
Very little has been published
Sasao Sasao and Kinoshitaand Kinoshita - Cascade circuits -  - Cascade circuits - small garbage , high delaysmall garbage , high delay
Picton Picton - binary and multiple-valued - binary and multiple-valued PLAsPLAs, , high garbage, high delay, high gate costhigh garbage, high delay, high gate cost

General characteristic of logic synthesisGeneral characteristic of logic synthesis
methods for reversible logicmethods for reversible logic

ToffoliToffoli, , FredkinFredkin, , MargolusMargolus  - - examples of good circuits, no systematic methodsexamples of good circuits, no systematic methods

De De VosVos, , KerntopfKerntopf  - new gates and their properties, - new gates and their properties, no systematic methodsno systematic methods

Knight, Frank, De Vieira,Knight, Frank, De Vieira, Athas Athas, , SvensonSvenson  - circuit design, - circuit design, no systematic methodsno systematic methods

JJoonho Limoonho Lim, Dong-, Dong-GyuGyu Kim and Kim and Soo Soo--Ik ChaeIk Chae
School of Electrical Engineering, Seoul National UniversitySchool of Electrical Engineering, Seoul National University- circuit- circuit
design, design, no systematic methodsno systematic methods

•We introduce regular structures to realize arbitrary functions.
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The Toffoli Gate
• The Toffoli gate  Q(3) is universal in the sense that we can

build a circuit to compute any reversible function using
Toffoli gates alone (if we can x input bits and ignore output
bits).

• It will be instructive to show this directly, without relying
on our earlier argument that NAND/NOT is universal for
Boolean functions.

•  In fact, we can show the following:
– From the NOT gate and the Toffoli gate Q(3) , we

can construct any invertible function on n bits,
provided we have one extra bit of scratchpad
space available.



Use of Toffoli Gate
• From three-bit Toffoli-Gate Q(3)

Q 4

Scratch space

Q 4 from three Q 3

The first step is to show that from the three-bit Toffoli Gate Q (3) we can construct an n-
bit Toffoli Gate Q (n).

The n-bit gate works as follows:

(x1,x2,…,x n-1, xn)==>(x1,x2,…,x n-1 y@x1 x 2…x n-1 )

The construction requires one extra bit of scratch space.

For example, we construct Q (4) circuit  from Q (3) circuits as follows:
x1 x2



Simple Idea
• If we generalize the Toffoli Gate, we can realize any binary

function in a very efficient way

One can build Toffoli gate with 3 inputs

Can one build Toffoli gate with n inputs??????

xn

z

xn

z@x1 x2 … xn-1 xn

xn-1 xn-1

x1 x1

Of course, from many gates, but directly???



Karnaugh Maps

• A 4-variable K-
map.
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SOP Cover
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ESOP = Positive RM cover
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Simple Idea
•This idea can be generalized to:

• Fixed Polarity Reed-Muller Expansions

•Generalized Reed-Muller Expansions

•Exclusive Sum of Products

• Galois Sum of Galois Products Expansions

• Boolean Ring based logic

• Min-Modsum based logic

• Any Quasi-Group based logic

•Arithmetic Logic



Realizations of binary logic withRealizations of binary logic with
Toffoli Toffoli and reversible logic withand reversible logic with

ToffoliToffoli-like circuits-like circuits

• Kronecker  functional Diagram
• Kronecker function-driven Diagram
• ESOP
• Kronecker Lattice Diagram
• PPRM-like forms
• other canonical

Reversible Fuzzy DiagramsReversible Fuzzy Diagrams
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from Toffoli gates
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Building reversible fuzzy Building reversible fuzzy Toffoli Toffoli gategate
• We have to design such gate that

knowing P,Q,R we will be able to
find unique values of A,B and C.

• If we know values of P and Q we can
find uniquely the value of X.

• We need now to find a fuzzy
operator that can find in an uniqe
way C from X and R and that will
make the whole gate reversible.

• Observe that this must be continuous
operator, but similar in operation to
modulo, XOR or Latin Square.

*

OP

A B C

P Q R

X

Assume arithmeticAssume arithmetic
additionaddition

What should be theWhat should be the
OPOP??



Solution to OPSolution to OP
• Several solutions to OP are discussed in R. Rovatti, G. Baccarani,

“Fuzzy Reversible Logic”, Proc. 1998 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE'98)

 -  -+
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X1

NX2

Operations * , - and + are arithmetic

Generalized inverter NN needs
discontinuity

X1-X

N(X)N(X)
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Now we can generate all fuzzy functions of a single variable
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c0 c1
c2 c3

(c0 b+c1)a +(c2 b+c3) = c0 ba +c1 a +c2 b +c3
c0 b+c1

c2 b+c3

c0

c2

Realization of Positive Polarity Reed-Muller
for functions of two variables

The same circuit for fuzzy reversible
functions of two variables
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Explanation of
fuzzy reversible lattice
for three variables



Kerntopf Kerntopf Gate andGate and
RegularRegular
Structures forStructures for
SymmetricSymmetric
FunctionsFunctions



• The Kerntopf gate is described by equations:
P = 1 @ A @ B @ C @ AB,
Q = 1 @ AB @ B @ C @ BC,
 R = 1  @ A @ B @ AC.

• When C=1 then P = A + B, Q = A * B, R = !B, so AND/OR
gate is realized on outputs P and Q  with C as the
controlling input value.

• When C = 0  then P = !A * ! B, Q = A + !B, R = A @ B.

KerntopfKerntopf  GateGate

Despite theoretical advantages of Kerntopf gate over
classical Fredkin and Toffoli gates, so far there are no
published results on optical or CMOS realizations of
this gate.



Use of two Multi-valued Fredkin (Picton) Gates to
create MIN/MAX gate

A
B
0
1

>=

 MIN(A,B)

 MAX(A,B)

>=

 MIN(A,B)

 MAX(A,B)
Min/max
gate

MAX(A,B) = A + B

 MIN(A,B) = A*B
Max/min
gate

Two garbage outputs
for MIN/MAX cells
using Picton Gate



Every single index Symmetric Function can be created by EXOR-ing
last level gates of the previous regular expansion structure

 MAX(A,B)

 MIN(A,B)

Max/Min gate

Max/Min gate

Max/Min gate
A

B

C
S 1,2,3(A,B,C)

S 3(A,B,C)

=A+B

=A*B

C(A+B)

S 2,3(A,B,C)

S 1(A,B,C)

S 2(A,B,C)
3
2

2
2

1
1

1

0
AB

C

00
01
11
10

0   1

Indices of symmetric binary functions of 3 variables

Regular
symmetric
structure

EXOR
level

EXOR
level

regular regular

regular,simpleinputs

outputs

Unate interval
symmetric
functions

Single Index
symmetric
functions

Regular
Structure for
Symmetric
Functions



Example for four variables, EXOR level added

 MAX(A,B)

 MIN(A,B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

A
B

C MAX(A,B,C) =
(A+B)+C =  S
1,2,3(A,B,C)

MIN(A,B,C) =
(A*B)*C =

S 3(A,B,C)

=A+B

=A*B
C(A+B)

S 2,3(A,B,C) = (A*B)
+ C(A+B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

D

 MIN(A,B)

MAX(A,B,C,D) = A+B+C+D =
S 1,2,,3,4(A,B,C)

MIN(A,B,C,D) = A*B*C*D = S 4(A,B,C,D)

S 3,4(A,B,C,D)

S,2.3.4(A,B,C,D)

S 3(A,B,C,D)

S 4(A,B,C,D)

S 2(A,B,C,D)

S 1(A,B,C,D)

It is obvious that any multi-output function can be
created by OR-ing the outputs of EXOR level

Every Binary
Symmetric Function
can be composed of
MIN/MAX gates:
Example for three

variables



Now we extend to Reversible Logic

 MAX(A,B)

 MIN(A,B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

A
B

C MAX(A,B,C) =
(A+B)+C =  S
1,2,3(A,B,C)

MIN(A,B,C) =
(A*B)*C =

S 3(A,B,C)

=A+B

=A*B
C(A+B)

S 2,3(A,B,C) = (A*B)
+ C(A+B)

Max/M
in gate

Max/M
in gate

Max/M
in gate

D

 MIN(A,B)

MAX(A,B,C,D) = A+B+C+D =
S 1,2,,3,4(A,B,C)

MIN(A,B,C,D) = A*B*C*D = S 4(A,B,C,D)

S 3,4(A,B,C,D)

S,2.3.4(A,B,C,D)

S 3(A,B,C,D)

S 4(A,B,C,D)

S 2(A,B,C,D)

S 1(A,B,C,D)

S 3,4(A,B,C,D)

S 2,3,4(A,B,C,D)

Denotes fan-out gateDenotes Feynman
(controlled NOT) gate



Using Kerntopf and Feynman Gates in ReversibleReversible Programmable Gate Array

Arbitrary symmetric function can be created by exoring
single indices

Feynman

Kerntopf

RPGA



• Arbitrary symmetric function can be realized in a net without repeated variables.
• Arbitrary (non-symmetric) function can be realized in a net with repeated variables

(so-called symmetrization).
• Many non-symmetric functions can be realized in a net without repeated variables.
• We work on the characterization of the functions realizable in these structures

without repetitions and respective synthesis algorithms.

Generalizations and Current WorkGeneralizations and Current Work

Very many new circuit types, which are Very many new circuit types, which are reversible and multi-valuedreversible and multi-valued
generalizations of Shannon Lattices,generalizations of Shannon Lattices, Kronecker Kronecker Lattices, and Lattices, and
other regular structures introduced in the past.other regular structures introduced in the past.

• Layout-driven synthesis to regular structuresregular structures
• CMOS, Optical, Quantum dot technologies.
• Software


