




Quantum versus reversible computingQuantum versus reversible computing
•• Quantum ComputingQuantum Computing is a coming revolution – after recent

demonstrations of quantum computers, there is no doubt about this
fact. They are reversible.

• Top world universities, companies and government institutions are in
a race.

•• Reversible computingReversible computing is the step-by-step way of scaling current
computer technologies and is the path to future computing
technologies, which all happen to use reversible logic.
– DNA
– biomolecular
– quantum dot
– NMR
– nano-switches

• In addition, Reversible Computing will become mandatory in any
technology, because of the necessity to decrease power consumptionpower consumption





• The work on classical, reversible computation has
laid the foundation for the development of quantum
mechanical computers (Feynman)

• On a quantum computer, programs are executed by
unitary evolution of an input.

• Evolution of the state of the system.
• All unitary operators U are invertible with U-1 = U †

• Thus we can always ``uncompute'' (reverse the
computation) on a quantum computer.

Reversible computation:Reversible computation:





Quantum Bits and Quantum Logic
• Classical bits are either 0 or 1either 0 or 1
• Quantum bits “qubits” are in linear superpositionlinear superposition

of | 0> and | 1>
• Quantum logic “gates” process (i.e. entangle) qubits

• Manipulate linear superpositions of states
• Interfere states with other states

• Computation is completely reversible (no information lost),
barring measurements and decoherence
• All quantum logic gates are reversible:

• so understanding synthesis of reversible circuits is a must to
synthesize quantum circuits.



A Qubit
• A quantum-mechanical gate is  strange.
•  The strangeness goes to the very root of the quantum-

computational process, to the bits themselves.
• To emphasize the unconventional nature of quantum bits they

are called qubitsqubits..
•• It is not trueIt is not true that the qubit has some intermediate value between

0 and 1.
• Rather, the qubit is in both the 0 state and the 1 state at the

same time, to varying extents.

•  When the state of theWhen the state of the qubit qubit is eventually observed is eventually observed
or measured, it is invariably either 0 or 1.or measured, it is invariably either 0 or 1.



A Qubit: Schroedinger’s Cat
• If the cat was dead(zero state) it will always

be regarded as such because Quantum
Theory does not bring things back to life.

• If the cat was alive (one state) then it will
remain that way until it is put back into the
box and the device is restarted

–  (and returns to the superposition of states,
being both alive and dead).



Qubits Qubits and Quantum Registersand Quantum Registers

Classical bit Qubit

0 or 1 0 or 1 or     0 1

superposed

Classical register

010
000 or 001 or 010 or 011 or 100

or 101 or 110 or 111

Qubit register



Quantum Superposition and Quantum ParallelismQuantum Superposition and Quantum Parallelism

• Linear superposition of coexisting possibilities in the quantum world
• Every measurement  “collapses” these possibilities

States:

•• Measurement Measurement of quantum system:
•  yields state |A>  with probability |cA|2

• yields state |B> with probability |cB|2

A or B ccAA |A>   |A>  ++  ccBB |B> |B>  

Probabilities satisfy standard laws (sum is one)



Quantum Parallel ProcessingQuantum Parallel Processing
Uses qubits and superposition, therefore it is naturally parallel

000
001
010
011
100
101
110
111

F(000)
F(001)
F(010)
F(011)
F(100)
F(101)
F(110)
F(111)

Quantum
Processor

F(X)F(X)



••Why is this Why is this practicallypractically
important?important?

• Qualitatively different type of computation.
• Different computational complexity
• Some NP complete problems can be solved
in polynomial time
• More efficient use of physical resources
• …



Wave of probability
• Uncertainty is described mathematically by a

wave of probability which expands to fill the
space of all possible states

• When the box with Schroedinger’s cat is
opened this wave of probability collapses into
one single state
– Wave of probability and probability amplitudes

are useful ways of thinking.



• After the box is opened, the cat cannot
be returned to its original state.

• The cat in the box before it has been
opened is our qubit, having both
states, dead andand alive.

• Measurement is like a window between
quantum world with probability
amplitudes and standard world with
probabilities of events.





Elementary quantum notation:
• A simple quantum system is the two-level spin-1/2 particle.

• Its basis states are: spin-down |↓↓↓↓> and spin-up |↑↑↑↑  >.
• We  relabel them to represent binary zero and binary one:

–  |0> will be for 0
–  |1 >  will be for 1

• The state of such a single particle (qubit) is described by the
wavefunction

                ΨΨΨΨ = αααα |0>  +  ββββ |1 > .

• αααα and  ββββ are amplitudes of probability .
• They are in general complex numbers.complex numbers.



Elementary quantum notation:

αααα and  ββββ are amplitudes of probability .

The amplitude associated with a state determines the
probability that the qubit will be found in that state.

The squares of the complex coefficients The squares of the complex coefficients   ||αααααααα ||22
and and ||  ββββββββ  ||22 represent the  represent the probabilitiesprobabilities for for
finding the particle in the correspondingfinding the particle in the corresponding

states.states.



Quantum States
• We already represented quantum states and

superpositions of quantum states using a
notation called a ket notation
      "| >”

• In general the amplitudes are complex
numbers (with both a real and an imaginary
part)
– but in some examples amplitudes are just

positive and negative real numbers.



Elementary quantum notation:

• The dimensionality of the HilbertHilbert space space grows exponentially
with k.

• Quantum computations make use of this enormous size of  even
the smallest values of k.

• Generalizing this to a set of k spin- 1/2 particles  there will be
2 k basis states:

• these are quantum mechanical vectors that span the
Hilbert space

• for instance, they correspond to the 2 k  possible bit-
strings of length k.

• For example, |13> = |1101> = | ↑↑↓↑↑↑↓↑↑↑↓↑↑↑↓↑ |  is such a state for
k=4.



  Quantum gates and circuits
• Changes occurring to a quantum state vector can
be modeled using a quantum circuit.
•Quantum circuit is like a standard circuit:

• it has wires and elementary gates,
• it processes pairs of complex number instead of
bits.

• We describe a basic set of quantum gates.basic set of quantum gates.
• Remember that they are only models:

• there are no wires and no logic gates such as
EXOR in quantum world,
•  it is only our notation to simplify our thinking.



Quantum Gates are Reversible

• Now that we understand qubits, we want to design quantum gates,
the simplest processors of qubits to qubits.

• In designing gates for a quantum computer, certain constraints
must be satisfied.
– In particular, the matrix of transition amplitudes must be unitary, which

implies, roughly speaking, that it conserves probability:

– The sum of the probabilities of all possible outcomes must be exactly 1.

• A consequence of this requirement is that any quantum computing
operation must be reversible.

• Because of these requirements, the reversible quantum gates must
have the same number of inputs and outputs.the same number of inputs and outputs.
–– It was not required for optical gates!It was not required for optical gates!



singlesingle qubit qubit transformations transformations
• Mathematically, single qubit transformations are

described by SU(2) matrices.
• A continuous range of rotations is possible in

principle.
• But, for quantum computation, only finitely many

rotation angles are necessary.
• It has been shown that a single rotation of nearly any

angle is sufficient to allow efficient generation of an
arbitrary qubit rotation angle to a precision good
enough for the known quantum algorithms to work.



• 1. The case of a single quantum bit.
• We represent the states      and      (i.e.    , and     ) as

the vectors      and     , respectively.
• Then the most general unitary transformation

corresponds to a          matrix of the form

    where we typically take                                 [14].
14 A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.
Smolin and H. Weinfurter, ``Elementary gates for quantum computation,'' submitted to Phys.
Rev. A 1995.
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Logic gates for quantum bits:
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Logic gates for quantum bits:
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Schematic of the quantum circuitSchematic of the quantum circuit
diagram for a diagram for a one-bit gateone-bit gate..

The lines represent  single quantum bits 
(such as a spin-1/2 particle). 

|A>|A>

after qubit has ``passed'' through this
circuit it comes out in the state Uθθθθ|A> .

UUθθθθθθθθ|A>|A>UUθθθθθθθθ



• Using this operator we can flip bits:

•The extraneous sign represents a phase factor that does
not affect the logical operation of the gates and may be
removed if we wish, now or at a later stage.
•Such one-bit computations are illustrated schematically
as a quantum circuit in the previous slide

D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).

Logic gates for quantum bits:

UUΠΠΠΠΠΠΠΠ |0>  = - |1>|0>  = - |1> UUΠΠΠΠΠΠΠΠ |1>  = |0>|1>  = |0>



   Single  Single qubitqubit gates gates
• Consider the class of single bit gates. Classically, the only non-trivial

member of this class is the not gate, whose operation is defined by its
truth table, in which 0 --> 1 and 1 --> 0.

  Single bit logic gates.   Single qubit logic gates.



qubit not gate
• Qubit not gate is defined by its unitary operator

         where ( much like a classical truth table ) the two columns refer to
the inputs ( | 0> and | 1 > ) and the two rows the outputs.

• The transform must be unitary to preserve the norm of the
state.

• Observe, that there are many additional non-trivial single
qubit gates.



Phase shift gate
• Another  unitary operator

• Important one is   the phase shift

(2)

  flips the phase of  flips the phase of | | 1 1 > > to give -|1>to give -|1>

Column for |0> |0> 

Column for |1> |1> 

Row for |0> |0> 

Row for |1> |1> 

 leaves | 0 > with no change



thethe Hadamard Hadamard gate gate

•   This gate is also known as the “square-root of not " gate.
•  Its action can be visualized as being similar to rotating the qubit
sphere about the  y axis by 90o

• This shows how a definite state like |1> can be transformed by
H into the superposition state

          [|0> - |1>] / (√2)
   which gives 0 or 1 with equal probability when measured along
the computational basis.



Square Root of NOTSquare Root of NOT
Useful concept, a cubitcubit
spheresphere

Visualization of square root of not logic gate on the
qubit sphere



infinitely many single qubit gates
•• All of which can be generated from All of which can be generated from rotationrotations,s,

(4)

(5)

and phase shifts,



Quantum NetworksQuantum Networks

000
001
010
011
100
101
110
111

F(000)
F(001)
F(010)
F(011)
F(100)
F(101)
F(110)
F(111)

Quantum
Processor

F(X)F(X)

V V† V

inputs outputs

Quantum
logic
gates



Quantum Gates: Not, Quantum Coin Flip

quantum coin flip

coin flip



Quantum Interference



• For Quantum Coin Flip (QCF) gates the analysis is in
terms of amplitudes instead of probabilities.

• The first QCF gate transforms the initial |1> state into a
|0> state with an amplitude of 1/√2
– (we assume for simplification that amplitude is a real, not

complex number)

• The second QCF gate produces a final |0> state with
amplitude of 1/√2

• Multiplying these component amplitudes (just as one
would multiply probabilities) yields an overall amplitude
of 1/2 for the computational path |1> --> |0> --> |0>.

Quantum Interference



• The amplitude is the same for the paths |1> --> |1>
--> |0> and |1> --> |1> --> |1>.

• In the case of the path |1> --> |0> --> |1>, however,
the result is different.

• This is because the transition from |0> to |1> has an
amplitude of -1/ √√√√2

• The total amplitude for this path is -1/2.-1/2.

Quantum Interference



• In the absence of interference, this change of sign would
still have no effect on the outcome of an experiment:
– Squaring the absolute value of each amplitude would

yield four path probabilities of 1/4, which would sum
to a probability of 1/2 for the |0> final state and 1/2
for the |1> final state.

•  Because of interference, however, the two paths leading to
the |1> state, with amplitudes of 1/2 and -1/2, cancel each
other out, whereas the |0> paths, both with amplitudes of
1/2, sum to yield a total amplitude (and also a total
probability) of 1.

Quantum Interference



The “Square Root of NOT”The “Square Root of NOT”

• Random bit if measured after one pass
• NOT operation if measured after second pass
• THIS IS STRANGE!

Thus the operation of two QCF gates can be described as above

Because the square of QCF is a NOT, this gate is called
Square Root of NOT

Negated input!!



Let us checkLet us check

=
1

0

= 0
1



Let us checkLet us check

=
0

1

= -1
0

-

-



Let us checkLet us check

= 0  -1

1   0



• There is something decidedly counterintuitive
about these results.

• Passing a signal through one QCF gate
randomizes it, yet putting two QCF gates in a
row yields a deterministic result.

• It is as if we had invented a machine that first
scrambles eggs and then unscrambles them.

•  There is no analogue of this machine in the
more familiar world of classical physics.

The square root of NOT.





Other 1*1 unitary gates (quantum)

HHadamard 








−11
11

2
1

Pauli-X X









01
10

Pauli-Y Y 






 −
0

0
i

i

ZPauli-Z 








−10
01

Classical inverter



Other 1*1 unitary gates (quantum)

Sphase

Π/8 T 








ei 4/0
01
π










i0
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Quantum CircuitsQuantum Circuits
• It will be useful in our work that  quantum

circuits are natural extensions of classical
circuits.

• Quantum Circuits consist of quantum gates
interconnected without fanout or feedback ,
by quantum wires.

• Each wire represents the path of a single qubit
(in time or space, forward from left to right).

• It is described by a state in a two-dimensional
Hilbert space with basis |0> and  |1>.



the XOR gate becomes the following unitary operator 

•To understand how unitary operators are constructed from
elementary operators we consider the XOR gate.
•Writing the two-particle basis states as the vectors

0

1 1

0



Let us check

0
0
0
1

=
0
0
1
0

00 01 10 11

Which means
|11>

transformed to
|10>1

1

1

0



What did we learn?What did we learn?

• Matrices with only zeros and ones
correspond to classical logic.

• Every Matrix is like a multi-output truth table
or multi-output BDD

• Cascade circuit composition from gates is
described by matrix multiplication

• In general Quantum Logic, we have matrices
and vectors of complex numbers.



2*2 unitary gates
Controlled
-Not
(Feynman)

swap



















0100
1000
0010
0001



















1000
0010
0100
0001

These are counterparts of standard logic
because all entries in arrays are 0,1



2*2 unitary gates
Controlled-Z



















−1000
0100
0010
0001

Z

Another
symbol

S 

















i000
0100
0010
0001

Controlled-
phase

These are truly
quantum logic gates

because not all entries
in arrays are 0,1



3*3 unitary gates

Toffoli



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

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
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00
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00
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00

10
01

This is a counterpart  of standard logic
because all entries in arrays are 0,1



3*3 unitary gates

Fredkin
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
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















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10
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00
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00
00

00
00

01
00

00
01

00
00

00
00

00
00

00
00

10
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00
00

00
00

00
00

00
00

10
01

This is a counterpart  of standard logic
because all entries in arrays are 0,1



Very Good NewsVery Good News
• Fortunately, the Toffoli gate may be

constructed by two-particle scattering
processes alone.

D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).
D. Deutsch, Proc. Roy. Soc. Lond. A 425, 73 (1989).
A. Barenco, D. Deutsch and A. Ekert, Phys. Rev. Lett. 74, 4083 (1995).
T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995).
D. Deutsch, A. Barenco and A. Ekert, Proc. Roy. Soc. Lond. A 449, 669 (1995).
S. Lloyd, ``Almost any quantum logic gate is universal,'' Los Alamos National
Laboratory preprint.

In particular, we show a construction here involving the XOR gate and some one-bit
gates.



   Multiple bit gates:  Multiple bit gates: main resultmain result
• The key observation here is the following:

Theorem: Any multiple qubit logic gate may be
composed from cnot and single qubit gates.

This is one of the most striking resultsmost striking results about
quantum logic gates, since there exists no universal
two-bit reversible classical logic gate.



Implementation of the Toffoli gate

U V V† V

V is any unitary operator satisfying V2 = U

The special case V = (1- i) (I + iX)/2 corresponds to the Toffoli gate

V2 = X



Implementation of the Toffoli gate using Hadamard, phase, Feynman and Π/8 gates

TH T† T† T H

T

T† T† S

equivalent

phase

Hadamard

Feynman ΠΠΠΠ/8



Concluding on Quantum Logic Model

• The inverter and Feynman gates can be realized with
Mach-Zender interferometer

•• Every QuantumEvery Quantum (unitary) function can be realized with
Feynman gates and 1*1 gates.

•• Every 3*3 unitary gateEvery 3*3 unitary gate can be realized with 6 gates; 2
Feynman gates and 4 1*1 gates

•• Every 3*3 classical logic reversible gateEvery 3*3 classical logic reversible gate can be realized
with a total of 5: 1*1 gates and 2*2 Feynman gates.



• Quantum XOR is sufficient for all logic operations
on a quantum computer

• Quantum XOR can be used to construct arbitrary
unitary transformations on any finite set of bits.

• Quantum gates have the same number of inputs
and outputs.
– they are not necessarily conservative.
– they are reversible.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. Smolin and H. Weinfurter,
``Elementary gates for quantum computation,'' submitted to Phys.
Rev. A 1995.



••Is quantum logicIs quantum logic
realizationrealization
practically possible?practically possible?

••When?When?



NSF seeks reliable quantum chip  processNSF seeks reliable quantum chip  process

                      By R. Colin Johnson                      By R. Colin Johnson
                      EE Times                      EE Times

                      (07/04/01, 11:30 a.m. EST)                      (07/04/01, 11:30 a.m. EST)

COLUMBUS, Ohio
— University researchers are aiming to craft a chip-

manufacturing technology that can serve any of the
diverse approaches to quantum computer architectures
now being proposed.

The $1.6 million, four-year effort, undertaken for the
National Science Foundation (NSF), hopes to come up
with a quantum-chip-making process that is
repeatable, reliable and attains good yields with room-
temperature operation.



"We want to achieve a"We want to achieve a manufacturable manufacturable process that process that
will work with any one of the quantum-computingwill work with any one of the quantum-computing
architectures being proposed today," said projectarchitectures being proposed today," said project
leader Paul R. Berger, an associate professor ofleader Paul R. Berger, an associate professor of
electrical engineering at  Ohio State University.electrical engineering at  Ohio State University.

The effort will be undertaken with the assistance ofThe effort will be undertaken with the assistance of
the University of Illinois atthe University of Illinois at Urbana Urbana-Champaign,-Champaign,
the University ofthe University of Notre Notre Dame, the University of Dame, the University of
California at Riverside, and the Naval and AirCalifornia at Riverside, and the Naval and Air
Force Research Laboratories.Force Research Laboratories.



   NSF's Nanoscale NSF's Nanoscale Science & Science &
Engineering Program  amassesEngineering Program  amasses
nearly $500 million in researchnearly $500 million in research
grants in variousgrants in various
nanotechnologynanotechnology areas, including areas, including
bothboth nanoscale nanoscale device and device and
system architectures.system architectures.

Quantum dots and single electron transistors
are not yet quantum logic, but it is also

coming



Very good news for
Reed-Muller People

•• Quantum XORQuantum XOR is the most important gate in
Quantum Logic

• Synthesis of Quantum Circuits will require
methods that are close to spectral and RM-
based.

•• New Logic Synthesis is neededNew Logic Synthesis is needed





Types of reversible logic

reversiblereversible
conservative

The same number of
inputs and outputs

Toffoli

Kerntopf

FredkinMargolus

Feynman

inverter

Double rail
inverter

Switch

Interaction

Sasao/Kinoshita
gates

Bubble memoryBubble memory
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Types of reversible logic

reversiblereversible
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Types of reversible logic

reversiblereversible
conservative

The same number of
inputs and outputs

Toffoli

Kerntopf

FredkinMargolus

Feynman

inverter

Double rail
inverter

Switch
Interaction

Sasao/Kinoshita
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optical



ConclusionsConclusions

• Use unitary matrices instead of truth tables.
• Compose and decompose unitary matrix to

unitary matrices.
• Complex numbers instead of binary.

– All our “algebra” was much simplified, but we
explained the principles quite precisely, enough
for programming compositions and
decompositions.



ConclusionsConclusions
• What we know as Kronecker Product is called Tensor

Product in Quantum Logic.
• Many similarities with spectral transforms and especially

Walsh can be found and used.
• Some spectral methods also use complex numbers.
• Hadamard gate and Hadamard transform.
• Quantum XNOR versus ESOP circuits and Kronecker

Decision Diagrams.
• Generalizations of Shannon Expansion to Quantum Logic.



ConclusionsConclusions
• In both classical reversible k*k logic and quantum logic,

analysis of the circuit is based on composing unitary
matrices.

• Synthesis of a circuit is based on decomposing a unitary
matrix to elementary quantum gates.

• Good news is that it is enough to use quantum XOR as the
only 2*2 gate and some 1*1 gates.

• Standard ways of decomposing 1*1 gates exist
• Quantum logic is linear, methods of Linearly Independent

Logic can be used
• We will soon publish synthesis methods for quantum logic

that are similar to the methods shown in our other paper
yesterday.


