
Reversible Logic Synthesis by Iterative Compositions

Portland Quantum Logic Group

Andrei B. Khlopotine *
andrei@pdx.edu

Marek Perkowski *
mperkows@ece.pdx.edu

Pawel Kerntopf **
pke@ii.pw.edu.pl

* Department of Electrical and Computer Engineering, Portland State University
** Institute of Computer Science, Warsaw University of Technology

ABSTRACT

A reversible circuit maps each output vector
into a unique input vector, and vice versa. CMOS
reversible / adiabatic circuits are currently the most
important approaches to power optimization. This
paper introduces an approach to synthesize
generalized multi-rail reversible cascades for single-
output Boolean functions. Minimizing the “garbage
bits” is the main challenge of reversible logic
synthesis. Experimental results over a set of single
output functions (derived from Espresso PLAs) will
be presented at IWLS 2002.

1. INTRODUCTION

Bennett and Landauer [2] proved that losing
information in a circuit causes losing power.
Information is lost when the input vector cannot be
uniquely recovered from the output vector of a
combinational circuit. The gate that does not lose
information is called reversible. For instance, the so-
called Feynman gate described by equations P = A, Q
=A ⊕ B is reversible, as it can be easily seen in its
truth table, because for each combination of output
signals P, Q there is exactly one combination of input
signals A, B.

The energy lost in a logic circuit has two

components; one is related to non-ideality of
switches and other technological factors and another
to the information loss. While the first component is
decreased with time by inventing new technologies
and design principles such as adiabatic design, the
second is related to information and can be decreased
(to zero) only using reversible design methodologies.
So far, the second component is much smaller in year
2002. According to [2], it is a necessary condition to

use only reversible gates to build a circuit that will not
loose energy during (internal) calculations. (However,
energy may be lost for input and output operations.)

It was shown that reversible gates can be built in

DNA, optical, quantum and other technologies but
here we will concentrate on CMOS [1,4,5,18].
Developing systematic logic synthesis algorithms for
reversible logic is still very immature, but some
methods have been proposed [8,13,14]. In addition to
the Feynman gate defined above, most papers
discuss design using Toffoli and Fredkin [6] gates, as
well as how to build these gates in several existing
and future technologies. Analysis of three-input
three-output gate families has been done [7]. This
analysis created several new types of reversible
gates. Most of reversible gates in literature are three-
input three-output (3*3) or four-input four-output
(4*4) gates, the exceptions are [4,5,8,13,15]. In this
research we will stay with reversible gates with
maximum size of 4*4 (including 1*1, 2*2, 3*3). To our
knowledge no systematic method for synthesis using
any gates with n>3 was ever published.

To avoid energy loss, the approach of Fredkin

and Toffoli [6] has been used. It creates a “basic
circuit” from reversible gates with garbage outputs
(can be easily synthesized using the technology
mapping). Next, this approach applies a “spy gate” for
every primary output. The spy gate is a Feynman gate
with B=0 which copies the output signal of the basic
circuit. Next a mirror circuit is added with inputs from
the second outputs of spy gates and from the
garbage outputs of the basic circuit. The mirror circuit
is the reverse of the basic circuit and has as many
gates (that are inverses to gates of the basic circuit)
as the basic circuit has gates. This solution leads to
the duplication of the circuit’s delay and cost of
gates. The delay is 2n+1 where n is the delay of basic

circuit, and the gate cost is 2m + k where m is the
number of gates and k is the number of primary
outputs. Our approach reduces garbage and does not
require mirror circuit at all.

The main differences of synthesizing a circuit

with reversible gates, as compared to synthesizing a
standard binary circuit, are the following:

1. The number of outputs of a logic gate is

equal to the number of inputs. It is easy to find
solutions sacrificing one or more gate outputs for
garbage, but such solutions are of less value (they
are still used, however, because better methods are
not yet known [8,12,13]).

2. Every gate output that is not used as input
to other gate or as a primary output is called garbage.
A heavy price is paid for every garbage bit, if the
garbage bits are left unattended, or if the mirror circuit
and spy gates are added.

3. In reversible logic, fan-out of any gate
output is not allowed; every output can be used only
once. Feynman gates can be used as “copying
circuits”, the same way as in “spy circuits”, to
increase the fan-out. However, for every fan-out of
two a Feynman gate is used. Obviously, this
increases the cost and delay.

4. Several authors assume that there should be
no loops of gates and we follow this assumption here
(in general, this requirement is not mandatory for all
technologies).

Concluding, the main rules for efficient reversible

logic synthesis are the following: (1) use as many
outputs of every gate as possible, and thus minimize
garbage outputs. (2) do not create more constant
inputs to gates than is absolutely necessary. (3) avoid
leading output signals of gates to more than one
input, because each such fan out of two requires
adding one copying circuit.

The rest of the paper is organized as follows.

Section 2 introduces the new family of reversible
gates that was assumed as the library of gates in this
work. Section 3 talks about the researched and
simulated compositional synthesis methods for
reversible logic. Section 4 outlines a pseudo code for
the proposed synthesis method. Section 5 refers to
the experimental results. Section 6 concludes the
paper. The references are listed in section 7.

2. GENERALIZED FAMILIES OF REVERSIBLE
GATES

Fig. 1 presents a generalized Feynman gate (the
symbol of the gate at the bottom is EXOR), where f 1

denotes an arbitrary Boolean function of one variable.
Similarly, the generalized Toffoli, Fredkin and
Kerntopf gates are presented in Figs. 2, 3, and
4, respectively, where f 2 denotes an arbitrary boolean
function of two variables. It can be easily verified
from truth tables that all these gates are reversible. All
the three above mentioned families can be extended to
gates with an arbitrary number
of control inputs. For example, the generalized
Kerntopf gate with an arbitrary number n of inputs is
defined as follows:

P 1 = A 1, P 2 = A 2, ... , P n-2 = A n-2,
P n-1= MUX (f n-2, A n-1, A n),
P n = DAVIO (f n-2, A n-1, A n),

where MUX (x,y,z) = x'y + xz, DAVIO (x,y,z) = x'z + y, f

n-2 is an arbitrary function of n-2 variables being the
control variable of the multiplexer.

F i g . 1 . G e n e r a l i z e d F e y n m a n G a t e

f 1

⊕

A

B

P

Q

F i g . 2 . G e n e r a l i z e d T o f f o l i G a t e

f 2

⊕

B

C

Q

R

A P

F i g . 3 . G e n e r a l i z e d F r e d k i n G a t e

f 2

B Q

A P

C R

S

0

1

0

1

D

F i g . 4 . G e n e r a l i z e d K e r n t o p f G a t e

f 2

B Q

A P

C R

S

0
1

D
*

⊕

There are other available families of reversible
gates and this is a valid topic for future research. In
our work we stay withing the framework of the above
presented family of reversible gates.

3. COMPOSITIONAL SYNTHESIS METHODS FOR
REVERSIBLE LOGIC CASCADES AND
ADAPTATION OF EXOR METHODS TO
CASCADES

Compositional synthesis methods for reversible
logic have been presented in [14]. Observe that the
simplest structure for composition are cascades,
because they have the same number of intermediate
signals at every level. Cascade examples are
presented in Figs. 5-7 and discussed in [8]. As we see
there is only one signal added (constant 0 in example
in Fig. 5) and this signal essentially becomes a
function realized with (generalized) reversible gates.

F i g . 5 . G e n e r a l C a s c a d e o f F e y n m a n ,
T o f f o l i a n d F r e d k i n F a m i l y G a t e s

f 1

A

C
B

⊕

g 2

1
h 2

0

01

1

A
B

C

⊕
F 1

F 20

Example 1. Fig. 6 illustrates a more general case,

realization of a Full Adder using Toffoli (To) and
Feynman (Fe) gates, synthesized using the method
introduced here. Let us discuss how it is created. It
was first found that the original 3-input, 2-output
function of the adder is not reversible and that it
cannot be made reversible by adding one output
signal (the reader can check it using Kmaps from the
definition of reversibility). Thus one more constant
input is added and it is assumed that the width of the
circuit is 4 (see Figure 6). We have now two primary
outputs, two potential garbage outputs, three primary
inputs and one input constant. Not increasing the
width is first assumed, and gates are selected to
realize all primary output functions and to not
generate garbage (which would require mirror and spy
circuits). Whenever a solution cannot be found given
these assumptions and the selected set of reversible
gates, a backtrack is executed. Observe that even an
algorithm with no heuristic cost function but based
on depth search limit of four would find ultimately the
solution from Fig 6. Because the number of gates and
wire permutations is high, such approach would be
exhaustive. Thus we need a heuristic cost function to
be minimized. We use a maximization of combination
of coincidence count and minimization of entropy of
EXOR of the intermediate function in the wire of the
new level and the primary output function, calculated
for all pairs of wire and not yet realized output
functions. Observe, that entropy-based cost function
has small values for functions with many zeros (or
many ones) but has high values for functions with
approximately the same number of ones and zeros in
their Kmaps, Decreasing entropy leads obviously to
convergence of algorithm, but functions such as a
variable or an EXOR of variables have simple
realizations and the highest entropy. So, we treat such
functions in a special way in the cost function.
Similarly, all functions being products and sums of
literals are treated specially in the cost functions [13].
After applying the first Toffoli gate from the left in
Fig. 6, intermediate function AB is created which has
high correlation with primary output AB ⊕ AC ⊕ BC.
Functions A, B, AB, C are sufficient to realize all
primary outputs, so next level is now composed.
Function A ⊕ B is created as having high correlation
(small value of cost function) with respect to primary
output A ⊕ B ⊕ C. The variables after two input
levels are now A, A ⊕ B, C and AB. Toffoli gate is
selected which realizes directly the majority function.
The variables are now A, A ⊕ B, C and AB ⊕ AC ⊕

BC. Only one target output exists at this stage. It can
be checked that Feynman gate is the best choice
since it realizes A ⊕ B ⊕ C and primary input C (no
garbage). Previous levels created only function A as
potential garbage, the function has no garbage
because all other outputs than primary outputs are
primary inputs – so that energy taken from the power
supply through A, B, C will be returned to outputs
and primary inputs A and C (power supply). This
circuit is optimal with respect to information and
energy loss.

Example 2. As mentioned above, many well-

known standard logic methods can be adapted to
reversible cascades introduced here. For instance,
Fig. 7 shows how an ESOP can be realized using such
gates.

F i g . 6 . F u l l A d d e r r e a l i z e d u s i n g
C o m p o s i t i o n

T o Fe

C

0
B

A A
B

A

A ⊕ B A ⊕ B ⊕ C

(A ⊕ B) C ⊕ A B

C C

A ⊕ B

T o
F e

Observe that when the generalized Toffoli gates

are used, the upper part of the cascade delivers the
primary inputs to reversible gates of the cascade,
while the lower part allows to swap and negate wires
or skip some of the gates.

F i g . 7 . E x a m p l e o f m u l t i - o u t p u t E S O P
c a s c a d e o f T o f f o l i f a m i l y g a t e s

A

C
B

1
⊕

1

A

B

C

F 1

F 2

⊕

⊕

*

*

⊕

*

⊕

F 1 = 1 ⊕ C ⊕ A B C ⊕ A ’ B

F 2 = 1 ⊕ C ⊕ A ’ B

We have previously tried another approach

based on building the given function by injecting the
available reversible gates and then reducing the set
of support variables. By doing this, we were hoping
to get the given function with minimized number of

intermediate signals. This methods is known as
resubstitution. However, this approach brought about
the situation when the number of intermediate signals
was even increasing with every injection from some
point and thus more garbage signals were created
than if would be the case if cascading was
implemented. Therefore, the cascading is the best
performing method out of the two given. Cascading is
the method used for the experimental results.

4. PSEUDOCODE OF THE ALGORITHM

The main contribution of this paper is an
introduction of new reversible gate families and
convergent synthesis algorithms for multi-rail
reversible cascades for single-output functions. The
method uses information-theory-based cost function,
called coincidence count.. To compute the cost, we
count the number of coinciding minterms in the
Boolean space of the two functions to be compared.

We used a one-step look-ahead algorithm and

performed branch and bound over all paths to the N
best solutions. We assess the effectiveness of each
of N best paths one step ahead before picking the one
to follow. The main loop pseudocode:

iterative_compositions (func orig_func, int n_best_gates)
{
composed_func = false;
best_gates = new func [n_best_gates];

find_best_gates (orig_func, best_gates);
while (composed_func != orig_func)
{

for (i = 0; i < n_best_gates; i ++)
{

t_func = create_func (composed_func, best_gates [i]);
best_gate = find_best_gates (t_func, n_best_gates);

}
inject_gate (best_gate, composed_funct, operator);

}

We first find N best gates for the current

cascade. The heuristics is a coincidence count of the
current gate injected into the composed function and
the original function. Then, we look one step ahead
and predict which one out of N will be the best one.
We do this by getting N best gates (next cascade) for
each of N best gates in the current cascade. We
chose a gate from the current cascade that would give
us the most effect in the future (in the next cascade).
We inject the best gate from the current cascade into

the composed function (composed_func) and buffer
already obtained N best gates for the next cascade
and loop again with these N best gates as a current
cascade. We keep looping until the composed_func is
equal to the original function (orig_func).

5. EXPERIMENTAL RESULTS

No experimental results are achieved at this point.
The software for the simulation is being developed
and optimized for the performance.

Empirical results on the application of the

proposed approach will be presented at
the IWLS 2002.

6. CONCLUSIONS

The generalized Feynman, Toffoli, Fredkin and
Kerntopf gates can be realized in CMOS technology.
This allows for the use of the presented method in
CMOS circuit synthesis too.

Current and future research involves: (1)

characterizing new families of n-input n-output
reversible gates for being used in regular structures
and developing logic synthesis methods for them; (2)
designing of reversible / adiabatic CMOS circuits for
these families; (3) improving algorithm presented in
this paper to achieve a more efficient synthesis; (4)
improving software developed here to work on larger
circuits. (5) developing software for multi-output
functions.

7. REFERENCES

[1] W.C. Athas & L."J." Svensson , “Reversible Logic
Issues in Adiabatic CMOS”, IEEE Workshop on Physics
and Computation, 1994.

[2] C. Bennett, "Logical reversibility of computation",
I.B.M. J. Res. Dev., 17 (1973), pp. 525-532.

[3] BuDDy - A Binary Decision Diagram Package,
http://www.itu.dk/research/buddy/index.html

[4] A. De Vos, B. Desoete, A. Adamski, P. Pietrzak, M.
Sibinski, T. Widerski, ``Design of reversible logic circuits
by means of control gates'', Proc. 10th Int’l Workshop on

Power and Timing Modeling, Optimization and
Simulation, 2000, pp. 255-264.

[5] A. De Vos, B. Desoete, F. Janiak, A. Nogawski,
``Control gates as building blocks for reversible
computers'', Proc. 11th Int’l Workshop on Power and
Timing Modeling, Optimization and Simulation, 2000,
2001.

[6] E. Fredkin, T. Toffoli, "Conservative Logic", Int.
Journal of Theor. Phys., 21 (1982), pp. 219-253.

[7] P. Kerntopf, “A Comparison of Logical Efficiency of
Reversible and Conventional Gates,” 9th IEEE Workshop
on Logic Synthesis, 2000, pp.
261-269.

 [8] A. Mishchenko and M. Perkowski, “Logic Synthesis
of Reversible Wave Cascades”, 11th IEEE/ACM
Workshop on Logic and Synthesis, 2002.

[9] M. A. Perkowski, A. Sarabi, F. R. Beyl, "Universal
XOR Canonical Forms of Switching Functions," Proc.
Int’l Workshop on Applications of Reed-Muller
Expansion in Circuit Design, 1993, pp. 2732.

[10] M. A. Perkowski, "A Fundamental Theorem for
EXOR Circuits," ibid. pp. 52 – 60.

[11] M. Perkowski, A. Sarabi, and F. R. Beyl,
"Fundamental Theorems and Families of Linearly
Independent Forms for Binary and Multiple Valued",
Proc. Int’l Workshop on Applications of Reed-Muller
Expansion in Circuit Design, 1995, pp. 288-299.

[12] M. Perkowski, A. Sarabi, and F. R. Beyl, "Universal
XOR Canonical Forms of Boolean Functions and its
Subset Family of AND/OR/XOR Canonical Forms", IEEE
Workshop on Logic Synthesis, 1995.

[13] M. Perkowski, “Generalization of reversible gates to
n*n gates and their use in cascade synthesis. Report
PSU, 2001.

[14] M. Perkowski, L. Jozwiak, P. Kerntopf, A.
Mishchenko, A. Al-Rabadi, A. Coppola, A. Buller, X.
Song, Md. M. Khan, S. Yanushkevich, V. Shmerko, and
M. Chrzanowska-Jeske, “A General Decomposition for
Reversible Logic”, Proc. Int’l Workshop on Applications
of Reed-Muller Expansion in Circuit Design, 2001.

[15] J.Preskill, Lecture notes in quantum computing:
http://www. Theory.caltech.edu/~preskill/ph229

[16] A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A.
Perkowski, "A Comprehensive Approach to Logic
Synthesis and Physical Design for Two-Dimensional
Logic Arrays," Proc. DAC'94, San Diego, June 1994, pp.
321 - 326.

[17] N. Song, M. Perkowski, "Minimization of Exclusive
Sum of Products Expressions for Multi-Output Multiple-
Valued Input, Incompletely Specified Functions,” IEEE
Trans. CAD, Vol. 15, No. 4, April 1996, pp. 385-395.

[18] S.G. Younis, “Asymptotically Zero Energy
Computing Using Split-Level Charge Recovery Logic,
Ph.D. Thesis, MIT, June 1994.

