A Hierarchical Approach to Computer-Aided Design of Quantum
Circuits

Marek Perkowski,+* Martin Lukac,* Pawel Kerntopf, & Mikhail Pivtoraiko,* Michele
Folgheraiter *, Dongsoo Lee, + Hyungock Kim,+ Woong Hwangbo,+ Jung-wook Kim+ and
Yong Woo Choi.+

*Department of Electrical and Computer Engineering, Portland State University, Portland, OR, 97201.
USA, +Department of Electrical Engineering, Korea Advanced Institute of Science and Technology,
373-1, Kusong-dong, Yusong-gu, Taejeon, 305-701, Korea, & Institute of Computer Science, Warsaw
University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.

Abstract: A new approach to synthesis of permutation class of
quantum logic circuits has been proposed in this paper. This
approach produces better results than the previous approaches
based on classical reversible logic and can be easier tuned to any
particular quantum technology such as nuclear magnetic resonance
(NMR). First we synthesize a library of permutation (pseudo-
binary) gates using a Computer-Aided-Design approach that links
evolutionary and combinatorics approaches with human experience
and creativity. Next the circuit is designed using these gates and
standard 1*1 and 2*2 quantum gates and finally the optimizing
tautological transforms are applied to the circuit, producing a
sequence of quantum operations being close to operations
practically realizable. These hierarchical stages can be compared to
standard gate library design, generic logic synthesis and technology
mapping stages of classical CAD systems, respectively. We use an
informed genetic algorithm to evolve arbitrary quantum circuit
specified by a (target) unitary matrix, specific encoding that reduces
the time of calculating the resultant unitary matrices of
chromosomes, and an evolutionary algorithm specialized to
permutation circuits specified by truth tables. We outline interactive
CAD approach in which the designer is a part of feedback loop in
evolutionary program and the search is not for circuits of known
specifications, but for any gates with high processing power and
small cost for given constraints. In contrast to previous approaches,
our methodology allows synthesis of both: small quantum circuits of
arbitrary type (gates), and permutation class circuits that are well
realizable in particular technology.

1. Introduction

While quantum mechanics and quantum computing are established research areas,
automated quantum circuit synthesis is still only at the beginning of its exploration
[2,4,6,7,8]. In quantum computation we use quantum bits (qubits) instead of classical
binary bits to represent information. This gives the advantage of being able to perform
massively parallel computations in one time step. The design of quantum circuits of
practical size is still technologically impossible (the maximum number of qubits in
year 2002 is 7), but the progress is fast and there are no arguments based on physics
against the possibility of building powerful quantum computers in the future.
Therefore quantum computing area of research is recently flourishing.

Finding an effective and efficient method of designing quantum circuits can have

three application areas:

(1) Optimizing quantum circuits for NMR [26,27,28,29], ion trap, quantum dot,
cavity quantum electrodynamics or Si-based nuclear spin quantum computer
technologies that exist already in practice. Each of these technologies has
different minimization requirements and all of them require minimizing both the
width and the length of scratchpad register (number of qubits processed). Width
is absolutely critical and length is also important because of decoherence. Circuit
reduction is very important for present technology, so exact or sub-minimal
methods should be developed for small circuits, less than 7 variables. This is a
very small number from the standard CAD algorithms point of view, but the
synthesis problem for quantum logic is more difficult.

(2) Modeling quantum computers in FPGA-based reconfigurable hardware for
speeding-up computations that are very inefficient on standard computers [9].
Since for current FPGA technologies only small quantum circuits can be
emulated, the requirements are similar to point (1)

(3) Designing new optimized gates and circuits for theoretical investigations and for
use in future quantum computers. If we believe that such computers will exist,
efficient CAD methods for large number of variables, tens or hundreds, should be
developed, but these algorithms will be non-optimal. This is a theoretical
research for non-existing technology in year 2002.

2. Quantum Computing

The major difference between quantum logic and binary logic is the concept of the
information itself. While the classical (binary or multi-valued) representations of
information are precise and deterministic, in Quantum Computing (QC) the concept
of bit is replaced by the qubit. Unlike classical bits that are realized as electrical
voltages or currents present on a wire, quantum logic operations manipulate qubits
[7]. Qubits are microscopic entities such as a photon or atomic spin. Boolean
quantities of 0 and 1 are represented by a pair of distinguishable different states of a
qubit. These states can be a photon’s horizontal or vertical polarization denoted by
[=>or |1>, or an elementary particle’s spin denoted by |T> or |{> for spin up and spin
down, respectively. After encoding these distinguishable quantities into Boolean
constants, a common notation for qubit states is |0> and |1>.

Qubits exist in a linear superposition of states, and are characterized by a
wavefunction g. As an example, it is possible to have light polarizations other than

purely horizontal or vertical, such as slant 45° corresponding to the linear
superposition of Y=%2[vV2|0>+V2[1>]. In general, the notation for this superposition is
a|0>+p|1>. These intermediate states cannot be distinguished, rather a measurement
will yield that the qubit is in one of the basis states, |[0> or |[1>. The probability that a
measurement of a qubit yields state [0> is |af?, and the probability is |B* for state |1>.
The absolute values are required since, in general, a and 3 are complex quantities.

Pairs of qubits are capable of representing four distinct Boolean states, [00>, |01>,
|10> and |11>, as well as all possible superpositions of the states. This property is
known as “entanglement”, and may be mathematically described using the Kronecker
product (tensor product) operation [1 [7]. As an example, consider two qubits with
Y1=01|0>+B34|1> and Yr=0,|0>+B,|1>. When the two qubits are considered to
represent a state, that state (1, is the superposition of all possible combinations of the
original qubits, where
Y= Pl 2= (11(]2|00> + CX1B2|01> + G2B1|10> + B1[32|11>.

Superposition property allows qubit states to grow much faster in dimension than
classical bits. In a classical system, n bits represents 2" distinct states, whereas n
qubits corresponds to a superposition of 2" states. Observe also that in the above
formula some coefficient can cancel, so there exist a constraint bounding the possible
states in which the system can exist. These all contribute to difficulty in understanding
the concepts of quantum computing and creating efficient analysis, simulation,
verification and synthesis algorithms for QC. Generally, however, we believe that
much can be learned from the history of Electronic Computer Aided Design and the
lessons learned should be used to design efficient CAD tools for quantum computing.

In terms of logic operations, anything that changes a vector of qubit states can be
considered as an operator. These phenomena can be modeled using the analogy of a
“quantum circuit”. In a quantum circuit wires do not carry Boolean constants, but
correspond to pairs of complex values, a and 3. Quantum logic gates of this circuit
map the complex values on their inputs to complex values on their outputs. Operation
of quantum gates is described by matrix operations. Any quantum circuit is a
composition of parallel and serial connections of blocks, from small to large. Serial
connection of blocks corresponds to multiplication of their (unitary) matrices. Parallel
connection corresponds to Kronecker multiplication of their matrices. So,
theoretically, the analysis, simulation and verification are easy and can be based on
matrix methods. Practically they are tough because of the problem dimension
exponential growth of matrices. Synthesis problem can be formulated as decomposing
hierarchically a given unitary matrix to serial and parallel connections of smaller
matrices, until basic directly realizable quantum primitives are reached. This problem
is very difficult in such basic formulation and therefore several special methods have
been and are being developed, especially in the last 5 years.

Probabilistic calculations based on this representation are used in only very small
guantum computers so far (most with 3 bits), but it was verified that information can
be represented as a superposition of states of single qubits, and that in one time step
operations can be performed on several qubits. Beside this useful effect of quantum
computing, various other effects resulting from qubit encoding emerge, such as qubit
entanglement. Moreover it was shown [7] that any quantum computing has to be
reversible, which affects all synthesis methods. Concluding, building quantum

1)

computers becomes more and more technical rather than only scientific issue, and the
methods developed to design them, such as formal representation, modeling and
synthesis will have applications not only to quantum computing but also to DNA and
other nano-technologies because of their reversible nature.

In this paper we focus only on the synthesis of arbitrary quantum circuits (and
guantum gates in particular) of small size, less than five variables. We concentrate on
designing the circuits from a class of permutation gates which have unitary matrices
being permutation matrices. Such circuits correspond to classical Boolean functions.
However, our gate design methods are for general quantum circuits, with arbitrary
unitary matrices. The presented methods can be specialized to some classes such as f-
controlled-phase-shift gate circuits [25], and generalized to multiple-valued quantum
logic [30] and mixed multiple-valued logic.

The paper is organized as follows. First, we discuss some important issues related to
quantum logic circuits. By discussing them we want to prove that it is not true that
binary reversible logic synthesis methods can be directly applied to permutation
guantum circuits. (This is a common belief, partially true, but only a first step). By
presenting this discussion, we would like to encourage researchers with logic
synthesis background to create new improved methods that will be more practically
useful to optimizing sequences for current existing technologies such as NMR.

Our theses in the first part are the following:

1. Toffoli (CCNOT) and Fredkin are not always the best gates for quantum
computing. (Toffoli gate is described by equations P=a,Q=b, R= ab O c,
Fredkin gate by equations P=a, Q= a’b+ac, R=ab+a’c). Multi-input Toffoli
gate look simple in a diagram, but take a lot of gates when redrawn to 3*3
gates with auxiliary constants - they are not primitives. The synthesis should
be performed at one hand on a lower level of quantum primitives such as
CNOT (Feynman), controlled square-root-of-not and Hadamard, and on the
other hand on the level of more powerful reversible gates, such as those
introduced in [perk], to simplify the search by increasing gate granularity.

2. The transformation from optimal reversible circuit (on any level of gates) to
the minimal quantum sequence for NMR programming is far from being
trivial, and so far no combinatorial optimization algorithms have been created
for them. The problems of gate ordering, input variable ordering, local
transformations, removal of swap gates (planarization) and others, are quite
similar to technology mapping and physical design areas in classical CAD, but
so far they are solved only ad hoc by physicists.

3. All gate cost assumptions that can be found in general quantum papers (and
not in specialized papers about NMR technology) are far too approximate and
can lead to highly non-optimal sequences.

Second, after presenting these difficulties in more detail, we outline our CAD tools,
in which evolutionary and human-oriented interactive methods are combined. We
propose a generalized approach to the problem of quantum computing (QC) CAD by
using a simple encoding and a generic genetic algorithm (GA) without any problem-
specific operators. Our results show that, in contrast to published work [4,6], any kind
of genetic operators can be used. We were able to synthesize completely
automatically more complex circuits than those by previous programs, for instance the
Margolus gate.

3. New Gates and their Cost Functions for the Optimization Algorithms

Figure 1

a a a
b = b L L b
aboc i . ‘ aboc

An important problem, not discussed so far by other authors, is the selection of the
cost functions to evaluate the quantum circuit designs. Although the detailed costs
depend on any particular realization technology of quantum logic, so that the cost
relations between for instance Fredkin and Toffoli gates can differ in NMR and ion
trap realizations, the assumptions used in several previous papers; that each gate costs
the same, or that the cost of a gate is proportional to the number of inputs/outputs, are
both far too approximate.

In this paper we will illustrate more precise cost functions for gates that are used in
our optimization algorithms (even more accurate costs will be presented in the
forthcoming paper, here we just want to signalize the important problem). We will
follow in the footsteps of previous papers in quantum computing [12,smolin,lee] and
we will realize all gates from 1* 1 and 2*2 gates. Moreover, according to [15] we will
assume that the cost of every 2*2 gate is the same. We will assume also that a 1*1
gate costs nothing, since it can be always included to arbitrary 2*2 gate that precedes
or follows it. Thus, in first approximation, every permutation quantum gate will be
build from 1*1 and 2*2 quantum primitives and its cost calculated as a total sum of
2*2 gates used.

Using the well-known realization of Toffoli gate with truly quantum 2*2 primitives,
shown in Figure 1 [15], the cost of Toffoli gate is 5 2*2 gates, or simply, 5. In Figure
1, V is an square-root-of-NOT gate (unitary matrix V) and V" its hermitian. Thus V V
creates a unitary matrix of NOT gate and V V+ = | (an identity matrix, describing
just a quantum wire). The reader can analyze correctness of this construction by
analyzing all possible values of inputs signals. (the generalization of this gate to n-
inputs without constant wires is shown in [12]). Now we will realize the Fredkin gate
from the Toffoli gate. Using GA [16] or synthesis methods from this paper, we can
synthesize the Fredkin gate using two Feynman and one Toffoli gate as in Figure 2.

Figure 2

blc O ab0a’c = aclba’

a d

RERA D

cOa(bc) = cablac = ca’lac

N
7

Substituting the Toffoli design from Figure 1 to Figure 2 we obtain the circuit from
Figure 3a. After using the obvious EXOR-based transformation shown in the right
(change of order of Feynman gates), the final circuit from Figure 3b is obtained.
Observe that a cascade of two 2*2 gates is another 2*2 gate, so following [15] we
obtain a circuit from Figure 3c with the cost of 5. Thus, the cost of Toffoli gate is
exactly the same as the cost of Fredkin gate, and not half of it, as some authors
assumed and as may be suggested by classical binary schemata of such gates, where
Toffoli gate includes single a Davio gate and a Fredkin gate - two multiplexers.

Encouraged with this observation, let us calculate costs of other known gates. It was
shown in [31] that the cost of Miller’s Gate is 7 and not 9, as might be expected from
its binary schematics using Feynman and Toffoli gates. Interestingly, another
realization of Miller’s gate has an even smaller cost of 6. Observe that since swap gate
can be realized by a cascade of three Feynman gates, according to the cost evaluation
method from [15] its cost is also 1 and not 3 as assumed previously.

Similarly the costs of 3*3 gates by Kerntopf [xx], Margolus [21], De Vos [xx], Khan
[xx], and Maslow [xx], costs of all 4*4 Perkowski’s gates [BP 2002], and other gates
from [21] can be calculated, which is left to the reader. Next observe that a new
permutation quantum gate with equations:

P=a
Q=alb
R=ab0Oc

can be realized with cost 4. It is just like a Toffoli gate from Figure 1 but without the
last Feynman gate from right. This is the cheapest quantum realization known to us of
a complete (universal) permutation gate and it is thus worthy further investigations.

We found that this gate was invented by Peres [21], but it has been not used in
reversible or quantum computing. It is now a challenge to other researchers to find a
cheaper universal 3*3 gate, that would use only 2*2 and 1*1 gates (it is known that
several such universal sets of gates exist. [12]).

Figure 3 a

Figure 4

Cost = four 2*2
quantum gates

. agdb O aboc
= (a+b) Oc

C=0==> (a+h)

C=0 ==> (a*h)

Observe in Figure 4, that the Peres Gate with Feynman gates located in all possible
points at its periphery creates powerful and inexpensive new gates. For instance by
locating Feynman gate with EXOR up on output wires b and c, generates a gate with
equations: a=a, b = (a+b) [I ¢, c = ab [J c. Again, the Feynman gate can be combined
with the output V' gate so the cost of the combined new gate is again only four.
Another possibility of connecting Feynman gate to the outputs b, ¢ of the Peres gate is

shown in Figure 5. There exist also two possibilities of connecting Feynman gate to
inputs b, ¢, which similarly lead to two new gates, and four possibilities of connecting
Feynman gates to both inputs b, ¢ and outputs b, ¢, which leads to four new gates.

Figure 5

Cost = four 2*2
guantum gates

. aob o aboc = (a+b) oc

C=0==> (a+h)
C=1==> (at+b)’=a’b’

4. Frame-based search generation and genetic algorithms

Let us observe that there exist very many combinatorial possibilities of connecting
Feynman (and other) gates to inputs of outputs of basic gates, as shown in section 3.
We came thus to a conclusion that such procedure should be automated, for
exhaustive and partial search, and that it should be interactively called by the user,
who would declare structure, gates, constraints and search parameters like depth,
search type (depth first, breadth first, OR vs AND/OR, etc), number of node children,
etc. [ZOBRIST].

The user selects some seed gate and defines symbolically all possible structures that
can be build by connecting additional gates to it. The types of these gates, the places
of their addition and the simplifying (combining) transformations that can be applied,
as well as costs of gates, are the parameters of the program. These gates are like slots
in a frame structure used in Al programming. The sequence of slots is like a
chromosome. This method combines evolutionary programming and frames. The
details about evolutionary algorithms for both truly quantum circuits and permutation
circuits can be found in [xx] and [dd], respectively. All automatically created new
gates, or gates satisfying some criterion (like small cost or (partial) satisfaction of
unitary matrix) are displayed on screen to the user, together with their cost functions.
This way a library of powerful complex permutation gates is created that on one hand
are geared towards structured design methods (such as Kerntopf gate used in regular
structures called Nets [Warsaw, 21], and on other hand the gates that have good
realizations (short and completely realizable sequences) in any particular quantum
technology, such as especially NRM [25 - 29].

Applying the macrogenerations from abstract quantum gates to quantum gate
primitives and tautology and equivalence transformations not on the level of
permutation gates but on the level of truly quantum 1*1 and 2*2 primitives allows to
optimize the quantum circuits further. For instance, a n-input Toffoli gate can be build
without constant inputs using only 2*2 primitives as a result of macrogeneration
[Barenco]. These transformations are presented in detail in [Markov, Shigeru, 25-29]
and will be not discussed here. Many of them are based on obvious rules of EXOR
algebra, such as some illustrated above.

Encoding for the frame generator is the same as for the genetic algorithm. Also, the
same matrix-operation based verification scheme from the fitness evaluation
subroutine of GA is used. An example of our encoding is shown in Figure 6.

Figure 6: Transformation of a QC from the encoded chromosome (on the left) to
a final quantum circuit notation representation of this QC (on the right). Here S is
a Swap gate, H is a Hadamard gate, W is a wire. In the middle there is one
CCNOT (Toffoli) gate.

On the left side of Figure 1 it is shown how the circuit on the right of the same figure
is encoded. As can be seen, there is no free space in the proposed encoding. Each
place in the circuit is presented as a symbol of a unitary matrix of certain elementary
quantum gate. A wire has a unitary identity matrix representation. While evaluating
the fitness function, Kronecker products (tensor products) are executed on matrices of
parallel gates (blocks, circuits), and standard matrix multiplications are performed on
serial connections of gates. Each QC is parsed in parallel blocks, evaluated separately
and finally multiplied together to give the final unitary matrix representation of the
QC. This final matrix is next compared with the target matrix to evaluate their
distance as a part of fitness function calculation. The example shown in Figure 1
illustrates a common inconvenience of encoding quantum circuits for genetic
algorithms. A quantum gate CCNOT can be placed over three different arbitrary
wires in a quantum circuit. However with the encoding used, there is no information
indicating what gates are connected to what wires, beside the order of the gates. To
solve this problem we insert two Swap gates (one before and one after) the CCNOT.
This implies that outside of the Swap gates the CCNOT seems like being on wires 2,4
and 5, but the real CCNOT gate uses wires 3,4 and 5. In order of being able to encode
a QC without any additional parameters, the circuit is split into parallel blocks where

each block can be evolved separately.

—H

10 1 O 1 0 00 0O 0 1 O

101 0 1(,/0 0 1 0/_1|1 -1 0 -1
V21 0 -1 0| |0 -1 0 0] J2/0 0 -1 1

01 0 -1/]/0 0 01 -1 -1 0 O
Figure 7:
| — Examples
of
— — — — —Pp— Kronecke
r product
— . —_b— —_> E— O, and of
i Matrix
— \r —E}— product *
on a
— & \J) —h— sample of
a circuit.

The results are quite encouraging. In every case the GA found the requested gate,
however in no case the automatically created chromosome was better than the circuit
for which the corresponding target unitary matrix was created. Summary of results is
shown in Table 1.

Real time pM<0.2 Real time
Number of Number of pM | pC (average 20 = Number of = (average 20 = Population
inputs per g-gate generations runs) generations runs) size
1 - input <50 0.4 0.6 <30seconds <100 <1 minute 50
2 - inputs <50 0.6 0.4 <30seconds <100 < 1 minute 50
3 - inputs 50-200 0.6 0.6 <1 minutes <200 <3 minutes 60

Table 1: Results of experiments. Due to the similarity of results we
grouped the results by the number of inputs/outputs of the requested
g-gate. PM and PC are probability of mutation and crossover.

All circuit evolved were exact copies or at least had same number of wires, of the
searched circuit. For small gates the convergence is logically faster, because of the
restricted recombination between different gates. A gate with more inputs than the
number of wires in the circuit was not tested. The 3 input gates test shows the same
result, however with exponential time. The results are measures of average values
over 20 runs. Depending on the circuit we were looking for, the times are, as

predicted, increasing very fast with the increase of the number of QC inputs. Two
configurations were tested. First, high probabilities of mutation (0.4-0.7) and
crossover (0.4-0.6) were applied. The results are surprising because of so high
mutation probability. The size of the GA population was set in range [50,100]. The
local very high probability of mutation allows a fast dangerous search. However the
runs were stopped as soon as a good solution was found and the best individual
examined. A large random search with mutation used on a recombination problem
seems to have a positive effect in a restricted search. The solution was found also
when the mutation was of a small order, however the time of search raised as well.

Next step was to test composite circuits proposed by [4,6]. We selected three of them
shown in Figure 4. The first two are both circuits to produce EPR as in [4], the last is
the “send” circuit originally proposed by [10] and evolved in [6].

D
AN AN
NZAND

AR\
N
|

Figure 4: 3 types of circuits searched with the GA.

The results are shown below in Table 3. We were able to find all searched circuits,
however in this part of experimentation the starting set of gates was open. Our GA
found for all benchmarks at least similar, if not better, results compared to the
published results of the studied cases. Even if the number of generations grows
exponentially, the real time still remains reasonable.

Real time pM<0.2 Real time
Number of Number of | pM | pC (average 20 ' Number of | (average 20 Population
inputs per g- = generations runs) generations runs) size
gate

3 - input <150 04 0.6 <lminutes <300 <2 minute 50

4 - inputs <350 06 0.4 <2minutes <900 <3 minute 50

Table 2: Results of benchmark tests for assembled circuits.

The 3- and 4- input circuit search was made under similar conditions as the first part
of experiments. Results from both tables shows that GA can be very successfully used
to synthesize circuits. The time can be reduced by appropriate hardware and
consequently used for still larger designs. Using this algorithm, we were not able to
find less expensive quantum realizations of any 3*3 permutation gates than Smolin-
like realizations and well-known solutions and our hand designs, but we found new
gates of the same cost, and we found new realizations with the same costs as the well
known ones (Toffoli and Margolus gates). For instance, only 99 individuals were
created in the genetic algorithm pool to find the optimal solution to Margolus gate.
Many new gates, some interesting and of small costs, have been found as a by-product
of searching for known gates. These results will be analyzed elsewhere.

1. Conclusion

We have shown that the evolutionary computation can be used for automated QC
development in real time using standard PC computers. Designed as shown, this
algorithm can be also easily implemented on parallel computers or in classical binary
FPGA-based evolvable hardware. An interesting research will be to implement
evolutionary learning in future truly quantum hardware which will lead to a new area
of Evolutionary Quantum Hardware (EQH). Our program found one new circuit that
was earlier came across by Williams [7] and three circuits located by Rubinstein [4].
In all cases that we studied the program was faster than the results previously
published. In contrast to previous works that concentrated on some particular types of
circuits such as teleportation [7] and entanglement [4] our approach is fully general.
For instance the optimized version of the “send” circuit found by Williams was
created. We will further experiment with the algorithm trying to find various
realizations for gates and circuits from [8,9,10,12,13,14].

Our algorithm and its data structure can be applied without any modification to
reversible circuits from “pseudo-classical” circuits [14]. Such circuits are used for
instance in the famous Grover’s Quantum Search Algorithm [11]. Reversible gates
realizing Boolean operations can be realized not in quantum but in several other
reversible technologies such as DNA, single-electron transistor, mechanical nano-
switches, quantum dots or CMOS.

Although all benchmarks proved the convergence of our GA and results were better
than previous ones, the goal of our approach is not only to benchmark a GA, but
mainly to explore various evolutionary and other approaches [Alan,Andrey] to
reversible and quantum circuit synthesis. Next step is to apply different Evolutionary

algorithms such as Baldwinian or Lamarckian GA, genetic engineering or
Evolutionary strategies. The encoding used here fits well also the design of reversible
logic, where each parallel block in the chromosome is a small sub-circuit, with same
number of wires as its neighbors. Obtained results also show the problem of
scalability of any designing method. Here for 5 wires the time of search is small, and
as previously said hardware implementation of a GA will speed the process up.

References

1. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning
Addison Wesley, 1989.

2. Y. Z Ge, L. T. Watson, and E. G. Collins. Genetic algorithms for optimization on a
guantum computer. In Unconventional Models of Computation, pp. 218-227.

3. K-H Han, K-H Park, C-H Lee, and J-H Kim, “Parallel quantum-inspired genetic
algorithm for combinatorial optimization problems,” In Proceedings of the 2001
Congress on Evolutionary Computation, volume 2, pp. 1422-1429, 2001.

4. B.L.P. Rubinstein, “Evolving quantum circuits using genetic programming”, Proceedings
of the 2001 Congress on Evolutionary Computation (CEC2001), pp. 144-151 (2001)

5. L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a better-than-classical
quantum AND/OR algorithm using genetic programming,” In Proceedings of the 1999
Congress on Evolutionary Computation, volume 3, pp. 2239-2246, Washington D.C., 6.-
9. July 1999. IEEE, Piscataway, NJ.

6. C.W. Williams, Gray G. Alexander, "Automated Design of Quantum Circuits", QCQC
'98, Springer-Verlag, pp. 113-125 (1999)

7. Williams C. P., Clearwater S. H., "Explorations in Quantum Computing", Springer-
Verlag, New York Inc. (1998)

8. T. Yabuki and H. Iba. “Genetic algorithms and quantum circuit design, evolving a
simpler teleportation circuit,” In Late Breaking Papers at the 2000 Genetic and
Evolutionary Computation Conference, pp. 421-425, 2000.

9. G. Negovetic, M. Perkowski, M. Lukac, A. Buller, “Evolving quantum circuits and an
FPGA-based Quantum Computing Emulator,” Proc. Intern. Workshop on Boolean
Problems, 2002.

10. Brassard G., Braunstein S. L., Cleve R., “Teleportation as Quantum Computation”, in
Proceedings of the Fourth Workshop on Physics and Computation, New England
Complex System Institute.

11. L.K. Grover, “A Framework for Fast Quantum Mechanical Algorithms,” ACM
Symposium on Theory of Computing (STOC), 1998.

12. A. Barenco et al., “Elementary Gates For Quantum Computation”, Physical Review A 52,
1995, pp. 3457-3467

13. M. Nielsen & I. Chuang, Quantum Computation and Quantum Information, Cambridge
Univ. Press, September 2000.

14. T. Hogg et al., “Tools for Quantum Algorithms”, http://arxiv.org/abs/quant-ph/9811073,
1998.

15. J. Smolin, D. P. DiVincenzo, “Five two-qubit gates are sufficient to implement the
quantum Fredkin gate.” Physical Review A, Vol. 53, no. 4, April 1996, pp. 2855-2856.

16. M. Lukac and M. Perkowski, “Evolving Quantum Circuits Using Genetic Algorithm,” Proc.

of NASA/DOD Workshop on Evolvable Hardware, Washington, D.C. July 2002.

17. M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski, “Automated
Synthesis of Generalized Reversible Cascades using Genetic Algorithms,”
Proc.5™ Intern Workshop on Boolean Problems, Freiberg, Germany, September
19-20, 2002. pp 33-45

18. Miller, D. M., “Spectral and Two-Place Decomposition Techniques in Reversible
Logic,” Proc. Midwest Symposium on Circuits and Systems, on CD-ROM, August

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38

2002

D. M. Miller and G.W. Dueck, ** Spectral Techniques for Reversible Logic
Synthesis,” submitted to RM 2003.

M. H. A. Khan, and M. Perkowski , “Multi-Output ESOP Synthesis with
Cascades of New Reversible Gate Family,” submitted to RM 2003.

Maslov, D., and G. W. Dueck, “Garbage in Reversible Designs of Multiple-
Output Functions,” submitted to RM-2003.

Dueck, G. W., and D. Maslov, “Reversible Function Synthesis with Minimum
Garbage Outputs,” submitted to RM-2003

E. Fredkin and T. Toffoli, “Conservative logic,” International Journal of
Theoretical Physics, 21, pp. 219-253, 1982

P. Kerntopf, “Synthesis of multipurpose reversible logic gates,” Proceedings of
EUROMICRO Symposium on Digital Systems Design, 2002, pp. 259-266.

J-S. Lee, Y. Chung, J. Kim, and S. Lee, ,,A Practical Method of Constructing
Quantum Combinational Logic Circuits,” arXiv:quant-ph/9911053v1, 12 Nov.
1999.

J. Kim, J-S Lee, and S. Lee, “Implementation of the refined Deutsch-Jozsa
algorithm on a three-bit NMR quantum computer”, Physical Review A, Volume
62, 022312, 2000.

J. Kim, J-S. Lee, and S. Lee, “Implementing unitary operators in quantum
computation,” Physical Review A, Volume 62, 032312, 2000.

M. D. Price, S.S. Somaroo, A.E. Dunlop, T. F. Havel, and D. G. Cory,
“Generalized methods for the development of quantum logic gates for an NMR
quantum information processor,” Physical Review A, Vol. 60, Number 4, October
1999, pp. 2777-2780.

M.D. Price, S.S. Somaroo, C.H. Tseng, J.C. Core, A.H. Fahmy, T.F. Havel and
D.G. Cory, “Construction and Implementation of NMR Quantum Logic Gates for
Two Spin Systems,” Journal of Magnetic Resonance, 140, pp. 371- 378, 1999.

A. Al-Rabadi, L.W. Casperson, M. Perkowski and X. Song, “Multiple-Valued
Quantum Logic,” Booklet of 11" Post-Binary Ultra Large Scale Integration
(ULSI)’ 2002 Workshop, pp. 35-45, Boston, Massachusetts, 15" May 2002.

G. Yang, W.N.N. Hung, X. Song and M. Perkowski, “Majority-Based Reversible
Logic Gate, submitted to RM 2003.

D. Deutsch, “Quantum computational networks,” Proc. Roy. Soc. Lond. A. 425,
1989, pp. 73-90.

K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for
Designing CNOT-based Quantum Circuits,” Proc. DAC 2002, New Orleans,
Louisiana.

P. Kerntopf, “Maximally efficient binary and multi-valued reversible gates,”
Proceedings of ULSI Workshop, Warsaw, Poland, May 2001, pp. 55-58.

A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic synthesis by
gate composition,” Proceedings of IWLS 2002. pp. 261 — 266.

A. Mishchenko and M. Perkowski, “Logic Synthesis of Reversible Wave
Cascades”, Proc. IEEE/ACM International Workshop on Logic Synthesis, June
2002. pp. 197 - 202

M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.
Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey, “Regularity and
symmetry as a base for efficient realization of reversible logic circuits,”
Proceedings of IWLS 2001, pp. 90-95, 2001.

M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A.

39.

40.

41.

Coppola, A. Buller, X. Song, M. M. H. A. Khan, S. Yanushkevich, V. Shmerko,
and M. Chrzanowska-Jeske, “A general decomposition for reversible logic,”
Proceedings of RM 2001. pp. 119 — 138.

M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.
Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey, “Regular realization of
symmetric functions using reversible logic,” Proceedings of EUROMICRO
Symposium on Digital Systems Design, 2001, pp. 245-252.

V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, “Reversible Logic Circuit
Synthesis,” Proc. 11™ IEEE/ACM Intern. Workshop on Logic Synthesis, 2002, pp.
125 - 130.

A. Al-Rabadi, “Novel Methods for Reversible Logic Synthesis and Their
Application to Quantum Computing,” Ph. D. Thesis, Portland State University,
Portland, Oregon, USA, October 24, 2002.

