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ABSTRACT 

A reversible circuit maps each output vector 
into a unique input vector, and vice versa. CMOS 
reversible / adiabatic circuits are currently the most 
important approaches to power optimization. This 
paper introduces an approach to synthesize 
generalized multi-rail reversible cascades for single-
output Boolean functions. Minimizing the “garbage 
bits” is the main challenge of reversible logic 
synthesis. Experimental results over a set of single 
output functions (derived from Espresso PLAs) will 
be presented at IWLS 2002. 

 

1. INTRODUCTION 

 

Bennett and Landauer [2] proved that losing 
information in a circuit causes losing power. 
Information is lost when the input vector cannot be 
uniquely recovered from the output vector of a 
combinational circuit. The gate that does not lose 
information is called reversible. For instance, the so-
called Feynman gate described by equations P = A, Q 
=A ⊕ B is reversible, as it can be easily seen in its 
truth table, because for each combination of output 
signals P, Q there is exactly one combination of input 
signals A, B.  

 
The energy lost in a logic circuit has two 

components; one is related to non-ideality of 
switches and other technological factors and another 
to the information loss. While the first component is 
decreased with time by inventing new technologies 
and design principles such as adiabatic design, the 
second is related to information and can be decreased 
(to zero) only using reversible design methodologies. 
So far, the second component is much smaller in year 
2002. According to [2], it is a necessary condition to 

use only reversible gates to build a circuit that will not 
loose energy during (internal) calculations. (However, 
energy may be lost for input and output operations.) 

 
It was shown that reversible gates can be built in 

DNA, optical, quantum and other technologies but 
here we will concentrate on CMOS [1,4,5,18]. 
Developing systematic logic synthesis algorithms for 
reversible logic is still very immature, but some 
methods have been proposed  [8,13,14]. In addition to 
the Feynman gate defined above, most papers 
discuss design using Toffoli and Fredkin [6] gates, as 
well as how to build these gates in several existing 
and future technologies. Analysis of three-input 
three-output gate families has been done [7]. This 
analysis created several new types of reversible 
gates. Most of reversible gates in literature are three-
input three-output (3*3) or four-input four-output 
(4*4) gates, the exceptions are [4,5,8,13,15]. In this 
research we will stay with reversible gates with 
maximum size of 4*4 (including 1*1, 2*2, 3*3). To our 
knowledge no systematic method for synthesis using 
any gates with n>3 was ever published. 

 
To avoid energy loss, the approach of Fredkin 

and Toffoli [6] has been used. It creates a “basic 
circuit” from reversible gates with garbage outputs 
(can be easily synthesized using the technology 
mapping). Next, this approach applies a “spy gate” for 
every primary output. The spy gate is a Feynman gate 
with B=0 which copies the output signal of the basic 
circuit. Next a mirror circuit is added with inputs from 
the second outputs of spy gates and from the 
garbage outputs of the basic circuit. The mirror circuit 
is the reverse of the basic circuit and has as many 
gates (that are inverses to gates of the basic circuit) 
as the basic circuit has gates. This solution leads to 
the duplication of the circuit’s delay and cost of 
gates. The delay is 2n+1 where n is the delay of basic 



circuit, and the gate cost is 2m + k where m is the 
number of gates and k is the number of primary 
outputs. Our approach reduces garbage and does not 
require mirror circuit at all.  

 
The main differences of synthesizing a circuit 

with reversible gates, as compared to synthesizing a 
standard binary circuit, are the following: 

 
1. The number of outputs of a logic gate is 

equal to the number of inputs. It is easy to find 
solutions sacrificing one or more gate outputs for 
garbage, but such solutions are of less value  (they 
are still used, however, because better methods are 
not yet known [8,12,13]).  

2. Every gate output that is not used as input 
to other gate or as a primary output is called garbage. 
A heavy price is paid for every garbage bit, if the 
garbage bits are left unattended, or if the mirror circuit 
and spy gates are added.  

3. In reversible logic, fan-out of any gate 
output is not allowed; every output can be used only 
once. Feynman gates can be used as “copying 
circuits”, the same way as in “spy circuits”, to 
increase the fan-out. However, for every fan-out of 
two a Feynman gate is used. Obviously, this 
increases the cost and delay.  

4. Several authors assume that there should be 
no loops of gates and we follow this assumption here 
(in general, this requirement is not mandatory for all 
technologies). 

 
Concluding, the main rules for efficient reversible 

logic synthesis are the following: (1) use as many 
outputs of every gate as possible, and thus minimize 
garbage outputs. (2) do not create more constant 
inputs to gates than is absolutely necessary. (3) avoid 
leading output signals of gates to more than one 
input, because each such fan out of two requires 
adding one copying circuit.  

 
The rest of the paper is organized as follows.  

Section 2 introduces the new family of reversible 
gates that was assumed as the library of gates in this 
work. Section 3 talks about the researched and 
simulated compositional synthesis methods for 
reversible logic. Section 4 outlines a pseudo code for 
the proposed synthesis method. Section 5 refers to 
the experimental results. Section 6 concludes the 
paper. The references are listed in section 7. 

 

 
2. GENERALIZED FAMILIES OF REVERSIBLE 
GATES 

Fig. 1 presents a generalized Feynman gate (the 
symbol of the gate at the bottom is EXOR), where f 1 

denotes an arbitrary Boolean function of one variable. 
Similarly, the generalized Toffoli, Fredkin and 
Kerntopf gates are presented in Figs. 2, 3, and  
4, respectively, where f 2 denotes an arbitrary boolean 
function of two variables. It can be easily verified 
from truth tables that all these gates are reversible. All 
the three above mentioned families can be extended to 
gates with an arbitrary number  
of control inputs. For example, the generalized 
Kerntopf gate with an arbitrary number n of inputs is 
defined as follows:  

P 1 = A   1, P 2 = A   2, ... , P n-2 = A  n-2,  
P n-1= MUX (f n-2, A  n-1, A  n),  
P n = DAVIO (f  n-2, A n-1, A n),  

where MUX (x,y,z) = x'y + xz, DAVIO (x,y,z) = x'z + y, f 

n-2 is an arbitrary function of n-2 variables being the 
control variable of the multiplexer.   

F i g .  1 .  G e n e r a l i z e d  F e y n m a n  G a t e

f  1

⊕

A

B

P

Q

 
 
 

F i g .  2 .  G e n e r a l i z e d  T o f f o l i  G a t e

f  2

⊕

B

C

Q

R

A P
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There are other available families of reversible 
gates and this is a valid topic for future research. In 
our work we stay withing the framework of the above 
presented family of reversible gates.  

 
3. COMPOSITIONAL SYNTHESIS METHODS FOR 
REVERSIBLE LOGIC CASCADES AND 
ADAPTATION OF EXOR METHODS TO 
CASCADES  
  

Compositional synthesis methods for reversible 
logic have been presented in [14]. Observe that the 
simplest structure for composition are cascades, 
because they have the same number of intermediate 
signals at every level. Cascade examples are 
presented in Figs. 5-7 and discussed in [8]. As we see 
there is only one signal added (constant 0 in  example 
in Fig. 5) and this signal essentially becomes a 
function realized with (generalized) reversible gates.  
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Example 1. Fig. 6 illustrates a more general case, 

realization of a Full Adder using Toffoli (To) and 
Feynman (Fe) gates, synthesized using the method 
introduced here. Let us discuss how it is created. It 
was first found that the original 3-input, 2-output 
function of the adder is not reversible and that it 
cannot be made reversible by adding one output 
signal (the reader can check it using Kmaps from the 
definition of reversibility). Thus one more constant 
input is added and it is assumed that the width of the 
circuit  is 4 (see Figure 6). We have now two primary 
outputs, two potential garbage outputs, three primary 
inputs and one input constant. Not increasing the 
width is first assumed, and gates are selected to 
realize all primary output functions and to not 
generate garbage (which would require mirror and spy 
circuits). Whenever a solution cannot be found given 
these assumptions and the selected set of reversible 
gates, a backtrack is executed. Observe that even an 
algorithm with no heuristic cost function but based 
on depth search limit of four would find ultimately the 
solution from Fig 6. Because the number of gates and 
wire permutations is high, such approach would be 
exhaustive. Thus we need a heuristic cost function to 
be minimized. We use a maximization of combination 
of coincidence count and minimization of entropy of 
EXOR of the intermediate function in the wire of the 
new level and the primary output function, calculated 
for all pairs of wire and not yet realized output 
functions. Observe, that entropy-based cost function 
has small values for functions with many zeros (or 
many ones) but has high values for functions with 
approximately the same number of ones and zeros in 
their Kmaps, Decreasing entropy leads obviously to 
convergence of algorithm, but functions such as a 
variable or an EXOR of variables have simple 
realizations and the highest entropy. So, we treat such 
functions in a special way in the cost function. 
Similarly, all functions being products and sums of 
literals are treated specially in the cost functions [13]. 
After applying the first Toffoli gate from the left in 
Fig. 6, intermediate function AB is created which has 
high correlation with primary output AB ⊕ AC ⊕ BC. 
Functions A, B, AB, C are sufficient to realize all 
primary outputs, so next level is now composed. 
Function A ⊕ B is created as having high correlation 
(small value of cost function) with respect to primary 
output A ⊕ B ⊕ C. The variables after two input 
levels are now A, A ⊕ B, C and AB. Toffoli gate is 
selected which realizes directly the majority function. 
The variables are now A, A ⊕ B, C and AB ⊕ AC ⊕ 



BC. Only one target output exists at this stage. It can 
be checked that Feynman gate is the best choice 
since it realizes A ⊕ B ⊕ C and primary input C (no 
garbage). Previous levels created only function A as 
potential garbage, the function has no garbage 
because all other outputs than primary outputs are 
primary inputs – so that energy taken  from the power 
supply through A, B, C will be returned to outputs 
and primary inputs A and C (power supply). This 
circuit is optimal with respect to  information and 
energy loss. 

 
Example 2. As mentioned above, many well-

known standard logic methods can be adapted to 
reversible cascades introduced here. For instance, 
Fig. 7 shows how an ESOP can be realized using such 
gates. 
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Observe that when the generalized Toffoli gates 

are used, the upper part of the cascade delivers the 
primary inputs to reversible gates of the cascade, 
while the lower part allows to swap and negate wires 
or skip some of the gates.  
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We have previously tried another approach 

based on building the given function by injecting the 
available reversible gates  and then reducing the set 
of support variables. By doing this, we were hoping 
to get the given function with minimized number of 

intermediate signals. This methods is known as 
resubstitution. However, this approach brought about 
the situation when the number of intermediate signals 
was even increasing with every injection from some 
point and thus more garbage signals were created 
than if would be the case if cascading was 
implemented.  Therefore, the cascading is the best 
performing method out of the two given. Cascading is 
the method used for the experimental results. 
 
 

4.  PSEUDOCODE OF THE ALGORITHM 
 

The main contribution of this paper is an 
introduction of new reversible gate families and 
convergent synthesis algorithms for multi-rail 
reversible cascades for single-output functions. The 
method uses information-theory-based cost function, 
called coincidence count.. To compute the cost, we 
count the number of coinciding minterms in the 
Boolean space of the two functions to be compared. 

 
We used a one-step look-ahead algorithm and 

performed branch and bound over all paths to the N 
best solutions. We assess the effectiveness of each 
of N best paths one step ahead before picking the one 
to follow. The main loop pseudocode: 
 

iterative_compositions (func orig_func,  int n_best_gates) 
{
composed_func = false;
best_gates = new func [n_best_gates];

find_best_gates (orig_func, best_gates);
while (composed_func != orig_func) 
{

for (i = 0; i < n_best_gates; i ++)
{

t_func = create_func (composed_func, best_gates [i]);
best_gate = find_best_gates (t_func, n_best_gates);

}
inject_gate (best_gate, composed_funct, operator);

}

 
We first find N best gates for the current 

cascade. The heuristics is a coincidence count of the 
current gate injected into the composed function and 
the original function. Then, we look one step ahead 
and predict which one out of N will be the best one. 
We do this by getting N best gates (next cascade) for 
each of N best gates in the current cascade. We 
chose a gate from the current cascade that would give 
us the most effect in the future (in the next cascade). 
We inject the best gate from the current cascade into 



the composed function (composed_func) and buffer 
already obtained N best gates for the next cascade 
and loop again with these N best gates as a current 
cascade. We keep looping until the composed_func is 
equal to the original function (orig_func). 

 
 
5. EXPERIMENTAL RESULTS 
 

No experimental results are achieved at this point. 
The software for the simulation is being developed 
and optimized for the performance.  

 
Empirical results on the application of the 

proposed approach will be presented at  
the IWLS 2002. 
 

6. CONCLUSIONS 

The generalized Feynman, Toffoli, Fredkin and 
Kerntopf gates can be realized in CMOS technology. 
This allows for the use of the presented method in 
CMOS circuit synthesis too.  

 
Current and future research involves: (1) 

characterizing new families of n-input n-output 
reversible gates for being used in regular structures 
and developing logic synthesis methods for them; (2) 
designing of reversible / adiabatic CMOS circuits for 
these families; (3) improving algorithm presented in 
this paper to achieve a more efficient synthesis; (4) 
improving software developed here to work on larger 
circuits. (5) developing software for multi-output 
functions.  
 
 
7. REFERENCES 
 

[1]  W.C. Athas & L."J." Svensson , “Reversible Logic 
Issues in Adiabatic CMOS”, IEEE Workshop on Physics 
and Computation, 1994.  

[2]  C. Bennett,  "Logical reversibility of computation",  
I.B.M. J. Res. Dev., 17 (1973), pp. 525-532.  

[3] BuDDy - A Binary Decision Diagram Package, 
http://www.itu.dk/research/buddy/index.html  

[4]  A. De Vos, B. Desoete, A. Adamski, P. Pietrzak, M. 
Sibinski, T. Widerski, ``Design of reversible logic circuits 
by means of control gates'', Proc. 10th Int’l Workshop on 

Power and Timing Modeling, Optimization and 
Simulation, 2000, pp. 255-264.  

[5]  A. De Vos, B. Desoete, F. Janiak, A. Nogawski, 
``Control gates as building blocks for reversible 
computers'', Proc. 11th Int’l Workshop on Power and 
Timing Modeling, Optimization and Simulation, 2000, 
2001. 

[6]  E. Fredkin, T. Toffoli, "Conservative Logic", Int. 
Journal of Theor. Phys., 21 (1982), pp. 219-253.  

[7]  P. Kerntopf, “A Comparison of Logical Efficiency of 
Reversible and Conventional Gates,” 9th IEEE Workshop 
on Logic Synthesis, 2000, pp.  
261-269.  

 [8]  A. Mishchenko and M. Perkowski, “Logic Synthesis 
of Reversible Wave Cascades”, 11th IEEE/ACM 
Workshop on Logic and Synthesis, 2002.   

[9]  M. A. Perkowski, A. Sarabi, F. R. Beyl, "Universal 
XOR Canonical Forms of Switching Functions," Proc. 
Int’l Workshop on Applications of Reed-Muller 
Expansion  in Circuit Design, 1993, pp. 2732.  

[10]  M. A. Perkowski, "A Fundamental Theorem for 
EXOR Circuits," ibid. pp. 52 – 60.  

[11] M. Perkowski, A. Sarabi, and F. R. Beyl, 
"Fundamental Theorems and Families of Linearly 
Independent Forms for Binary and Multiple Valued", 
Proc. Int’l Workshop on Applications of Reed-Muller 
Expansion  in Circuit Design, 1995, pp. 288-299.   

[12] M. Perkowski, A. Sarabi, and F. R. Beyl, "Universal 
XOR Canonical Forms of Boolean Functions and its 
Subset Family of AND/OR/XOR Canonical Forms", IEEE 
Workshop on Logic Synthesis, 1995.  

[13]   M. Perkowski, “Generalization of reversible gates to 
n*n gates and their use in cascade synthesis. Report 
PSU, 2001.  

[14] M. Perkowski, L. Jozwiak, P. Kerntopf, A. 
Mishchenko,  A. Al-Rabadi, A. Coppola, A. Buller, X.  
Song,  Md. M. Khan, S. Yanushkevich, V.  Shmerko, and 
M. Chrzanowska-Jeske, “A General Decomposition for 
Reversible Logic”, Proc. Int’l Workshop on Applications 
of Reed-Muller Expansion in Circuit Design, 2001.  

[15]  J.Preskill, Lecture notes in quantum computing: 
http://www. Theory.caltech.edu/~preskill/ph229  



[16]  A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A. 
Perkowski, "A Comprehensive Approach to Logic 
Synthesis and Physical Design for Two-Dimensional 
Logic Arrays," Proc. DAC'94, San Diego, June 1994, pp. 
321 - 326.  

[17] N. Song, M. Perkowski, "Minimization of Exclusive 
Sum of Products Expressions for Multi-Output Multiple-
Valued Input, Incompletely Specified Functions,” IEEE 
Trans. CAD, Vol. 15, No. 4, April 1996, pp. 385-395.  

[18] S.G. Younis, “Asymptotically Zero Energy 
Computing Using Split-Level Charge Recovery Logic, 
Ph.D. Thesis, MIT, June 1994. 

 


