Dimensional Logic Arrays," VLSI Design, 1995, Vol. 3., Nos. 3-4, pp. 315-332.

20. N. Song and M. Perkowski, "Minimization of Exclusive Sum of Products Expressions for Multi-
Output Multiple-Valued Input, Incompletely Specified Functions,” IEEE Transactions on Computer
Aided Design, " Vol. 15, No. 4, April 1996, pp. 385-395.

21. A. De Vos, ``Design of reversible logic circuits by means of control gates'', Proceedings Patmos
2000 Conference, Goettinge, (Springer Lecture Notes in Computer Science No. 1918) pp. 255-264,
15 September 2000.

22. A. De Vos , ``Control gates as building blocks for reversible computers'', Proc. Patmos 2001
Conference, Yverdon. paper 9.2. 28 September 2001.

23. V.V. Shende, A.K. Prasad, I.L. Markov and J.P. Hayes, “Synthesis of Optimal Reversible Logic
Circuits’’, Proc. IWLS 2002.

24. K. Iwama , Y. Kambayashi and S. Yamashita, “Transformation Rules for Designing CNOT-based
Quantum Circuits,” Proc. of DAC 2002.

25. M. A. Perkowski, A. Sarabi and F. R. Beyl. Universal XOR Canonical Forms of Switching
Functions. Proc. of IFIP W.G. 10.5 Workshop on Applications of the Reed-Muller Expansion in
Circuit Design. Hamburg, Germany, September 16-17, pp. 27 - 32, 1993.

26. N. Song and M. Perkowski, „Minimization of Exclusive Sums of Multi-Valued Complex Terms for
Logic Cell Arrays,“ Proc. ISMVL 98, Fukuoka, Japan, May 1998.

27. A. Mishchenko and M. Perkowski, ``Fast Heuristic Minimization of Exclusive Sums-of-Products,''
Proc. RM'2001 Workshop, August 2001.

28. A. Sarabi, N. Song, M. Chrzanowska-Jeske and M. A. Perkowski. “A Comprehensive Approach to
Logic Synthesis and Physical Design for Two-Dimensional Logic Arrays,” Proc. DAC'94, pp. 321 –
326

29. N. Song and M. Perkowski, “Minimization of Exclusive Sum of Products Expressions for Multi-
Output Multiple-Valued Input, Incompletely Specified Functions,” IEEE Trans. CAD, Vol. 15, No.
4, April 1996, pp. 385-395.

30. T. Toffoli, “Reversible Computing,” In Automata, Languages and Programming, Springer Verlag,
1980, pp. 632- 644.

31. M. Perkowski, “Generalized reversible gate families and their use in cascade synthesis,” report PSU,
May 21, 2002.

	1. Introduction
	Families of Generalized Reversible Logic Gates for Cascades
	Genetic Algorithm for Reversible Cascade Synthesis
	7. Experimental results of Darwinian GA
	8. Lamarckian Genetic Algorithm for Design of a Cascade with Generalized Reversible Gates
	9. Conclusions

