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Abstract: Reversible circuits are currently on of top approaches to power minimization and the one whose importance will
be  only growing with time. In this paper, the well known Feynman gate is generalized to k*k gate and a new generalized
k*k family of reversible gates is proposed. A synthesis method for multi-output SOP function using cascades of the new
gate family is presented. For utilizing the benefit of product sharing among the output functions, two graph-based data
structures are used. Another synthesis method for AND-OR-EXOR function using cascades of the new gate family and
generalized Feynman gate is also presented. Synthesis method for single-output ESOP function using cascades of the new
gate family is also presented. All these synthesis methods are technology independent and generate very few garbage
outputs and need few input constants.

1. Introduction

Motivation to Study Reversible Logic

Landauer [1] showed that a computational system built using traditional irreversible logic gates such as AND or
multiplexer leads inevitably to energy dissipation, regardless of the technology used to realize the gates. The energy loss
due to irreversible gates is negligible for current silicon technologies using adiabatic design. However, it is well known that
Moore’s Law will stop to function around years 2010 – 2020 and some dramatic changes will therefore have to happen in
microelectronics not latter than the middle of this century [2]. It this time reversible design will become of primary
importance.

Bennett [3] showed that for power not to be dissipated in an arbitrary circuit, it is necessary that the circuit be built from
reversible gates. In principle, reversible logic gates dissipate arbitrary little heat and the use of reversible operations is
likely to become more attractive. It should be noted that Bennett’s theorem is only a necessary but not sufficient condition.
Its extreme importance lies in the technological necessity that every future technology will have to use reversible gates in
order to reduce power. Quantum logic is reversible and the problem of efficient designs of quantum circuits [4] includes as
its sub-problem the problem of synthesis using classical reversible gates. Therefore, many of the methods for reversible
logic synthesis can be adapted to quantum logic as well.

Reversible Logic

Reversible logic are circuits (gates) that have the same number of inputs and outputs and have one-to-one mappings
between input vectors and output vectors; thus the input vector states can be always uniquely reconstructed from the
output vector states. A reversible gate with k inputs and k outputs is called a k*k gate. All gates in a reversible circuit must
be reversible. A balanced function has half of minterms with value 1 and half with value 0. A reversible circuit without
constants on inputs realizes a balanced function on each of its outputs. Therefore, it can realize non-balanced functions
only with garbage (unused) outputs and constant values on its primary inputs.

As the truly low-power circuits (with power arbitrarily small) cannot be built without the concept of reversible logic,
various technologies for reversible logic are recently intensively studied. These technologies include: (i) standard CMOS
[5, 6], (ii) optical technologies [7, 8], (iii) quantum logic technologies [9, 10], (iv) DNA technology, and (v) mechanical
technology (nanotechnology) [11].

Many binary universal reversible logic gates have been proposed [5, 12-15]. There exists only one 1*1 gate, which is an
inverter (a wire is not considered as a gate). This gate is shown in Figure 1(a) and is very important since it does not
introduce garbage outputs. There are several 2*2 gates in reversible logic and they are all linear. A gate is linear when all
its outputs are linear functions of input variables. The 2*2 Feynman gate (also called controlled-not or quantum EXOR or
reversible EXOR) is shown in Figure 1(b). This gate is a one-through gate, which means that one of its input variables is
also an output. When 0=A  then BQ = , when 1=A  then BQ ′= . With 0=B  the 2*2 Feynman gate is used as a fan-
out (or copying) gate. Every linear reversible function can be built by using only 2*2 Feynman gates and inverters. There
exist 8! = 40,320 3*3 reversible logic gates, some of them with interesting properties. Two of the universal 3*3 reversible
gates have been much studied: Fredkin gate [12] and Toffoli gate (also called 3*3 Feynman gate or Controlled-
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controlled-not). The 3*3 Fredkin gate is shown in Figure 1(c). In terms of classical logic, this gate is just two multiplexers
controlled in a flipped (permuted) way from the same control input A. Fredkin gate is also a one-through gate. The 3*3
Toffoli gate is shown in Figure 1(d). Toffoli gate is a two-through gate, because two of its inputs are returned unmodified
as its outputs. When 0=C  then ABR = , so AND gate is realized on R output. When 1=A  then CBR ⊕= , so EXOR
gate is realized on R output. When 1=B  then CAR ⊕= , so again EXOR gate is realized on R output. The 3*3 Kerntopf
gate [13, 16] is shown in Figure 1(e). When 1=C  then BAP += , ABQ = , BR ′= , so OR and AND gates are realized
on outputs P and Q, respectively, with C as the controlling input value. When 0=C  then BAP ′′= , BAQ ′+= ,

BAR ⊕= . Therefore, for control input value 0, the gate realizes NOR, IMPLICATION, and EXOR on its outputs P, Q,
and R, respectively. The 3*3 Kerntopf gate is not a one-through nor a two-through gate. Generalized n*n Fredkin, Toffoli,
and Kerntopf gates are introduced in [17].

Reversible Logic Synthesis

Reversible logic synthesis is not as easy as classical logic synthesis. The major constraints of reversible logic synthesis are:
(i) the fan-out of every signal, including primary inputs, is one, (ii) the graph of the reversible circuit must be a dag
(directed acyclic graph), which means that there must be no loops of gates or internal loops in a gate, and (iii) many of the
practical functions are not themselves reversible and need to make reversible before implementing them with reversible
gates. Systematic logic synthesis algorithms for reversible logic are still very immature, but some methods have been
proposed [15-21]. Most of the papers discuss design using Feynman, Toffoli, and Fredkin gates. In [20] compositional
synthesis methods for reversible logic have been presented. The simplest structure for composition is cascades. Reversible
logic synthesis using cascades of gates is presented in [15, 17, 21]. The cascades have the same number of intermediate
signals at every level. When a gate is applied for composition it subtracts as many input variables as it has inputs and it
adds the same number of new variables to the next level. The reversible cascades are now very popular, as many well-
known standard logic methods can be adapted to reversible cascades.

The objectives of a good synthesis algorithm for reversible logic are: (i) not to create excessive garbage outputs, (ii) not to
create unnecessary input constants,  (iii) to avoid leading output signals of gates to more than one input, as such fan-out
requires additional copying gate, and (iv) to minimize the length of the circuit to reduce the delay of the circuit.

Contribution of This Paper

The goal of this paper is to develop efficient logic synthesis methods based on cascades of new reversible gate families and
new design algorithms. For this purpose, new family of reversible gate is proposed. For the first time, to our knowledge,
synthesis method for multi-output SOP and AND-OR-EXOR functions are presented in this paper. Moreover, synthesis
method for single-output ESOP function is also presented. For all these methods two graph-based data structures are used.
The developed methods are very efficient in the sense that they produce very few garbage outputs and need few input
constants.

2. New Families of k*k Reversible Gates

A k*k Feynman gate is proposed in Figure 2(a). From the truth table it can be shown that the gate is a reversible gate. It is a
(k − 1)- through gate and the output kP  produces the EXOR-sum of the input variables.

A new generalized k*k reversible gate family is proposed in Figure 2(b), where 2−kf  is an arbitrary function of

221 ,,, −kAAA m  and 2−′kf  is the complement of the earlier function. From the truth table it can be shown that the gate is a
reversible gate. The gate is a (k − 2)-through gate. Depending on 2−kf , many possible gates can be constructed. When

01 =−kA  then kk AP =−1  and kkk AfP += −2 , so kA  is copied on 1−kP  output and OR-sum of 2−kf  and kA  is given on kP
output. When 11 =−kA  then kkk AfP ⊕= −− 21  and )( 2 ′+= − kkk AfP , so EXOR and NOR operations are realized on 1−kP
and kP  outputs, respectively. When 0=kA  then 121 −−− = kkk AfP  and 12 −− ⊕= kkk AfP , so AND and EXOR operations are
realized on 1−kP  and kP  outputs, respectively. When 1=kA  then )( 121 ′= −−− kkk AfP  and 1−′= kk AP , so NAND and NOT
operations are realized on 1−kP  and kP  outputs, respectively.

3. Synthesis of Multi-Output SOP Function
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some of the input variables 221 ,,, −kAAA � . For realizing a SOP, we will always use 01 =−kA  such that kk AP =−1  and

kkk AfP += −2 .

In a multi-output SOP function, some sub-expressions may be common among more than one output function. Getting
advantage of such a common sub-expression can not be handled in a method similar to that used in circuits with classical
gates. The main constraint is that the fan-out of all signals in a reversible gate is one. Therefore, this problem has to be
handled in a different way to achieve maximum benefit.

The method for synthesis of multi-output SOP function using the new gate family is illustrated using the example function:
CBABACBF ′′+′+′=1 , BCABACBF ′+′+′=2 , and CABCABAF ′+′+′=3 .

Step 1. The product sharing information is summarized in Table 1. The table shows the occurrence of all product terms in
different output functions and the total number of occurrence of each product term.

Step 2. Depending on the information of the product sharing table, the connectivity tree (or forest of shared trees) for the
product terms is constructed as shown in Figure 3(a). In the connectivity tree each node represents a product term. The
product term(s) with the highest no of occurrence is placed at the top level. Then the product term(s) with decreasing order
of no of occurrence is placed below each level other. The nodes are connected by directed edges so that ORing the
products in a path forms a function. For example, CBACBBA ′′+′+′  forms the function 1F . A node must not have more
than one inward edge and if needed a separate node is created for the product term. For example, two nodes are created for
the product term BCA′ . Though the fan-out of a signal is limited to one, multiple outward edge from a node will be
allowed and this will be handled in a very efficient way.

Step 3. From the connectivity tree, the implementation tree is created as shown in Figure 3(b). In this tree a node
represents a new k*k gate. As the 1−kA  input of the gate is always 0, it is not explicitly shown. The inward edge of the node
represents the kA  input. The left child represents the kkk AfP += −2  output and the right child represents the kk AP =−1

output. The product inside the node represents the function 2−kf . In the connectivity tree, some nodes have multiple
outward edges requiring multiple fan-out. It is clear that the right child of an implementation node copies the input value
and thus provide the fan-out of the input value. This phenomenon is used to manage multiple fan-out requirement of the
connectivity tree.

Step 4. The implementation tree is realized by cascades of new k*k gates as shown in Figure 3(c). For shortening the
cascade length (and thus decreasing the circuit delay), all long branches of the implementation tree are realized by separate
parallel cascades. For this purpose, the primary inputs are copied using 2*2 Feynman gates with 0=B . Also note that the
0 at the 1−kP  output of the first gate is connected to the 1−kA  input of the next gate to reduce the input constants. In this
particular example, only three garbage outputs are generated and six input constants are needed.

4. Synthesis of AND-OR-EXOR Function

In many cases AND-OR-EXOR realization of a function requires fewer gates that ESOP realization [22]. For realizing
AND-OR-EXOR function, the SOP functions are realized using the method of Section 3. Then the SOP outputs are
EXOR-summed using a k*k Feynman gate. Realization of an arbitrary AND-OR-EXOR function

)()( BAABCACAF ′+⊕′+′=  is shown in Figure 4.

5. Synthesis of Single-Output ESOP Function

For single-output ESOP realization using the new k*k gate, we again assume that the function 2−kf  is a product of some of
the input variables 221 ,,, −kAAA � . For this realization we will always use 0=kA  such that 121 −−− = kkk AfP  and

12 −− ⊕= kkk AfP . The synthesis method for single-output ESOP function using the new k*k gate is illustrated using the
example function CBABACBF ′′⊕′⊕′= .

Step 1. The implementation tree is created as shown in Figure 5(a). A node of the tree represents a new k*k gate. As the
kA  input of the gate is always 0, it is not explicitly shown. The inward edge of the node represents the 1−kA  input. The left

child represents the 12 −− ⊕= kkk AfP  output and the right child represents the 121 −−− = kkk AfP  output. The product inside the



node represents the function 2−kf . Some of the 1−kP  outputs may generate 0s. These 0s are identified and indicated in the
tree. Moreover, the ordering of the products in the tree is rearranged to increase such 0 output. Each such 0 is connected to
the kA  input of the next gate of the cascade to reduce the garbage outputs as well as input constants.

Step 2. The implementation tree is realized by cascades of new k*k gates as shown in Figure 5(b). In this particular
example, only one garbage output is generated and two input constants are needed.

6. Experimentation

A preliminary version of the program is developed in C language. In this implementation, it is assumed that the functions
are already available as SOP/ESOP form. All the examples of this paper are generated using this program. The program is
now being enhanced using advanced data structures for function representation like decision diagrams.

7. Conclusion

We generalized the well-known Feynman gate to k*k gate and proposed a new generalized k*k reversible gate family. To
our knowledge, no method is yet reported for synthesizing multi-output SOP and AND-OR-EXOR functions using
reversible gates. In this paper, we presented a synthesis method for multi-output SOP function using cascades of the new
k*k gate family. For utilizing the benefit of product sharing among output functions, two graph-based data structures –
connectivity tree and implementation tree are introduced. We also presented a synthesis method for AND-OR-EXOR
function using cascades of the new k*k gates and a k*k Feynman gate. Another synthesis method for single-output ESOP
function using the new k*k gates is also presented, where judicious rearrangement of the products in the implementation
tree reduces the garbage output as well as the input constants. All these synthesis methods generate very few garbage
outputs and need few input constants. Moreover, the methods presented in this paper is technology independent and can be
used in association with any known or future reversible technology.

The future research include (i) improving the program using advanced data structure for function representation like
decision diagrams, (ii) developing synthesis method for multi-output ESOP function using generalized k*k reversible gate
family, and (iii) testing the developed method for large benchmark functions.

References

[1] R. Landauer, Irreversibility and heat generation in the computational process. IBM Journal of Research and
Development, 5, pp. 183-191, 1961.

[2] J. Birnbaum. Computing alternatives. Talk given at ACM97, March 3, 1997, San Jose, California.
[3] C. Bennett, Logical reversibility of computation. IBM Journal of Research and Development, 17, pp. 525-532, 1973.
[4] D. Deutsch, Quantum computational networks. Proc. Roy. Soc. Lond. A 425, 73, 1989.
[5] A. De Vos, Towards reversible digital computers. Proceedings of European Conference on Circuit Theory and

Design, Budapest, pp. 923-931, 1997.
[6] B. Desoete, A. De Vos, M. Sibinski, and T. Widerski, Feynman’s reversible logic gates implemented in silicon.

Proceedings of 6th International Conference MIXDES, pp. 496-502, 1999.
[7] P. Picton, Optoelectronic, multivalued, conservative logic. International Journal of Optical Computing, 2, pp. 19-29,

1991.
[8] P. Picton, A universal architecture for multiple-valued reversible logic. MVL Journal, 5, pp. 27-37, 2000.
[9] J. A. Smolin, and D. P. DiVincenzo, Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate.

Physical Review A, 53, pp. 2855-2856.
[10] A. Peres, Reversible logic and quantum computers, Physical Review A, 32, pp. 3266-3276, 1985.
[11] R. C. Merkle, Two types of mechanical reversible logic. Nanotechnology, 4, pp. 114-131, 1993.
[12] E. Fredkin and T. Toffoli, Conservative logic. International Journal of Theoretical Physics, 21, pp. 219-253, 1982.
[13] P. Kerntopf, A comparison of logical efficiency of reversible and conventional gates. Proceedings of 9th IEEE

Workshop on Logic Synthesis, pp. 261-269, 2000.
[14] P. Kerntopf, Maximally efficient binary and multi-valued reversible gates. Proceedings of ULSI Workshop, Warsaw,

Poland, May 2001.
[15] L. Storme, A. De Vos, and G. Jacobs, Group theoretical aspects of reversible logic gates. Journal of Universal

Computer Science, 5, pp. 307-321, 1999.
[16] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A.

Coppola, B. Massey, Regularity and symmetry as a base for efficient realization of reversible logic circuits.
Proceedings of IWLS 2001, pp. 90-95, 2001.

[17] A Khlnopotine, M. Perkowski, and P. Kerntopf, Reversible logic synthesis by gate composition. Proceedings of IWLS
2002. pp. 261 – 266.



[18] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Mishchenko, M. Chrzanowska-Jeske, Three-dimensional realization of
multi-valued functions using reversible logic. Proceedings of ULSI 2001 Workshop, Warsaw, Poland, May 2001.

[19] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A.
Coppola, B. Massey, Regular realization of symmetric functions using reversible logic. Proceedings of Euro-Micro
2001.

[20] M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A. Coppola, A. Buller, X. Song, M. M. H. A.
Khan, S. Yanushkevich, V. Shmerko, and M. Chrzanowska-Jeske, A general decomposition for reversible logic.
Proceedings of RM 2001.

[21] A. Mishchenko and M. Perkowski, Reversible Maitra cascades for single-output functions. Proceedings of IWLS 2002.
[22] D. Debnath and T. Sasao, A heuristic algorithm to design AND-OR-EXOR three-level networks. Proceedings of ASP-

DAC’98, Yokohama, Japan, 1998.

Figures and Tables

Figure 1. Some useful binary reversible gates.

Figure 2. New families of k*k reversible gates.

Table 1. Product sharing information.

Function
1F 2F 3F No of

Product Occurrence
CB ′ X X 2
BA ′ X X X 3

CBA ′′ X 1
BCA′ X X 2

CA ′ X 1

A

B

C

AP =
BelseCthenAifQ =

CelseBthenAifR =

(c) 3*3 Fredkin gate

A

B

C

AP =

(d) 3*3 Toffoli gate

BQ =

CABR ⊕=

A

B

C

ABCBAP ⊕⊕⊕⊕=1

(e) 3*3 Kerntopf gate

BCCBABQ ⊕⊕⊕⊕=1

ACBAR ⊕⊕⊕=1

A AP ′=

(a) 1*1 NOT

A

B
AP =

BAQ ⊕=

(b) 2*2 Feynman gate

1A
2A

kA
1−kA

11 AP =
22 AP =

11 −− = kk AP

kkk AAAAP ⊕⊕⊕⊕= −121 m

(a) k*k Feynman gate family.

1A
2A

2−kA

1−kA
kA

2−kf

11 AP =
22 AP =

22 −− = kk AP

kkkk AAfP ⊕= −−− 121

12 −− ′⊕′′= kkkk AAfP

(b) A new generalized k*k reversible gate family.



Figure 3. Different phases of synthesis of multi-output SOP function.

Figure 4. Synthesis of AND-OR-EXOR function.

Figure 5. Synthesis of Single-output ESOP function.
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