
“Multiple-Valued Galois Field“Multiple-Valued Galois Field
S/D Trees for GFSOPS/D Trees for GFSOP

MinimizationMinimization
and their Complexity”and their Complexity”

Anas Al-Rabadi, and Marek Perkowski

Portland State University
ECE Department

1800 S.W. 6th Ave., Portland, Oregon 97201 U.S.A.
[alrabadi, mperkows@ee.pdx.edu]

MOTIVATION FOR THIS RESEARCH

� Binary ESOP (exclusive or sum of products) are used in
minimization of data path and communication logic

� Exact solutions are found only for small functions

� Quality of minimization of large functions is still uncertain

� Several new techniques programmed in Exorcism-mv-4

� Inclusive Forms can theoretically find exact solution without
complete exhaustive search

� IF-based methods can potentially lead to smaller circuits

� ESOP can be realized in reversible logic using Toffoli and Feynman
gates.

� Toffoli and Feynman gates can be generalized to multiple-valued
logic

� Binary IFs can be generalized to multiple-valued IFs.

Presentation Overview
� Known families of binary canonical forms

� Two new families of canonical forms were presented in
“A Family of Canonical AND/EXOR Forms That Includes Exact
Minimum ESOPs” by Malgorzata Chrzanowska-Jeske, Alan
Mishchenko, Marek Perkowski

� One of them includes minimum ESOPs!

� The concept of S/D trees

� Inclusive forms for binary logic

� Inclusive Forms (IF) for Galois Logic

� Enumeration of IFs for arbitrary multiple-valued logic.

� Conclusions and future work

Known Families of
Canonical Forms

� Positive Polarity Reed-Müller Form - FPRM
� Fixed Polarity Reed-Müller Forms - FPRM
� Generalized Reed-Müller Forms - GRM
� Kronecker Forms - KRO
� Pseudo-Kronecker Forms - PDSKRO
� Generalized Kronecker Forms - GK
� Pseudo-Generalized Kronecker Forms-PGK
� Free Pseudo-Generalized Kronecker Forms

Positive Polarity Reed-Müller
Form

f(x1, x2, …, xn) =

 a0 ⊕ a1x1 ⊕ a2x2 ⊕…⊕ anxn ⊕
 a12x1x2 ⊕ a13x1x3 ⊕…⊕ an-1,nxn-1xn ⊕
 … ⊕
 a12...nx1x2…xn

There is only 1 PPRM

 F = 1 ⊕ x1 ⊕ x2 ⊕ x1 x2

Fixed Polarity Reed-Müller Form

There are 2n FPRMs

Example:

f(x1, x2, …, xn) =
 a 0 ⊕ a 1 x~1 ⊕ a 2 x~2 ⊕…⊕ a n x~n ⊕
 a12x~1 x~2 ⊕ a13x~1x~3 ⊕…⊕ an-1,nx~n-1 x~n ⊕
 … ⊕
 a12...nx~1 x~2 …x~n

F = 1 ⊕ x 1 ⊕ x 2 ⊕ x 1 x 2

Generalized Reed-Muller Forms

There are GRMs

Example:
2

n2 n−1

f(x1, x2, …, xn) =
 a 0 ⊕ a 1 x~1 ⊕ a 2 x~2 ⊕…⊕ a n x~n ⊕
 a12x~1 x~2 ⊕ a13x~1x~3 ⊕…⊕ an-1,nx~n-1 x~n ⊕
 … ⊕
 a12...nx~1 x~2 …x~n

F = 1 ⊕ x 1 ⊕ x 2 ⊕ x 1 x 2

Cofactors

Negative cofactor

f0(x2, ..., xn) = f(0, x2,…, xn)

Positive cofactor

f1(x2, ..., xn) = f(1, x2,…, xn)

Sum of cofactors

f2(x2, ..., xn) = f(0, x2,…, xn)⊕f(1, x2,…, xn)

Fundamental Expansions - 1,2

� Shannon Expansion - S

� Positive Davio Expansion - pD

pD
 1 x1

S
1x x1

f(x1, x2, …, xn) = 1∙ f0(x2, …, xn) ⊕⊕⊕⊕ x1 f2(x2, …, xn)

f(x1, x2, …, xn) = f0(x2, …, xn) ⊕⊕⊕⊕ x1 f1(x2, …, xn)

1x

1x

Fundamental Expansions - 3,4

� Negative Davio Expansion - nD

� Generalized Davio Expansion - D
f(x1, x2, …, xn) = 1∙ f1(x2, …, xn) ⊕⊕⊕⊕ f2(x2, …, xn)

f(x1, x2, …, xn) = 1∙ f1(x2, …, xn) ⊕⊕⊕⊕ f2(x2, …, xn)

1
x

nD
 1 1x

 D
 1 1

x

1x

Example of a KRO Form

 a a c a b a b c a a c a b a b c

S

p D p D

n D n Dn D n D

 a a

 1 b 1 b

1 c 1 c 1 c 1 c

Example of a Pseudo-KRO Form

 a a c a b c a bc ab ab c ab abc

S

pD S

pD pDnD S

 a a

 1 b b b

1 c c c 1 c 1 c

Hierarchy of Families
E SO P

F P R M

G R M

K R O

P K R O

G K

P G K

G IF
IF

A ll fa m il ie s o f c ano nica l fo r m s
F P G K = F G IF

S/D Trees

Definition. An S/D tree is created by:

• selecting one variable order

• building the binary tree for this order

• choosing an arbitrary assignment of
Shannon (S) and Generalized Davio (D)
expansions for the nodes

An S/D Tree for Order {a,b,c}

 a a c a b c a b c a b a b c a b a b c

S

D S

D DD S

 a a

 1 b b b

1 c c c 1 c 1 c

a b a b c

Generation of Inclusive Forms
for a Given Variable Order

� Generate all S/D trees for the
given variable order

� For each S/D tree, generate a set
of forms created by replacing all
generalized literals by literals in
arbitrary polarities

� Take the union of all these sets

Inclusive Forms
for Two Variables

a b a b a b ab

(a) N =1S

S S
b b b b

a a

a b a b a a b

(b) N =2S

S D
b b 1 b

a a

a b a b a b ab

(c) N =2S

D S
 1 b b b

a a

a a b a a b

(d) N =4S

DD
 1 b 1 b

a a

 b b a b a b

(e) N =4D

S S
b b b b

1 a

 b b a a b

(f) N =8D

S D
b b 1 b

1 a

 1 b a b a b

(g) N =8D

D S
 1 b b b

1 a

 1 b a a b

(h) N =16D

D D
 1 b 1 b

1 a

NIF = (1 + 2 + 2 + 4) + (4 + 8 + 8 + 16) = 45

Properties of Inclusive
Forms

� Inclusive Forms are canonical

� For a given order of n variables,

 there are

 unique Inclusive Forms

∏ +
−

=

−−1

0
21 2 21n

k

kn k

)(

The Number of IFs
for Three Variables

For n = 3, there are = =

2,220,075 possible expansions.
Only 527,121 of these expansions are
linearly independent, or canonical.
According to the Formula, there are
NIF = (1 + 16)1(1 + 4)2(1 + 2)4 = 34,425
IFs for each order of variables.







n

n

2

3 






8

27

Generation of Generalized
Inclusive Forms

� Generate sets of Inclusive Forms
for all variable orders

� Take the union of all these sets

Generalized Inclusive Forms
for Two Variables

a b a b a b ab

(a) N =1S

S S
b b b b

a a

a b a b a a b

(b) N =2S

S D
b b 1 b

a a

a b a b a b ab

(c) N =2S

D S
 1 b b b

a a

a a b a a b

(d) N =4S

DD
 1 b 1 b

a a

 b b a b a b

(e) N =4D

S S
b b b b

1 a

 b b a a b

(f) N =8D

S D
b b 1 b

1 a

 1 b a b a b

(g) N =8D

D S
 1 b b b

1 a

 1 b a a b

(h) N =16D

D D
 1 b 1 b

1 a

NGIFs = 2 * 45 - (1 + 4 + 4 + 16) = 65

Properties of Free
Generalized Inclusive Forms

� Free Generalized Inclusive Forms .

� Free Generalized Inclusive Forms are
canonical

� The Theorem: The set of all FGIFs
includes all minimum ESOPs for an
arbitrary Boolean function

Family Relations
E SO P

F P R M

G R M

K R O

P K R O

G K

P G K

G IF
IF

A ll fa m il ie s o f c ano nica l fo r m s
F P G K = F G IF

The Number of Canonical
Forms, IFs, and GIFs

over the Number of Variables

 vars # all # can # if #gif all/can all/if can/if all/gif can/gif

1 3* 3 3 3 1 1 1 1 1

2 126* 81 45 65 1.56 2.80 1.80 1.94 1.25

3 2,220,075* 527,121 34,425 109,361 4.21 64.5 15.3 20.3 4.8

4 100,000,000 1,037,459 175 1583 96.4 5.7*105 5.9*103 6.3 *104 6.6 *102

5 100,000,000 108,044 0 1 925 >1.0*108 >1.0*105 >1.0*108 >1.0*105

•Minimization of expressions for hardware realization.

• In binary, minimal ESOP has been found using binary S/D
trees.

• Galois Fields are important algebraic structures.
• GF addition and GF multiplication possess Latin
Square property:

• in any row and column the elements are all different,
and the elements have a different order in each row
and column.

• Due to this property, GF found applications in many areas,
like testing of digital circuits.

Canonical FormsCanonical Forms
for EXOR and for EXOR and Galois Galois LogicLogic

 Latin Square Property can be seen for instance in the
following addition and multiplication tables over GF(4):

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

x’ = x+1

x’’ = x+2
Notation; Counterparts of

polarities

� Example 1. Let f (x1,x2) = x1”x2 + x2’’’x1

� The quaternary truth vector of the function f
is: F = [0,3,1,2,2,1,3,0,3,0,2,1,1,2,0,3]T

� we obtain the following quaternary Shannon
expansion over GF(4) of the function f:

f = 2 ⋅ 0x1
1x2 + 3⋅ 0x1

2x2 + 0x1
3x2 + 3⋅ 1x1

0x2

+ ⋅ 1x1
1x2 + 2⋅ 1x1

3x2+ 2x1
0x2+ 3⋅ 2x1

1x2+ 2⋅
2x1

2x2+ 2⋅ 3x1
0x2+ 3x1

2x2+ 3⋅ 3x1
3x2 .

� Using the axioms of GF(4), it can be derived that the 1-Reduced Post literals defined in equation (5) are related to the
shifts of variables over GF(4) in terms of powers as follows:

� 0x = x3 + 1 (7)

� 0x = x’ + (x’)2 + (x’)3 (8)

� 0x = 3(x’’) + 2(x’’)2 + (x’’)3 (9)

� 0x = 2(x’’’) + 3(x’’’)2 + (x’’’)3 (10)

� 1x = x + (x)2 + (x)3 (11)

� 1x = (x’)3 + 1 (12)

� 1x = 2(x’’) + 3(x’’)2 + (x’’)3 (13)

� 1x = 3(x’’’) + 2(x’’’)2 + (x’’’)3 (14)

� 2x = 3(x) + 2(x)2 + (x)3 (15)

� 2x = 2(x’) + 3(x’)2 + (x’)3 (16)

� 2x = (x’’)3 + 1 (17)

� 2x = x’’’ + (x’’’)2 + (x’’’)3 (18)

� 3x = 2(x) + 3(x)2 + (x)3 (19)

� 3x = 3(x’) + 2(x’)2 + (x’)3 (20)

� 3x = x’’ + (x’’)2 + (x’’)3 (21)

� 3x = (x’’’)3 + 1 (22)

� Where: 0x, 1x, 2x, 3x are the: zeroth, first, second, and third polarities of the 1-Reduced Post literal, respectively. Also, x,
x’, x”, x’’’ are the zeroth, first, second, and third shifts (inversions) of the variable x respectively, and variable x can
take any value of the set {0, 1, 2, 3}.

The extension of binary Shannon and Davio expansions to higher radix
logics.

Let us define the 1-Reduced Post literal as follows:

ix = 1 iff x = i else ix = 0

Utilizing such literal, the following are Shannon and Davio expansions
For 4-valued GF logic, respectively:

f = f = 00x fx f00 + + 11x fx f11 + + 22x fx f22 + + 33x fx f33

f = 1⋅⋅⋅⋅ f0 + x (f1+3f2+2f3) +
 (x)2(f1+2f2+3f3)+(x)3(f0+f1+f2+f3)
f = 1⋅⋅⋅⋅f1 + (x’) (f0+2f2+3f3) +
 (x’)2(f0+3f2+2f3) + (x’)3(f0+f1+f2+f3)
f = 1⋅⋅⋅⋅ f2 + (x’’)(3f0+2f1+f3) +
 (x’’)2(2f0+3f1+f3) + (x’’)3(f0+f1+f2+f3)
f = 1⋅⋅⋅⋅ f3 + (x’’’)(f2+3f1+2f0) +
 (x’’’)2(f2+2f1+3f0) + (x’’’)3(f0+f1+f2+f3)

Shannon

Davio

The corresponding 4-valued Shannon and Davio DTs for
single variable are as follows, respectively:

0x 1x 2x 3x

S

D0

 1 x x 2 x 3

D1

 1 x’ x’ 2 x’ 3

D2

 1 x” (x”) 2 (x”) 3

D3

 1 x’’’ (x’’’) 2 (x’’’) 3

Shannon

4 Davios

• S/D trees have proven to be useful in minimizing 2-valued
expressions.

• the creation of the generalized-Davio nodes that generate
all possible Davio expansions.

• This is generalized for 4-valued logic as follows:

 1 x (x)2 (x)3

D

Generalized-Generalized-DavioDavio nodes nodes

Utilizing such Generalized-Davio nodes in DTs, one obtains many possible
corresponding quaternary DTs from the corresponding quaternary S/D
tree.

This can be illustrated as in the
following example:

 1 a a2 a3 1 a a2 a3 0a 1a 2a 3a 1 a a2 a 3

S

D

 0b 1b 2b 3b

D S D

S

D

 0b 1b 2b 3b

1 a a2 a3 1 a’ (a”)2(a’’’)30a 1a 2a 3a 1 a”(a’’’)2 (a’)3

D S D

 1 a a2 (a’)3 1 a (a”)2 (a”)3 0a 1a 2a 3a 1 a” a2 (a’)3

S

D

 0b 1b 2b 3b

D S D

Counting ofCounting of
the formsthe forms

•The number of possible Inclusive Forms (IFs) that can be generated from such
quaternary S/D trees is very big.
• Counting such numbers is important in searching for minimum GFSOP forms, as the
count provides an upper bound for the exhaustive search for minimal forms in the S/D
space.

• The following formula provides the count for such quaternary inclusive forms:

]}
)4.(3

...
)4.(3)4.(3

][
!!

!
...

!!

!)4(
{[

)4()4(
...

)4()4()4(

)4(
4

)4(
4

)1(
2

1
1

0

01

1

2

2

0

0

11
)1(

)1(

00 0

N
N

N

N N

kkk

NN
N

N

kk k kkkk
−

− −

−−
−

−

== =
∑∑ ∑

 where N is the number of variables.

• For instance, for two variables we obtain approximately 2.99483809211 * 1014

quaternary IFs.
• Due to such huge numbers, one expects to find minimal GFSOP forms in such huge space
of total forms.

The following formula provides the counting of IFs for
 any radix,
 arbitrary number of variables,
and arbitrary algebraic structuresarbitrary algebraic structures,,

as follows:

]}
)).(1(

...
)).(1()).(1(

)()(
][

!!

!
...

!!

!)(
{[...

)()()(

)()(
)1(

2
1

1
0

1

1

2

2

0

0 0
0

0

11
)1(

)1(

0

N
N

N N

N

kkk

k k NN
N

N

k

nnn

n
n

n
n

nnnnnn

n n

kkkk

n

−−−

−−
−

− −

∑ ∑ ∑
= =

−

−

=

where N is number of variables, and n is the radix.

� Utilizing MVL map representation, we can
easily prove that there are 416 = 4,294,967,296
quaternary functions of two variables, and
2.99483809211*1014 quaternary Inclusive Forms
generated by the S/D trees.

� Thus, on the average every function of two
variables can be realized in approximately 69,729
ways.

� This high number of realizations means that most
functions of two variables are realized with less
than five expansions, and all functions with at most
five expansions.

From the previous general formula, it can be
immediately observed that the formula is
complicated enough

such that for high number of variables and high
radix it will be virtually impossible to be executed
using an ordinary PC due to the extensive amount
of time that will be needed.

One solution is to use some patterns for counting !!!!
The IF triangles.

Functions with two variables are attractive
in logic synthesis since many functional
decomposition methods exist that produce
two control inputs for primitive cells in a
library of standard cells (such as a
multiplexer with two address lines).

Universal Logic Modules (ULMs) can be
produced for pairs of control variables that
generalize Shannon and Davio expansion
modules.

Realization of GF(4) addition
(a) as GF(2) addition (b) (i.e.

vector of EXORs).

Quaternary ULM that produces quaternary
Shannon expansions, and all quaternary

Davio expansions

 Therefore, a fast method to calculate the number of
Inclusive Forms for functions with two input variables
over an arbitrary radix of Galois field is very useful.

The following pattern is therefore very useful for counting
IFs for pairs of variables.

Such pattern makes the process of counting forms for two
variables much easier, and much less time consuming.

IFIFnn,2,2 Triangles Triangles
the Triangle of Coefficients
the Triangle of Values

for a fast calculation of the number of Inclusive Forms for an arbitrary
radix Galois field and functions of two input variables (N=2).

IFn,2 Triangles; the Triangle of Coefficients (a) and the Triangle of Values (b) for
a fast calculation of the number of Inclusive Forms for an arbitrary radix Galois

field and functions of two input variables (N=2).

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

1 5 10 10 5 1 1 5 10 10 5 1
1 6 15 20 15 6 1 1 6 15 20 15 6 1

1 7 21 35 35 21 7 1 1 7 21 35 35 21 7 1

20 21 22 22 23 24

 30 32 34 36 36 38 310 312

40 43 46 49 412 412 415 418 421 424

50 54 58 512 516 520 520 524 528 532 536 540

N0(N-1)N1(N-1)N2(N-1) N3(N-1)... N(N-1)(N-1)NN(N-1)NN(N-1) N(N+1)(N-1) N(N+2)(N-1) … N2N(N-1)

(a)

(b)

the Triangle of Coefficients

the Triangle of Values

� Example. Utilizing the IFn,2 Triangles we can
calculate the number of Inclusive Forms for GF(2),
GF(3), and GF(4) for two variables, respectively,
as follows:

� ΦΦΦΦ 2,2 = 1⋅⋅⋅⋅ 20+2⋅⋅⋅⋅ 21+1⋅⋅⋅⋅ 22+1⋅⋅⋅⋅ 22+2⋅⋅⋅⋅ 23+1⋅⋅⋅⋅ 24 = 1 + 4
+ 4 + 4 + 16 + 16 = 45

� ΦΦΦΦ 3,2 = 1⋅⋅⋅⋅ 30+3⋅⋅⋅⋅ 32+3⋅⋅⋅⋅ 34+1⋅⋅⋅⋅ 36+1⋅⋅⋅⋅ 36+3⋅⋅⋅⋅ 38+3⋅⋅⋅⋅
310+1⋅⋅⋅⋅ 312 = 730,000

� ΦΦΦΦ 4,2 = 1⋅⋅⋅⋅ 40+4⋅⋅⋅⋅ 4 3+6⋅⋅⋅⋅ 46+4⋅⋅⋅⋅ 49+1⋅⋅⋅⋅ 412+1⋅⋅⋅⋅ 412+4⋅⋅⋅⋅
415+6⋅⋅⋅⋅ 418+4⋅⋅⋅⋅ 421+1⋅⋅⋅⋅ 424 = 2.99483809211*1014

Conclusions

� We introduced a new family of
canonical forms: Quaternary Quaternary GaloisGalois
Generalized Inclusive FormsGeneralized Inclusive Forms

� We proved earlier that binary GIFs
contain all exact minimum ESOPs

� We showed that binary GIFs lead to a
significant reduction of the search space
for exact minimum ESOP.

Further Research

Further research should concentrate on:

• investigating the properties of binary
and multiple-valued GIFs,

• creating efficient algorithms for exact
and heuristic GFSOP minimizationGFSOP minimization
based on them

• investigating applications to
reversible logic.

•S/D DTs create the challenge of inventing new
algorithms for the search in such big S/D spaces for
minimal forms.

• Such difficulties already exist in the 2-valued
case.

• We expect that creation of such algorithms for
multi-valued S/D DTs will be very challenging.

• The hope is in the implicit methods.

