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Abstract

The paper presents a family of new expansions of Boolean functions called Function-driven Linearly Independent (fLI)
expansions. On the basis of this expansion a new kind of a canonical representation of Boolean functions is constructed:
Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs). They generalize both Function-driven Shannon
Binary Decision Diagrams (fShBDDs) and Linearly Independent Binary Decision Diagram (LIBDDs). The diagrams introduced
in the paper, can provide significantly smaller representations of Boolean functions than standard Ordered Binary Decision
Diagrams (OBDDs), Ordered Functional Decision Diagrams (OFDDs) and Ordered (Pseudo-) Kronecker Functional Decision
Diagrams (OKFDDs) and can be applied to synthesis of reversible circuits.

1. Introduction

Ordered Binary Decision Diagrams (OBDDs) [1] have become a popular representation of Boolean functions due to their
canonicity and efficient algorithms for manipulating them [2, 13, 32, 47]. However, there exist functions of practical significance
for which sizes of OBDDs are exponential in the number of variables. Variants of OBDDs have been proposed to overcome this
obstacle. Efforts to modify the Shannon expansion have led to especially fruitful research. New useful bit-level and word-level
decision diagrams have been developed, among them Functional Decision Diagrams (FDDs), Kronecker Functional Decision
Diagrams (KFDDs), Pseudo-Kronecker Functional Decision Diagrams (PKFDDs) and Binary Moment Diagrams (BMDs) [2, 3,
13, 16, 32, 47]. Many researchers have also studied BDD transformations [32, 13, 10-12, 14, 18, 20, 31-32]. Nevertheless, the
search for more compact representations of Boolean functions, which preserve good algorithmic features of OBDDs (canonicity,
simple reduction rules, efficient manipulation algorithms), is still ongoing [13].

Although many algorithms have been developed to minimize the size of the BDDs, the efficient representation and
manipulation of Boolean functions is critical to some computer-aided design applications including logic synthesis, formal
verification and testing. For BDD-based design tools, the size of the BDDs can determine their run-time efficiency, the problem
size that they can handle and/or the quality of hardware or software they synthesize.

Recently, two more generalizations of the Shannon expansion have been studied, namely Linearly Independent Logic (LI
Logic) [36-37, 44, 38, 5-7, 41, 43, 45, 8-9, 40] and Function-driven expansions [17-19, 23]. The first one expands a function over
a set of variables and with respect to a set of (linearly independent) basis functions. The second expansion is based on an
observation that replacing a variable in the Shannon formula by an arbitrary Boolean function depending linearly on that variable
determines a unique pair of Boolean functions called function-driven generalized cofactors. In this paper, we show that it is
possible to combine these two concepts thus enabling to define Function-driven Linearly Independent DDs that can be
significantly more compact than standard BDDs and FDDs. We also present a possible solution to the important current problem
of synthesizing reversible circuits.

The paper is organized as follows. In Section 2 previous work is summarized. In Section 3 new types of decision trees,
generalized forms (expressions) and decision diagrams based on the new expansion are defined. Section 4 presents an application
of fLIBDDs to synthesis of reversible circuits. Finally, conclusions are formulated. We assume that the reader is familiar with
OBDDs, OFDDs and OKFDDs (the reader is referred to [2, 13, 32, 47] for explanation of basic notions and algorithms).

2. Previous work

Binary Decision Diagrams (BDDs) are based on the so-called Shannon expansion of a Boolean function f:
f = xi' f 0i + x f 1i

where xi is a variable of f, xi' is the negation of xi, f 0i and f 1i are cofactors of f obtained by replacing x by constants, respectively 0
and 1 (Figure 1a presents a node type for this expansion).

Two well-known expansions used for defining popular variants of decision diagrams are based on the following
modifications of the Shannon expansion:

f = f 0i ⊕   xi f 2i  - positive Davio expansion
f = f 1i ⊕   xi’ f 2i  - negative Davio expansion,

where f 2
i = f 0

i ⊕  f 1
i. Figure 1b presents a node type for positive Davio expansion (in a node type for negative Davio expansion

the label attached to 1-edge is xi’ instead of xi). On the basis of these expansions Functional Decision Diagrams, Kronecker
Functional Decision Diagrams and Pseudo-Kronecker Functional Decision Diagrams have been introduced [16, 3, 47, 2, 32].
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Figure 1.  Types of expansion nodes: a) Shannon for one variable, b) positive Davio for one variable, c) function-driven
Shannon for one variable, d) Shannon for variable pair, e) LI for variable pair, f) fLI for variable pair.

Let us now consider the Shannon expansion of a Boolean function f with respect to a variable pair:
f = xi‘xj‘f 00

ij + xi‘xjf 01
ij + xixj‘f 10

ij + xixj f 11
ij

here xi and xj are variables of f; functions f 00
ij , f 01

ij , f 10
ij ,  f 11

ij are cofactors of f obtained by replacing xi and xj by constants,
spectively 00, 01, 10 and 11 (Figure 1d presents a node type for this expansion).

Linearly Independent (LI) expansions with respect to a variable pair are analogs of Davio expansions:

Theorem 1 [40] Let f (x1, x2, ..., xn) be an arbitrary Boolean function. The following formula holds true:
f = g0(x1,x2) A0(x3, ... , xn) ⊕  g1(x1,x2) A1(x3, ... , xn) ⊕  g2(x1,x2) A2(x3, ... , xn) ⊕  g3(x1,x2) A3(x3, ... , xn)

here g0(x1, x2), g1(x1, x2), g2(x1, x2), g3(x1, x2) are the so-called (linearly independent) basis functions, A0(x3, ... , xn), A1(x3, ... , xn),
2(x3, ... , xn), A3(x3, ... , xn) are the so-called data functions (in other words, generalized cofactors w.r.t. g0, g1, g2, g3).

Ordered sets of 2-variable functions (g0, g1, g2, g3) uniquely determining the functions A0(x3, ... , xn), A1(x3, ... , xn), A2(x3, ... ,
), and A3(x3, ... , xn) are called nonsingular because they correspond to nonsingular 4x4 0-1 matrices, i.e. matrices in which the
t of rows is linearly independent with respect to bit-by-bit EXOR-ing of rows (there exist 840 nonsingular 4x4 0-1 matrices).
onsingular expansions exist for basis functions of arbitrary number of variables k > 1. For k = 1 they are identical with
unctional expansions (Shannon, positive Davio or negative Davio). For the lack of space, in this paper we consider exclusively
I expansion with respect to a variable pair (or k = 2 case). Figure 1e presents a node type for this expansion. Let us recall that in
andard Kronecker tree only one of Shannon, positive Davio and negative Davio expansions is used in every level of the tree and
 standard Pseudo-Kronecker tree any of these expansions may be used in each node of a tree. In LI (Pseudo-) Kronecker trees
y of 840 expansions with respect to a variable pair may be used in an analogous manner.

Similarly to Davio expansions the functions A0(x3, ... , xn), A1(x3, ... , xn), A2(x3, ... , xn), and A3(x3, ... , xn) can be expressed as
XOR sums of subsets of the set of cofactors {f 00

12 , f 01
12 , f 10

12 ,  f 11
12}.

Example 1 The set of basis functions g0 = x1 + x2,  g1 = x2’,  g2 = x1’,  g3 = 1 defines a nonsingular expansion. Using
onsingular matrices (see [40]) it can be shown that

A0 = f 00
12 ⊕   f 01

12 ⊕   f 10
12 ⊕   f 11

12.         A1 = f 10
12 ⊕   f 11

12,         A2 = f 01
12 ⊕   f 11

12,         A3 = f 00
12 ⊕   f 01

12 ⊕   f 11
12.

Selecting good basis functions for a given set of expansion variables is a hard problem due to a very large search space.
ome algorithms for finding such selections have been described in [40]. A similar problem was considered in [47], although for a
ifferent case. Namely, it is the problem of selecting good transformations of a binary input multi-valued output function with
spect to one variable (using nonsingular matrices) with the aim of reducing the number of product terms in ESOPs.

Before introducng function-driven Shannon expansion we will need two additional notions.

Definition 1 A Boolean function in n variables h(X) = h(x1, x2, ... , xn) is called linear w.r.t. xi if it may be written as
(x1,...,xi-1 xi,xi+1,,..  xn) = xi ⊕  g(x1 ..  xi-1,xi+1,...,xn), where the function g does not depend on the variable xi.



Definition 2 Let f(x1, x2, ... , xi-1, xi, xi+1 , ... , xn) be a Boolean function and h(x1, x2,  ... , xi-1, xi, xi+1 , ... , xn) be a Boolean
function linear w.r.t. xi. Let us define the function obtained from f by substituting the function h in place of the variable xi:

fi,h (x1, ... , xi-1, xi, xi+1, ... , xn) = f (x1, ... , xi-1, h, xi+1, ... , xn).
The functions f 0

i,h = fi,h (x1, ... , xi-1, 0, xi+1, ... , xn)  and  f 1
i,h = fi,,h (x1, ... , xi-1, 1, xi+1, ... , xn) are called negative and positive

function-driven generalized cofactors of f w.r.t. xi and the function h, respectively.

d
d

W

Figure 2.  Types of expansions for the variable x1: a) Shannon, b) positive Davio, c) function-driven Shannon.

e
o

Figure 3.  Types of expansions for variable pair {x1, x2}: a) Shannon, b) linearly independent.

As f 0
h and f 1

h are uniquely determined by an arbitrary function h linear w.r.t. a variable of f it is possible to use them for
fining new types of decision diagrams (called Function-driven Shannon Binary Decision Diagrams) in the same manner as it is
ne for standard BDDs. Note that f 0i and f 1i (similarly to the standard cofactors f 0 and f 1) do not depend on the variable xi.

Example 2 Let
f(x1, x2, x3, x4) = x1 ⊕  x1x3 ⊕  x1x4 ⊕  x2x3 ⊕  x2x4 ⊕  x1x2x4 ⊕  x2x3 x4.

e will determine function-driven generalized cofactors of f w.r.t. x1 and
h = 1 ⊕  x1 ⊕  x4 ⊕  x3x4:



First the function f1,g has to be determined:
f1,h (x1, x2, x3, x4) = f(h, x2, x3, x4) =
= (1 ⊕  x1 ⊕  x4 ⊕  x3x4) ⊕  (1 ⊕  x1 ⊕  x4 ⊕  x3x4) x3 ⊕  (1 ⊕  x1 ⊕  x4 ⊕  x3x4) x4 ⊕  x2x3 ⊕  x2x4 ⊕  (1 ⊕  x1 ⊕  x4 ⊕  x3x4) x2x4 ⊕  x2x3x4 =
= 1 ⊕  x1 ⊕  x3 ⊕  x4 ⊕  x1x3 ⊕  x1x4 ⊕  x2x3 ⊕  x2x4 ⊕  x1x2 x4
Hence f 01,h =  1 ⊕  x3 ⊕  x4 ⊕  x2x3 ⊕  x2x4 and     f 11,h = x2x3.

The theorem below presents a function-driven Shannon expansion.

Theorem 2 [19] Let f (x1, x2, ... , xn) be an arbitrary Boolean function. The following formula holds true:
f = h’ f 0i,h+ h f 1i,h

where h(x1, ... , xi-1, xi, xi+1 , ... , xn) is an arbitrary function linear w.r.t. xi, i = 1, 2, ... , n. It is called function-driven Shannon
expansion w.r.t. xi and the function h (in short, h-fS expansion or simply fS expansion).

Functions linear w.r.t. xi (i=1,2,...,n) form the set of all functions g such that for the given function f there exists a unique
solution of the above equation with respect to the unknowns f 0

i,h and  f 1
i,h. Hence, for each variable xi there exist as many fS

expansions as there are functions linear w.r.t. xi, i=1,2,...,n  (Figure 1c presents a node type for this expansion). Similarly to
Shannon expansion also function-driven Shannon expansion corresponds to a multiplexer operation but with the function h as the
controlling variable instead of a variable xi.

It is easy to see that Shannon expansion is a special case of function-driven Shannon expansions. Thus, for each BDD there
exist smaller or equal size decision diagrams based on fS expansions (called fShBDDs [23]). It has been proved that some linearly
as well as nonlinearly transformed BDDs (being a subset of fShBDDs) can represent in polynomial size such functions that have
only exponential size BDDs (the proof for linear case is given in [12], and for nonlinear case in [30]).

Function-driven expansions can be combined with Reed-Muller (Davio) expansions:

Theorem 3 [19] Let f (x1, x2, ... , xn) be an arbitrary Boolean function. The following two expansions hold true
f = f 0i ⊕  h f 2i,h - function-driven positive Reed-Muller (Davio) decompositions (in short, h-fpD)

f = f 1i ⊕  h’f 2i,h - function-driven negative Reed-Muller (Davio) decompositions (in short, h-fnD),
where h(x1,... , xi-1, xi, xi+1 , ... , xn) is an arbitrary xi-SD function, i=1,2,...,n, and  f 2i,h = f 0i,h ⊕  f 1i,h..

3. Function-driven Linearly Independent Expansions, Trees, Forms and Diagrams

Function-driven Linearly Independent expansions with respect to a variable pair are defined as follows:

Theorem 4 Let f (x1, x2, ... , xn) be an arbitrary Boolean function. The following formula holds true:
f = g0(h1,h2) A0(x3, ... , xn) ⊕  g1(h1,h2) A1(x3, ... , xn) ⊕  g2(h1,h2) A2(x3, ... , xn) ⊕  g3(h1,h2) A3(x3, ... , xn)

where g0(x1, x2), g1(x1, x2), g2(x1, x2), and g3(x1, x2) are the so-called (linearly independent) basis functions, h1(x1, x2, x3, ... , xn) and
h2(x1, x2, x3, ... , xn) are such functions that for each (a3, ... , an) all values of functions h1(x1, x2, a3, ... , an) and h2(x1, x2, a3, ... , an)
of two variables x1, x2 form the set B={00,01,10,11} (i.e. h1, h2 define a bijective mapping from B onto B), A0(x3, ... , xn), A1(x3, ... ,
xn), A2(x3, ... , xn), and A3(x3, ... , xn) are the so-called data functions (in other words, generalized cofactors with respect to the
functions g0, g1, g2, g3 and h1, h2). Figure 1f presents a node type for this expansion.

Proof Function-driven Linearly Independent (fLI) expansion may be considered as a composition of two bijective mappings:
first the function-driven mapping is done and next the LI mapping is applied to the result of the previous mapping. Thus, it is a
bijective mapping given by the expanding formula.

All expansions considered in this paper have a simple interpretation in terms of truth tables of functions. In Shannon
expansions the function vector (the output column) is partitioned into halves (Figure 2a). In Davio expansions, one of these
halves is replaced by EXOR bit-by-bit sum of cofactors (Figure 2b). In function-driven expansions the corresponding pairs of
bits belonging to different cofactors can be flipped depending on the values of the controlling function g (Figure 2c) In Shannon
expansions for a variable pair, the function vector is partitioned into four subvectors (cofactors) of equal size (Figure 3a). In LI
expansions for a variable pair four generalized cofactors are equal to EXOR bit-by-bit sums of subsets of standard cofactors
(Figure 3b). Similarly, in fLI expansions this is generalized to EXOR bit-by-bit sums of four generalized cofactor vectors
(obtained through permutations of corresponding bits in four Shannon cofactor vectors, depending on the values of two
controlling functions h1, h2).

Below we define trees, forms and decision diagrams corresponding to repeated use of fLI expansions or flattening of fLI
expansions.

Definition 3 The fLI Kronecker Tree is created as follows. The set of all input variables is partitioned into an ordered set of
disjoint and nonempty subsets (blocks). The blocks are ordered. Each of them corresponds to a level of the tree. For each level of
the tree a fLI expansion is selected. For the block with n variables there are 2n children nodes of a node.



Definition 4 The fLI Forms are obtained by flattening the fLI trees. Flattening has the following stages:
1. find all paths of the tree that lead from the root to constant 1 in terminal nodes,
2. for each such path make a product term by multiplying the labels (expressions) attached to the edges of the path,
3. make EXOR sum of these product terms.

Definition 5 (Reduced) fLI binary decision diagrams (fLIBDDs) are created from respective fLI trees by the rules:
1. share isomorphic subdiagrams,
2. if all outgoing edges of a node point to the same node, then delete the node and connect the incoming edges of the

deleted node to the corresponding successor. Relabel the edges, e.g. if there was only one incoming edge of the deleted
node, labeled by a, and there were 4 outgoing edges of this node, labeled by b, c, d, e, respectively, then label the new
edge by a(b ⊕  c ⊕  d ⊕  e), etc.

4. Application of fLIBDDs to Synthesis of Reversible Circuits

Although advantages of using reversible computing have been known for many years all papers published in 1980s and 1990s
were concerned mostly with proposing simple binary reversible gates and studying universality as well as basic properties of these
gates. Research on synthesis of reversible logic circuits has started only very recently [42, 48, 15, 35, 27, 39, 24-26, 28, 33-34, 29,
4]. Generalized families of binary and multiple-valued gates have also been proposed [24-27, 35, 39].

As mentioned in the previous section an fLIBDD representing a Boolean function f(x1, x2, ... , xn) corresponds to a sequence of
bijective transformations on the domain of f determined by the defining functions of function-driven and LI expansions. It can be
interpreted as a decomposition of a circuit realizing the function f into two parts: a preprocessor performing a domain
transformation (or a composition of transformations) followed by a circuit realizing the transformed function (see Figure 4). On
the other hand, a reversible gate (or circuit) also corresponds to a bijective mapping (a domain transformation). Thus the
preprocessor may be built up using reversible gates as there is a one-to-one correspondence between the reversible gates in the
preprocessor and the transformations determined by defining functions. This approach would be useful in designing layout for
quantum logic circuits because it is easier to design such layouts when the preprocessor is made exclusively of (generalized)
Feynman and Toffoli gates (note that the defining functions for function-driven expansions can be expressed using such gates).
Figure 4.  General scheme of new decomposition type.
Figure 5.  Decomposition on a reversible preprocessor and a reversible circuit based on an fLIBDD.



an

gi
fr
(c
ci
si
T
i0
th
A
S
re

di
co
ha
(F
op

w

th
sa
fu
Figure 6.  Reversible circuit realizing a two-output circuit defined in Example 3.

We sketch below the idea of reversible logic decomposition shown in Figure 4. This decomposition is illustrated here by using
 example based on an fLIBDD (not shown to save space).

Example 3 The input data to the decomposition are two incompletely specified functions F(a,b,c,d,e,f,g), G(a,b,c,d,e,f,g),
ven in form of ON and OFF BDDs. Functions h1(a,b,c,d,e,f,g) and h2(a,b,c,d,e,f,g) are found that reduce the variables a and b
om functions F and G realized as fLIBDDs. These functions h1 and h2 are control inputs to the first level nodes of the fLIBDD
orresponding to the output functions F and G, respectively). To realize these functions, any method of realizing reversible
rcuits can be used, and particularly the cascade methods [35, 27, 33-34, 24-25, 4, 29] that produce no garbage or little garbage
gnals. Functions h1 and h2 are realized as a reversible cascade with inputs a, b, c, d, e, f, g and outputs A = h0, B = h1, c, d, e, f, g.
he outputs c, d, e, f, g of this cascade go to the next reversible cascade that has the inputs c, d, e, f, g and the outputs C =
(c,d,e,f,g), D = i1(c,d,e,f,g), e, f, g. This second cascade reduces input variables c and d. Thus, analogously, every next cascade in
e preprocessor reduces a pair of original input variables and decreases the complexity of the fLIBDD on transformed variables
, B, C, D,... . After finding such a preprocessor, being a sequence of cascades for variable pairs, the fLIBDD is greatly reduced.
ometimes, like in this case, it is sufficient to do the transformation only for a subset of input variables (here the variables e, f, g
main unaffected because the useful functions depending on them in fLIBDD are simple).

The block diagram for the circuit obtained from this fLIBDD is shown in Figure 5 (surrounded by a dashed line). In this
agram every block has, in general , two control inputs and four data inputs, but because the functions Ai(x3,...,xn) can be
nstants, the number of data inputs can be smaller, as in our example (the left block in the reversible circuit shown in Figure 5
s only three data inputs e, f, g). The schematic from Figure 5 can be rewritten to ESOP-like-based quantum-PLA notation
igure 6), where the columns correspond to AND-ing done in Toffoli-like gates and rows collect subfunctions by the EXOR-ing
eration. The equations for this schematics are as follows:

F =  = (A ⊕⊕⊕⊕  B)p ⊕  1 n ⊕  Am ⊕  (A + B) 0 = (A ⊕⊕⊕⊕  B)p ⊕  n ⊕  Am
G = (A + B)r ⊕  (A ⊕⊕⊕⊕  B)p ⊕  1 (m ⊕  n) ⊕  A 0 =   n ⊕  (A + B)r ⊕  (A ⊕⊕⊕⊕  B)p ⊕  m,

here the product terms corresponding to basis functions are written in bold, and the data functions with respect to them are:
m = (C+D)e ⊕  (C+D’)g ⊕  (C’+D’)f ⊕  (C’+D) 0

n = (C’D’)ef ⊕  (CD)g ⊕  (C+D)e ⊕  (C’D) 0
p = (CD’)e ⊕  (CD)f ⊕  (C’D’) 0 ⊕  (C’D) 0
r = (C’D’)ef ⊕  (C’D)f ⊕  (CD)g ⊕  (CD’) 0

When a small preprocessor for each pair of original input variables has been found, a simplified decision diagram is created
at is next efficiently realized in a reversible circuit , paying only the price of increased quantum register width, but greatly
ving on the number of ESOP terms as compared to a solution obtained directly from a decision diagram or from an ESOP of
nctions F(a,b,c,d,e,f g) , G(a,b,c,d,e,f,g) on original variables a, b, c, d, e, f, g.



The question remains how to find good preprocessors and thus some iteration and heuristics are needed. The most efficient
optimization of BDDs has been done by variable ordering heuristics using the modifications of the well-known sifting algorithm.
This method can also be generalized for minimization of fLIBDDs and thus for synthesis of reversible circuits. It seems to these
authors that methods similar to nonlinear sifting should be used [21-22, 30].

5. Conclusions

This paper has presented new generalizations of Binary Decision Diagrams and Functional Decision Diagrams. They are
called Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs) and can be used as canonical representations
of Boolean functions. By using fLIBDDs it is possible to decrease substantially sizes of diagrams what is important in many
applications. It is also possible to extend the notions of shared diagrams and complemented edges to the new types of decision
diagrams as well as to extend fLIBDDs to multiple-valued decision diagrams. We expect that the fLIBDDs will find applications
in compact Boolean function representation and multi-level logic synthesis with reversible gates, in particular quantum circuits.
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