
Majority-Based Reversible Logic Gate

Guowu Yang, William N. N. Hung*, Xiaoyu Song and Marek Perkowski

Portland State University, Portland, Oregon, USA

ABSTRACT

Reversible logic plays an important role in application of adiabatic low
power CMOS computing and quantum computing. In this paper we
introduce families of reversible gates based on majority and we prove their
properties in reversible circuit synthesis. These gates can be used to
synthesize reversible circuits of minimum “scratchpad register width” for
arbitrary reversible functions. We show that, given a majority Boolean
function f with 2k+1 inputs, f can be implemented by a reversible logic
gate with 2k+1 inputs and 2k+1 outputs, i.e., without any constant inputs.
The problem is formulated in terms of group theory and solved by using
the algebraic software GAP for logic synthesis.

Index Terms: Reversible Logic, Majority Boolean Functions, Logic
Synthesis, Group Theory.

1 Introduction

Reversible logic circuits play an important role in application of adiabatic low power

CMOS computing and quantum computing [3, 4, 21]. Majority (voting) gates are used in

many fault-tolerant computing applications [13]. Various reversible gates that realize

polarized majority function have relatively inexpensive quantum realizations [13]. There

have been extensive work in constructing reversible gates which have certain properties

* William N. N. Hung is now working at Intel Architecture Group, Intel Corporation, Hillsboro, Oregon

97124, USA.

 Page 1

such as universality, symmetry, etc. [1-7, 9, 12, 17, 19, 20, 22]. In particular, there are the

synthesis algorithms by composition [15, 12], decomposition [15], factorization [23].,

EXOR logic [4, 8, 15, 18, 24], group-theoretic methods [19, 20], synthesis to regular

structures [14, 16, 17, 22], synthesis of various forms of reversible cascades [2, 7, 8, 9, 10,

11, 12, 15] and spectral methods [10, 11].

The Miller’s gate [10] was proposed for quantum logic realizations or in emerging

reversible technologies. We present a novel family of gates, of which the Miller gate is a

special case. We show that the new gates can be used in synthesis without constant inputs.

More specifically, we show that, given a majority Boolean function f with 2k+1 inputs, f

can be implemented by a reversible logic gate with 2k+1 inputs and 2k+1 outputs, i.e.,

without any constant inputs. The new gates can be used to synthesize reversible circuits

of minimum “scratchpad register width” for arbitrary reversible functions. The problem is

formulated in terms of group theory and solved by using the algebraic software GAP for

logic synthesis [19, 20]. Our result is not only interesting theoretically in comparison

with other families of gates [18], but also of practical importance in realization of current

quantum computers due to the small possible width of the scratchpad register (this width

is limited by 7 in 2002). The new family of gates can realize quantum logic circuits with

the smallest possible width.

This paper deals with synthesis of arbitrary reversible functions of n inputs and n outputs

that as described by permutation cycles. Our goal is to realize circuits of the smallest

width (scratchpad register width, quantum register width). We realize n-input functions

with the width of n. Our method is based on group theory [19, 20].

2 Quantum Realizations of Reversible Majority Gates

Binary reversible logic gates and circuits have been proposed in quantum, optical, CMOS,

nano-mechanical and DNA realizations. Universal systems of reversible gates include

Feynman gate and some other 3*3 gate, such as Toffoli or Fredkin [2]. The 1*1 gate, an

inverter, can be always added since it practically costs nothing and its addition decreases

 Page 2

the number of gates and the number of constant inputs (when necessary) in the reversible

realizations of arbitrary functions. The main practical question is this: what 3*3 gate(s)

should be added to make the reversible synthesis practical and the corresponding circuits

realizable. Toffoli and Fredkin gates are most often realized and used in synthesis, but

this is perhaps mostly for historical reasons. For instance, in quantum computing the

Peres gate has similar processing power to Toffoli and has a simpler realization with 2-

qubit quantum primitives (3-qubit or 3*3 gates are not realizable directly in quantum,

they must be build from 1-qubit and 2-qubit gates). Nobody proved, however, so far,

what is the best realization of any 3-qubit universal quantum gate with a given set of

quantum 1-qubit and 2-qubit primitives.

Not much is known about realizations of 3*3 reversible functions in optical, CMOS,

nano-mechanical and DNA realizations, except for Toffoli and Fredkin, so the logic

synthesis researchers can only speculate about the costs of future realizations. In this case

it is important to analyze from the mathematical and logical points of view what would

be good gate families and their properties in general-purpose logic synthesis and design

of self-repairable fault-tolerant systems. When such gates are well understood, the

experimentalists can realize them in practical circuits.

Observe that so far, most researchers evaluated the complexity of reversible gates by the

complexity of their binary counterparts in technologies like CMOS. The situation is

different for quantum logic, in which the so-called pseudo-binary (binary permutation)

circuits can be realized. Although the detailed costs depend on any particular realization

technology for quantum logic, where the cost relations between gates (e.g. Fredkin and

Toffoli) can differ in NMR and ion trap realizations, the assumptions used in the previous

work are far too approximate and should be replaced with more precise gate costs for

synthesis algorithms. Two assumptions were taken in the past: (1) every k*k gate has the

same cost, (2) the cost of a gate is proportional to the number of inputs/outputs. We

propose here another cost approximation that is better suited to quantum realizations: the

cost is the number of 2-qubit gates – realizable quantum primitives, disregarding their

 Page 3

internal structures. We will explain below with an example why this choice of cost is

reasonable for future algorithms.

Using the well-known realization of Toffoli gate (in dotted rectangle from Figure 1a) [21],

the cost of Toffoli gate in terms of 2-qubit quantum primitive gates is 5. This design uses

two controlled-V, one controlled-V+ and two Feynman gates. Unitary matrix V is the

“Square root of not”. The reader can check that since V*V = NOT and V*V+ = I

(identity), the circuit in dotted rectangle realizes the binary functions of a Toffoli gate:

A=a, B=b, C=a*b ⊕ c.

Let us consider a function of three majorities investigated by Miller (example 2 in [11]).

We realized this function with one Toffoli and four Feynman gates, found it useful in

other designs and thus worthy to be a stand-alone quantum gate. We call it the Miller

gate. As seen in Figure 1a, the Miller gate requires 4 Feynman gates and a Toffoli gate,

which would suggest a cost of 5+2×2 = 9 in terms of 2-qubit quantum primitives.

However, using transformations and cost evaluations introduced by Smolin [21], as in

Figure 1b, we obtain a solution with cost 7 because each dotted 2×2 subgate in Figure 1b

has a cost of 1. Another solution with cost 7 is shown in Figure 1c. It is also based on

simple EXOR transformation. Both solutions from figures 1b and 1c are practically

realizable and their exact costs would depend on a particular realization technology. So in

first approximation we can assume that they have the same cost of 7. Again, the Miller

gate looks initially much more complicated than the Toffoli gate (cost 5), as interpreted

in a binary logic. But a closer inspection in quantum logic proves that it is just slightly

more expensive with a cost of 7. This example shows that it is worthy to realize pseudo-

binary gates from truly quantum 2×2 primitives to evaluate more accurate costs of such

gates for synthesizing circuits. This applies to all gates considered below. Thus, from

now on we can assume that the cost of Toffoli gate is 5 and the cost of Miller is 7. Such

costs can be used, for instance, to approximately compare quantum realization costs of

two variants of a reversible circuit – one using Toffoli and another one using Miller gates.

 Page 4

a)
V V

a

b

c
V+

V V

a

b

c
V+

b)

V V

a

b

c
V+

c)

Figure 1. Quantum realizations of Miller gate: (a) with integrated Toffoli gate – cost 9, (b) with

integrated 2-qubit gates – cost 7, (c) with one integrated 2-qubit gate – cost 7.

Let us observe (Figure 2a) that, by removing the three rightmost Feynman gates from the

gate shown in Figure 1b, we obtain a new reversible gate M2 that realizes the following

functions: A = a ⊕ c, B = b ⊕ c, C = ab ⊕ ac ⊕ bc. This gate has the same cost of 5 as

the Toffoli gate, and has more processing power. Such gates should be thus used together

with Feynman, NOT and Toffoli gates to obtain exact minimum quantum circuit. Observe

for instance, that if the synthesis task would be to minimize the cost of a circuit that

realizes a function from Figure 2a, using M2 gates the solution would use just one M2

gate and the total gate cost would be 5, but using the standard approach of Toffoli,

Feynman, NOT gate base, the cost would be 5+3=8, since two Feynman should be added

before and one after the Toffoli gate. Similarly, gate M3 from Figure 2b can be created,

also with cost 5.

 Page 5

C = ab ⊕ ac ⊕ bc

a)

V V

a

b

c
V +

b)

V V

a

b

c
V +

A = a ⊕ c

A = a ⊕ c

B = a ⊕ b

C = ab ⊕ ac ⊕ bc

B = a b ⊕ a c ⊕ bc

Figure 2. Quantum realizations of Majority gates of cost 5: (a) new gate M2, (b) new gate M3.

3 Majority Based Reversible Logic Gates

Given any n-input, n-output, (i.e., n×n) reversible logic gate, we denote its inputs by B1,

B2, …, Bn. Similarly, we denote its outputs by P1, P2, …, Pn. We start with some basic

notions on majority.

Definition 1. (Majority Boolean Function) Given a Boolean function fMB with an odd

number of inputs, (i.e., 2k+1 inputs, where k is a natural number), fMB is called a Majority

Boolean Function (MBF) when fMB returns TRUE if and only if more than half (i.e., k+1

or more) of its inputs are TRUE:

, where () ∑
+≤<<<<≤

+
+

+
=

12...1
...1212

121

121
,,,

kjjjj
jjjjkMB

kk

kk
QBBBf L

121121
...... ++

=
kkkk jjjjjjjj BBBBQ .

Because we want to use majority gates repeatedly in quantum circuit design, and at the

same time we do not want to increase the width, an interesting question to ask is whether

a majority Boolean function can be implemented in reversible logic using the same

number of inputs used by the function, i.e., without introducing any constant inputs and

garbage outputs (the technique of adding constant inputs and garbage (useless) outputs is

popularly used in reversible logic design as a “last resort” method). To answer this

 Page 6

question, we first establish a necessary and sufficient condition for any Boolean function

to be implementable using reversible logic without any garbage inputs.

Lemma 1. Given the truth table of any n×n reversible logic gate, the output entries

must be a permutation of the input entries in the truth table.

Proof: There are 2n entries (patterns) for inputs, and they are all unique. There are also 2n

entries (patterns) for outputs. Since the logic gate is reversible, all output entries must be

distinct. Hence we have 2n unique entries for all n outputs as well. Thus the 2n output

entries of the truth table must be a permutation of the 2n input entries. ■

Lemma 2. Given any single-output Boolean function f with n inputs, f can be

implemented by a n×n reversible logic gate (where one of the gate outputs equals f) if-

and-only-if the number of 1’s and 0’s are the same in the output column of the truth table

for f.

Proof:

(IF) The input entries of a truth table must have the same number of 1’s and 0’s. If f has

the same number of 1’s and 0’s in the output column of its truth table, we can construct a

logic gate with a truth table such that the output entries are a permutation of the input

entries and one of the output column is the same as the output of function f. Since the

output entries are a permutation of the input entries, the logic gate is reversible. This truth

table is the n×n reversible logic gate that implements f in one of its outputs.

(ONLY-IF) Let’s construct a truth table with all n inputs and all n outputs of the logic

gate. Using Lemma 1, the 2n output entries of the truth table must be a permutation of the

2n input entries. The input entries of a truth table have the same number of 1’s and 0’s in

each column. Hence, the output entries must have the same number of 1’s and 0’s in each

column. ■

Theorem 1. Given a Majority Boolean Function f with 2k+1 inputs, f can be

implemented by a reversible logic gate with 2k+1 inputs and 2k+1 outputs, i.e., without

any constant inputs.

 Page 7

Proof: Since f is a MBF, its output is 1 if-and-only-if there are k or less inputs that are

assigned to 0. The number of entries in the truth table with output 1 is:

1212
2

12
1

12
0

++++ ++++= k
k

kkk CCCCN L

Since , we have: n
rn

n
r CC −=

12
1

12
12

12
2

12
12

+
+

+
−

++
+ ++++= k

k
k
k

k
k

k
k CCCCN L

By adding the above two equations, we have:

12
12

12
1

1212
2

12
1

12
02 +

+
+

+
++++ +++++++= k

k
k

k
k

k
kkk CCCCCCN LL

This is simply the sum of powers of binomial coefficients. Using the binomial theorem,

we have:

∑
+

=

+++ =+==
12

0

121212 2)11()1(2
k

j

kkjk
jCN

Since there are 2k+1 inputs, there are 2 entries in the truth table. From the above

equation, half of these entries have output equal to 1. Thus, the other half have output

equal to 0. Hence there are equal number of 1’s and 0’s in the output column for f. Using

 Lemma 2, we know that f can be implemented by a (2k+1)×(2k+1) reversible logic gate.

■

12 +k

Now that we know that a Majority Boolean Function can be implemented in

reversible logic without constant input, we introduce a special reversible logic gate for

this function.

Definition 2. (Majority-Based Reversible Logic Gate) A reversible logic gate is

called a Majority-Based Reversible Logic Gate (MBRLG) if it has an odd number of

 Page 8

inputs and outputs, (i.e., 2k+1 inputs and 2k+1 outputs), such that at least one output is a

Majority Boolean Function of all its inputs.

We use n-MBRLG to denote an n-input, n-output, (i.e., n×n) MBRLG, where n is

an odd number. For example, a 3×3 MBRLG is called a 3-MBRLG.

Theorem 2. There are 576 3-MBRLG’s where the last output P3 is the majority

Boolean function of all 3 inputs.

Proof: The last output is 3231213 BBBBBBP ++= . Its truth table is shown in . Table 1

Table 1: Truth table of 3-input majority Boolean function.

B3 B2 B1 P3
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

There are (23)!=8! ways to permute the input entries to form the output entries in the truth

table of any 3x3 reversible logic gate. The output of the MBF has four 0’s and four 1’s.

So, there are C combinations to arrange these four 0’s and 1’s. Only one of these

combinations would correctly implement the MBF. Hence, the number of 3-MBRLG’s

where the last output is the majority Boolean function is

8
4

() () 576!41!8 2
8
4

==⋅
C

 ■

Theorem 3. There are distinct (2k+1)-MBRLG’s for every natural number k. ()[22 !2 k]

 Page 9

Proof: We construct a reversible logic gate such that the last output is the majority

Boolean function of all inputs: ∑
+≤<<<<≤

+
+

+
12...1

...12
121

121
kjjjj

jjjjk
kk

kk
Q

k2 12 +k

=

...= BBBBQ

12 +k

P , where

. From Lemma 2 and Theorem 1, we know the numbers of 1’s

and 0’s for the output of this majority Boolean function are the same. There are 2

entries in the truth table of this MBF. So we need to place 2 0’s in 2 output entries.

The total number of different placements is:

121121 ... ++ kkkk jjjjjjjj

() ()
()

() ()
()[]22

2122

12

12

2
2

12

!2

!22!2
!2
!2!2

12

2

k

kkk

k

kk

k

kC
=









−

=

+

+

++

+ ■

As a sanity check, we can use Theorem 3 when k = 1. With this instantiation, there are

 distinct 3-MBRLG’s, which agrees with Theorem 2. () 2()[] 576!2 22 =

We now construct a (2k+1)-MBRLG, M2k+1, with the following outputs:

() ∑
+≤<<<<≤

++
+

+
==

12...1
...11212

121

121
,,

kjjjj
jjjjkMBk

kk

kk
QBBfP L , where

121121
...... ++

=
kkkk jjjjjjjj BBBBQ .

12 +⊕= kii BBP , for . ki 2,,2,1 L=

Theorem 4. M2k+1 is a (2k+1)-MBRLG.

Proof: The last output P2k+1 matches Definition 1, which means it is a majority Boolean

function. There are 2 entries in the truth table. For each entry i, let U be the Boolean

number encoding of the input pattern, B

12 +k

,,, VV

i

2k+1, B2k, …, B2, B1, in that entry, and let V be the

Boolean number encoding of the input pattern, P

i

2k+1, P2k, …, P2, P1, in that entry. To

show reversibility, we only need to prove that V are different numbers. We

place these numbers into two sets:

12221 +kL

{ }kV 22
,V ,S 11 L= , { }12 12 + 22 +2 ,,= kVk LVS . For S1, the

last 2k bits of each number (P2k, …, P2, P1) is a counting from (0,0,…,0) to (1,1,…,1). All

 Page 10

these numbers are different. For S2, the last 2k bits of each number (P2k, …, P2, P1) is a

counting from (1,1,…,1) to (0,0,…,0). These numbers are also different. Thus the

numbers within each set are distinct. Now we only need to prove that S1 and S2 are

disjoint, i.e., jiji∀ . If the last 2k bits of V and V are different,

then they are different of course. Otherwise, the last 2k bits of V and V are the same.

We have V and

21

()1212212 ,,,,, PPPPQ kkk L−+=

i

i

j

j

i 1212 kkj L+ 2 ,P1,k−2= . We will

show that Q for this case. The corresponding inputs for V and are:

 and

1212 ++ ≠ kk R

()1212 ,,, PPP k L−

i jV

2,0 PUi = ,k ()1212 ,,, PPP k L−2 ,P k,1U j =

()12122 ,,,,,0 PPPPf kkMB L−

. Thus, for the majority

function outputs, we have:

12Q k+ = ()12 , P1,−221 ,,,1 PPPf kkMB L+ =2R k

11 (),,, 12212 =+kQ +≥ kPPPC kONE L

() () ()kkPPk +−+< 112,,, 122 L k=PCONE⇒

() kPPP k +< 1,,, 122 L

0

() ()10 1212 =⇒= ++ kk RQ i j

VVSVSV ≠⋅∈∀⋅∈

(),,, PPPRV

 and

Let CONE be a function that counts the number of ones in its arguments.

If , then

CONE+⇒ 1

12 =⇒ +kR

Similarly, . Hence, V and V are different. ■

4 Reversible Logic Synthesis Using MBRLG

We consider logic synthesis of reversible circuits using a collection of reversible logic

gates. Let us consider the following two 3-MBRLG’s:

 Page 11

M1: , 3231213 BBBBBBP ++= 3231212 BBBBBBP ++= , 3231211 BBBBBBP ++=

M2: , 3231213 BBBBBBP ++= 212 BBP ⊕= , 311 BBP ⊕=

We are interested in the synthesis of reversible logic circuits using these gates.

Theorem 5. Any 3-input reversible logic gate can be synthesized without input

constants using Feynman gates, NOT gates (inverters) and gates of the type M1.

Theorem 6. Any 3-input reversible logic gate can be synthesized without input

constants using Feynman gates, NOT gates (inverters) and gates of the type M2.

Proof (for both Theorem 5 and Theorem 6): Using Lemma 1, the output entries of any

reversible logic gate must be a permutation of all input entries. Thus, we can establish a

bijective (one-to-one) mapping of all 3-input reversible logic gates (using their truth table)

onto the permutation group S 823 . We can also establish bijective mappings of each

gate onto their corresponding subgroups:

S=

Inputs Outputs
B3 B2 B1 Encoding P3 P2 P1 Encoding
0 0 0 1 0 0 0 1
0 0 1 2 0 0 1 2
0 1 0 3 0 1 1 4
0 1 1 4 0 1 0 3
1 0 0 5 1 0 0 5
1 0 1 6 1 0 1 6
1 1 0 7 1 1 1 8
1 1 1 8 1 1 0 7

Table 2. Feynman (Fe12) where P1 = B1 XOR B2 and Fe12 = (3,4)(7,8).

 Page 12

Inputs Outputs
B3 B2 B1 Encoding P3 P2 P1 Encoding
0 0 0 1 0 0 0 1
0 0 1 2 1 0 1 6
0 1 0 3 0 1 0 3
0 1 1 4 1 1 1 8
1 0 0 5 1 0 0 5
1 0 1 6 0 0 1 2
1 1 0 7 1 1 0 7
1 1 1 8 0 1 1 4

Table 3. Feynman (Fe31) where P3 = B1 XOR B3 and Fe31 = (2,6)(4,8).

Inputs Outputs
B3 B2 B1 Encoding P3 P2 P1 Encoding
0 0 0 1 0 0 1 2
0 0 1 2 0 0 0 1
0 1 0 3 0 1 1 4
0 1 1 4 0 1 0 3
1 0 0 5 1 0 1 6
1 0 1 6 1 0 0 5
1 1 0 7 1 1 1 8
1 1 1 8 1 1 0 7

Table 4. NOT gate for input 1: n1 = (1,2)(3,4)(5,6)(7,8).

Inputs Outputs
B3 B2 B1 Encoding P3 P2 P1 Encoding
0 0 0 1 0 0 0 1
0 0 1 2 0 0 1 2
0 1 0 3 0 1 0 3
0 1 1 4 1 0 0 5
1 0 0 5 0 1 1 4
1 0 1 6 1 0 1 6
1 1 0 7 1 1 0 7
1 1 1 8 1 1 1 8

Table 5. 3-MBRLG: M1 = (4,5).

 Page 13

Inputs Outputs
B3 B2 B1 Encoding P3 P2 P1 Encoding
0 0 0 1 0 0 0 1
0 0 1 2 0 0 1 2
0 1 0 3 0 1 0 3
0 1 1 4 1 1 1 8
1 0 0 5 0 1 1 4
1 0 1 6 1 1 0 7
1 1 0 7 1 0 1 6
1 1 1 8 1 0 0 5

Table 6. 3-MBRLG: M2 = (4,8,5)(6,7)

We can generate new groups using the above defined subgroups as generators:

g1 = Group generated by Fe12, Fe31, n1, M1.

g2 = Group generated by Fe12, Fe31, n1, M2.

Using GAP software [19], we can compute the size (number of permutations) for each

group:

|S8| = 40320, |g1| = 40320, |g2| = 40320.

Since |S8| = |g1| = |g2|, and |S8| contains all possible permutations for 3-input reversible

gates, we know that our propositions holds. ■

Notice that without M1 or M2, the size of the group generated by Fe12, Fe31, n1, is

only 32, which is smaller than |S8|. Even if we factor in other variants of Feynman gates

and inverters (by exchanging wire configurations), the generated group size is only 1344,

which is still less than |S8|. So using Feynman gate along with inverters (NOT gates) is

not sufficient to synthesize all 3-input reversible logic functions. It is necessary to have

some other additional gate, and we concentrate on majority gates such as M1 or M2.

We can also use 5-MBRLG’s for logic synthesis. Consider the following gate

where the last output is the majority Boolean function:

 Page 14

M5: , (543215 ,,,, BBBBBfP MB=) 5BBP ii ⊕= , for 4,,1 L=i .

The subgroup corresponding to the truth table of this gate is:

M5 = (7,23,24)(11,27,20)(13,29,18)(14,30,17)(15,31,16)(19,28)(21,26)(22,25)

Similarly, we can also find the subgroup for the exchangers (SWAP gates) and inverter

(NOT gate):

e12 = (2,3)(6,7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)

e23 = (3,5)(4,6)(11,13)(12,14)(19,21)(20,22)(27,29)(28,30)

e34 = (5,9)(6,10)(7,11)(8,12)(21,25)(22,26)(23,27)(24,28)

e45 = (9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)

n1 = (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)

 (19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)

Theorem 7. Any 5-input reversible logic gate can be synthesized using SWAP gates

(2×2 gate that exchanges the two wires), NOT gates and gates of the type M5.

Proof: The size of the group generated by e12, e23, e34, e45, n1, and M5 is equal to 32!,

which is the same as the size of the symmetry group S32. ■

Theorem 8. Any 5-input reversible logic gate can be synthesized using Feynman gates,

NOT gates and gates of the type M5.

Proof: SWAP gates can be synthesized by Feynman gates. Thus we can deduce this

theorem from Theorem 7. ■

 Page 15

5 Generalized Majority-Based Reversible Logic Gates

We can invert any inputs of a majority Boolean function, resulting in Generalized

Majority Boolean Function (GMBF). The GMBF is formed by composing a MBF with

zero or more inverters at its inputs.

For example, given a 3-input MBF, () 323121321 ,, BBBBBBBBBfMB ++= . We can

invert its input B2 to form a 3-input GMBF,

() () 323121321321 ,,,, BBBBBBBBBfBBBg MBMB ++== .

Since we can invert 0, 1, 2 or 3 inputs of the MBF, the total number of distinct 3-input

GMBF’s is: C . 83210 =+++ CCC 3333

4608576

Definition 3. (Generalized Majority-Based Reversible Logic Gate) A reversible

logic gate is called a Generalized Majority-Based Reversible Logic Gate (GMBRLG) if

it has an odd number of inputs and outputs, (i.e., 2k+1 inputs and 2k+1 outputs), such that

at least one output is a Generalized Majority Boolean Function of all its inputs.

We use n-GMBRLG to denote an n-input, n-output, (i.e., n×n) GMBRLG, where

n is an odd number. For example, a 3×3 GMBRLG is called a 3-GMBRLG.

Theorem 9. (i) There are 4608 3-GMBRLG’s where the last output P3 is a GMBF. (ii)

There are 192 3-GMBRLG’s where every output is a GMBF. (iii) There are 72 3-

MBRLG’s where one output is a MBF and the other two outputs are GMBF’s.

Proof:

(i) In Theorem 2, we showed there are 576 3-MBRLG’s where the last output P3 is the

MBF of all inputs. In the example above, we also showed that the 3-input MBF is one of

the 8 GMBF’s. Thus the total number of 3-GMBRLG’s is 8 .

(ii) There are 8 choices (3-input GMBF’s) for the first output. When the first output

=×

 Page 16

function is determined, we can look at the truth table and realize that 6 out of the

remaining 7 GMBF’s can be used for the second output and the gate would still be

reversible. For the last output, we use the truth table again and realize that 4 out of the

remaining 6 choices (GMBF’s) can be used and the gate is still reversible. Hence

.

(iii) We have 3 choices (3 outputs) to assign the MBF. After that, we have 6 GMBF’s for

the second output and 4 GMBF’s for the third output. Thus . ■

192468 =××

72463 =××

6 Conclusion

We generalized the Miller gate concept to new families of gates and we proved that such

gates can be useful in synthesis without constant inputs. This result is not only interesting

theoretically when compared to other families of gates [18], but also of practical

importance in realization of current quantum computers since the small possible width of

the scratchpad register continues and will continue to be one of the most difficult barriers

to overcome. The families of gates introduced here enable us to realize quantum logic

circuits with the smallest possible width.

7 References

1. D. Deutsch, “Quantum computational networks,” Proc. Roy. Soc. Lond. A. 425, 1989,

pp. 73-90.

2. Dueck, G. W., and D. Maslov, “Reversible Function Synthesis with Minimum

Garbage Outputs,” Proc. International Workshop on Applications of the Reed-Müller

Expansion in Circuit Design (2003).

3. E. Fredkin and T. Toffoli, “Conservative logic,” International Journal of Theoretical

Physics, 21, pp. 219-253, 1982

 Page 17

4. K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for Designing

CNOT-based Quantum Circuits,” Proc. DAC 2002, New Orleans, Louisiana.

5. P. Kerntopf, “Maximally efficient binary and multi-valued reversible gates,”

Proceedings of ULSI Workshop, Warsaw, Poland, May 2001, pp. 55-58.

6. P. Kerntopf, “Synthesis of multipurpose reversible logic gates,” Proceedings of

EUROMICRO Symposium on Digital Systems Design, 2002, pp. 259-266.

7. A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic synthesis by gate

composition,” Proceedings of IWLS 2002. pp. 261 – 266.

8. M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski, “Automated Synthesis

of Generalized Reversible Cascades using Genetic Algorithms,” Proc.5th

International Workshop on Boolean Problems, Freiberg, Germany, September 19-20,

2002. pp 33-45.

9. Maslov, D., and G. W. Dueck, “Garbage in Reversible Designs of Multiple-Output

Functions,” Proc. International Workshop on Applications of the Reed-Müller

Expansion in Circuit Design (2003).

10. Miller, D. M., “Spectral and Two-Place Decomposition Techniques in Reversible

Logic,” Proc. Midwest Symposium on Circuits and Systems, on CD-ROM, August

2002

11. D. M. Miller and G.W. Dueck, “Spectral Techniques for Reversible Logic

Synthesis,” Proc. International Workshop on Applications of the Reed-Müller

Expansion in Circuit Design (2003).

12. A. Mishchenko and M. Perkowski, “Logic Synthesis of Reversible Wave Cascades”,

Proc. IEEE/ACM International Workshop on Logic Synthesis, June 2002. pp. 197 –

202

 Page 18

13. L. Nazhandali and K. A. Sakallah, “Majority-Based Decomposition of Carry Logic in

Binary Adders”, IEEE/ACM International Workshop on Logic Synthesis, June 2002.

14. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.

Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey, “Regularity and symmetry

as a base for efficient realization of reversible logic circuits,” Proceedings of IWLS

2001, pp. 90-95, 2001.

15. M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A. Coppola,

A. Buller, X. Song, M. M. H. A. Khan, S. Yanushkevich, V. Shmerko, and M.

Chrzanowska-Jeske, “A general decomposition for reversible logic,” Proceedings of

RM 2001. pp. 119 – 138.

16. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.

Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, B. Massey, “Regular realization of

symmetric functions using reversible logic,” Proceedings of EUROMICRO

Symposium on Digital Systems Design, 2001, pp. 245-252.

17. P. Picton, “A universal architecture for multiple-valued reversible logic,” MVL

Journal, 5, pp. 27-37, 2000.

18. V. V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, “Reversible Logic Circuit

Synthesis,” Proc. 11th IEEE/ACM Intern. Workshop on Logic Synthesis, 2002, pp.

125 – 130.

19. M. Schoenert, “GAP”, Computer Algebra Nederland Nieuwsbrief, 9, 1992, pp. 19 –

28.

20. L. Storme, A. De Vos, and G. Jacobs, “Group theoretical aspects of reversible logic

gates,” Journal of Universal Computer Science, 5, pp. 307-321, 1999.

 Page 19

 Page 20

21. J. A. Smolin, and D. P. DiVincenzo, “Five two-bit quantum gates are sufficient to

implement the quantum Fredkin gate,” Physical Review A, 53, 1996, pp. 2855-2856.

22. A. Al-Rabadi, “Novel Methods for Reversible Logic Synthesis and Their Application

to Quantum Computing,” Ph.D. Thesis, Portland State University, Portland, Oregon,

USA, October 24, 2002.

23. M. H. A. Khan, and M. Perkowski , “Multi-Output ESOP Synthesis with Cascades of

New Reversible Gate Family,” Proc. International Workshop on Applications of the

Reed-Müller Expansion in Circuit Design (2003).

24. F. Luccio and L. Pagli, "On a new Boolean function with applications", IEEE

Transactions on Computers, 48, 3 (1999) 296--310.

	Introduction
	Quantum Realizations of Reversible Majority Gates
	Majority Based Reversible Logic Gates
	Reversible Logic Synthesis Using MBRLG
	Generalized Majority-Based Reversible Logic Gates
	Conclusion
	References

