Sensing / Perception

October 3, 2002

Class Meetings 12-13
Schedule Reminder

• Today: Makeup class for Tuesday, 10/1:
 1. Meeting until 6:10
 2. Or, Friday, 10/4, 9:00 – 10:00, room 223

• Remember: Assignment #3 due at beginning of next class (Oct. 8)
Today’s Objectives

• Understand various definitions related to sensing/perception
• Understand variety of sensing techniques
• Understand challenges of sensing and perception in robotics
“Old View” of Perception vs. “New View”

• Traditional ("old view") approach:
 – Perception considered in isolation (i.e., disembodied)
 – Perception “as king” (e.g., computer vision is “the” problem)
 – Universal reconstruction (i.e., 3D world models)
“New View” of Perception

Perception without the context of action is meaningless.

• Action-oriented perception
 – Perceptual processing tuned to meet motor activities’ needs
• Expectation-based perception
 – Knowledge of world can constrain interpretation of what is present in world
• Focus-of-attention methods
 – Knowledge can constrain where things may appear in the world
• Active perception
 – Agent can use motor control to enhance perceptual processing via sensor positioning
• Perceptual classes:
 – Partition world into various categories of potential interaction
Consequence of “New View”

• Purpose of perception is motor control, not representations

• Multiple parallel processes that fit robot’s different behavioral needs are used

• Highly specialized perceptual algorithms extract necessary information and no more.

Perception is conducted on a “need-to-know” basis
Complexity Analysis of New Approach is Convincing

• Bottom-up “general visual search task” where matching is entirely data driven:
 – Shown to be NP-complete (i.e., computationally intractable)

• Task-directed visual search:
 – Has linear-time complexity (Tsotsos 1989)
 – Tractability results from optimizing the available resources dedicated to perceptual processing (e.g., using attentional mechanisms)

• Significance of results for behavior-based robotics cannot be understated:
 – “Any behaviorist approach to vision or robotics must deal with the inherent computational complexity of the perception problem: otherwise the claim that those approaches scale up to human-line behavior is easily refuted.” (Tsotsos 1992, p. 140)

Primary Purpose of Perceptual Algorithms…

… is to support particular behavioral needs

• Directly analogous with general results we’ve discussed earlier regarding “hierarchical” robotic control vs. “behavior-based/reactive” robotic control
“Open-loop” vs. “Closed-loop” Control

• Closed-loop control system: Uses sensory feedback from results of its output to help compute subsequent controller outputs

• Open-loop control system: Does not use sensory feedback to evaluate the results of its actions
Sensing/Perception Definitions

- **Sensor**: Device that measures some attribute of the world

- **Transducer**: Mechanism that transforms the energy associated with what is being measured into another form of energy
 - Often used interchangeably with “sensor”

- **Passive sensor**: relies on environment to provide medium/energy for observation (e.g., ambient light for computer vision)

- **Active sensor**: puts out energy into the environment to either change energy or enhance it (e.g., laser in a laser range scanner)

- **Active sensing**: system for using an effector to dynamically position a sensor for a “better look”

- “Active sensor” ≠ “Active sensing”:
Sensor Modalities

• Sensor modality:
 – Sensors which measure same form of energy and process it in similar ways
 – “Modality” refers to the raw input used by the sensors

• Different modalities:
 – Sound
 – Pressure
 – Temperature
 – Light
 • Visible light
 • Infrared light
 • X-rays
 • Etc.
Logical Sensors

• Logical sensor:
 – Unit of sensing or module that supplies a particular percept
 – Consists of: signal processing from physical sensor, plus software processing needed to extract the percept
 – Can be easily implemented as a perceptual schema

• Logical sensor contains all available alternative methods of obtaining a particular percept
 – Example: to obtain a 360° polar plot of range data, can use:
 • Sonar
 • Laser
 • Stereo vision
 • Texture
 • Etc.
Logical Sensors (con’t.)

• Logical sensors can be used interchangeably if they return the same percept

• However, not necessarily equivalent in performance or update rate

• Logical sensors very useful for building-block effect -- recursive, reusable, modular, etc.
Behavioral Sensor Fusion

- **Sensor suite:** set of sensors for a particular robot

- **Sensor fusion:** any process that combines information from multiple sensors into a single percept

- **Multiple sensors used when:**
 - A particular sensor is too imprecise or noisy to give reliable data

- **Sensor reliability problems:**
 - **False positive:**
 - Sensor leads robot to believe a percept is present when it isn’t
 - **False negative:**
 - Sensor causes robot to miss a percept that is actually present
Three Types of Multiple Sensor Combinations

1. Redundant (or, competing)
 - Sensors return the same percept
 - Physical vs. logical redundancy:
 • Physical redundancy:
 – Multiple copies of same type of sensor
 – Example: two rings of sonar placed at different heights
 • Logical redundancy:
 – Return identical percepts, but use different modalities or processing algorithms
 – Example: range from stereo cameras vs. laser range finder
Three Types of Multiple Sensor Combinations (con’t.)

2. Complementary
 - Sensors provide disjoint types of information about a percept
 - Example: thermal sensor for detecting heat + camera for detecting motion

3. Coordinated
 - Use a sequence of sensors
 - Example: cue-ing or focus-of-attention; see motion, then activate more specialized sensor
Categorizing Perceptual Stimuli

- **Proprioception**: measurements of movement relative to the robot’s internal frame of reference (also called *dead reckoning*)
- **Exteroception**: measurements of layout of the environment and objects relative to robot’s frame of reference
- **Exproprioception**: measurement of the position of the robot body or parts relative to the layout of the environment

Frames of reference:

- Global frame of reference:
 - robot’s origin in robot’s frame of reference = (0,0,0)
 - robot’s origin in global frame of reference = \((x_{R0},y_{R0},z_{R0})\)
Physical Attributes of a Sensor

• Field of view (FOV) and range
 – FOV usually expressed in degrees
 – Can have different horizontal and vertical FOVs
 – Critical to matching a sensor to an application

• Accuracy, repeatability, and resolution
 – Accuracy: how correct the sensor reading is
 – Repeatability: how consistent the measurements are in the same circumstances
 – Resolution: granularity of result (e.g., 1 m resolution vs. 1 cm resolution)

• Responsiveness in the target domain
 – Environment must allow the signal of interest to be extracted
 – Need favorable signal-to-noise ratio
Physical Attributes of a Sensor (con’t.)

• Power consumption
 – On-board robot battery supplies limit power availability for sensors
 – Large power consumption less desirable
 – Generally, passive sensors have less power demands than active sensors

• Hardware reliability
 – Physical limitations may constrain performance (e.g., due to moisture,
 temperature, input voltage, etc.)

• Size
 – Has to match payload and power capabilities of robot
Computability Attributes of a Sensor

• **Computational complexity**
 – Estimate of how many operations the sensor processing algorithm requires
 – Serious problem for smaller robot vehicles

• **Interpretation reliability**
 – Software interpretation issues
 – Difficulty of interpreting sensor readings
 – Difficulty of recognizing sensor errors
Selecting Appropriate Sensor Suite

Desired attributes of entire sensory suite:

• Simplicity

• Modularity

• Redundancy (enables fault tolerance)
 – Physical
 – Logical
Today: Overview of Common Sensors for Robotics

• Note: our overview will be from the software functionality level

• For more hardware-related implementation details, see:

• Keep in mind:
 – All of these sensors have a variety of hardware implementations
 – Many hardware details affect capability and performance of sensors

• We won’t be discussing hardware design issues beyond general level of concept understanding
Major Categories of Sensors

- Proprioceptive
- Proximity
- Computer vision
- Mission-specific
Proprioceptive Sensors

• Sensors that give information on the internal state of the robot, such as:
 – Motion
 – Position (x, y, z)
 – Orientation (about x, y, z axes)
 – Velocity, acceleration
 – Temperature
 – Battery level

• Example proprioceptive sensors:
 – Encoders (dead reckoning)
 – Inertial navigation system (INS)
 – Global positioning system (GPS)
 – Compass
 – Gyroscopes
Dead Reckoning/Odometry/Encoders

• Purpose:
 – To measure turning distance of motors (in terms of numbers of rotations), which can be converted to robot translation/rotation distance

• If gearing and wheel size known, number of motor turns \rightarrow number of wheel turns \rightarrow estimation of distance robot has traveled

• Basic idea in hardware implementation:

Device to count number of “spokes” passing by
Encoders (con’t.)

• Challenges/issues:
 – Motion of wheels not corresponding to robot motion, e.g., due to wheel spinning
 – Wheels don’t move but robot does, e.g., due to robot sliding

• Error accumulates quickly, especially due to turning:

Red line indicates estimated robot position due to encoders/odometry/dead reckoning.

Begins accurately, but errors accumulate quickly
Another Example of Extent of Dead Reckoning Errors

- Plot of overlaid laser scans overlaid based strictly on odometry:
Inertial Navigation Sensors (INS)

• Inertial navigation sensors: measure movements electronically through miniature accelerometers

• Accuracy: quite good (e.g., 0.1% of distance traveled) if movements are smooth and sampling rate is high

• Problem for mobile robots:
 – Expensive: $50,000 - $100,000 USD
 – Robots often violate smooth motion constraint
 – INS units typically large
Differential Global Positioning System (DGPS)

• Satellite-based sensing system

• Robot GPS receiver:
 – Triangulates relative to signals from 4 satellites
 – Outputs position in terms of latitude, longitude, altitude, and change in time

• Differential GPS:
 – Improves localization by using two GPS receivers
 – One receiver remains stationary, other is on robot

• Sensor Resolution:
 – GPS alone: 10-15 meters
 – DGPS: up to a few centimeters
Example DGPS Sensors on Robots
DGPS Challenges

- Does not work indoors in most buildings
- Does not work outdoors in “urban canyons” (amidst tall buildings)
- Forested areas (i.e., trees) can block satellite signals
- Cost is high (about $30,000)
Proximity Sensors

- Measure relative distance (range) between sensor and objects in environment
- Most proximity sensors are active
- Common Types:
 - Sonar (ultrasonics)
 - Infrared (IR)
 - Bump and feeler sensors
Sonar (Ultrasonics)

- Refers to any system that achieves ranging through sound
- Can operate at different frequencies
- Very common on indoor and research robots
- Operation:
 - Emit a sound
 - Measure time it takes for sound to return
 - Compute range based on time of flight
Reasons Sonar is So Common

- Can typically give 360° coverage as polar plot
- Cheap (a few $US)
- Fast (sub-second measurement time)
- Good range – about 25 feet with 1” resolution over FOV of 30°
Sonar Challenges

• “Dead zone”, causing inability to sense objects within about 11 inches
• Indoor range (up to 25 feet) better than outdoor range (perhaps 8 feet)
• Key issues:
 – Foreshortening:
 – Cross-talk: sonar cannot tell if the signal it is receiving was generated by itself, or by another sonar in the ring
Sonar Challenges (con’t.)

• Key issues (con’t.)
 – Specular reflection: when wave form hits a surface at an acute and bounces away

 – Specular reflection also results in signal reflecting differently from different materials
 • E.g., cloth, sheetrock, glass, metal, etc.

• Common method of dealing with spurious readings:
 – Average three readings (current plus last two) from each sensor
Infrared (IR)

• Active proximity sensor
• Emit near-infrared energy and measure amount of IR light returned
• Range: inches to several feet, depending on light frequency and receiver sensitivity
• Typical IR: constructed from LEDs, which have a range of 3-5 inches
• Issues:
 – Light can be “washed out” by bright ambient lighting
 – Light can be absorbed by dark materials
Bump and Feeler (Tactile) Sensors

- Tactile (touch) sensors: wired so that when robot touches object, electrical signal is generated using a binary switch
- Sensitivity can be tuned (“light” vs. “heavy” touch), although it is tricky
- Placement is important (height, angular placement)
Computer Vision

• **Computer vision**: processing data from any modality that uses the electromagnetic spectrum which produces an image

• **Image**:
 – A way of representing data in a picture-like format where there is a direct physical correspondence to the scene being imaged
 – Results in a 2D array or grid of readings
 – Every element in array maps onto a small region of space
 – Elements in image array are called pixels

• **Modality determines what image measures**:
 – Visible light ➔ measures value of light (e.g. color or gray level)
 – Thermal ➔ measures heat in the given region

• **Image function**: converts signal into a pixel value
Types of Computer Vision

- **Computer vision includes:**
 - Cameras (produce images over same electromagnetic spectrum that humans see)
 - Thermal sensors
 - X-rays
 - Laser range finders
 - Synthetic aperture radar
Computer Vision is a Field of Study on its Own

• Computer vision field has developed algorithms for:
 – Noise filtering
 – Compensating for illumination problems
 – Enhancing images
 – Finding lines
 – Matching lines to models
 – Extracting shapes and building 3D representations

• However, behavior-based/reactive robots tend not to use these algorithms, due to high computational complexity
CCD (Charge Couple Device) Cameras

• **CCD technology:** Typically, computer vision on reactive/behavior-based robots is from a video camera, which uses CCD technology to detect visible light.

• **Output of most cameras:** analog; therefore, must be digitized for computer use.

• **Framegrabber:**
 – Card that is used by the computer, which accepts an analog camera signal and outputs the digitized results.
 – Can produce gray-scale or color digital image.
 – Have become fairly cheap – color framegrabbers cost about $300-$500.
• Color measurements expressed as three color planes – red, green, blue (abbreviated RGB)

• RGB usually represented as axes of 3D cube, with values ranging from 0 to 255 for each axis
1. Interleaved: colors are stored together (most common representation)
 – Order: usually red, then green, then blue

Example code:

```c
#define RED 0
#define GREEN 1
#define BLUE 2

int image[ROW][COLUMN][COLOR_PLANE];
...
red = image[row][col][RED];
green = image[row][col][GREEN];
blue = image[row][col][BLUE];
display_color(red, green, blue);
```
2. Separate: colors are stored as 3 separate 2D arrays

Example code:

```c
int   image_red[ROW][COLUMN];
int   image_green[ROW][COLUMN];
int   image_blue[ROW][COLUMN];

...  
red = image_red[row][col];
green = image_green[row][col];
blue = image_blue[row][col];
display_color(red, green, blue);
```
Challenges Using RGB for Robotics

• **Color is function of:**
 – Wavelength of light source
 – Surface reflectance
 – Sensitivity of sensor

• → **Color is not absolute;**
 – Object may appear to be at different color values at different distances to due intensity of reflected light
Better: Device which is sensitive to absolute wavelength

Better: Hue, saturation, intensity (or value) (HSV) representation of color

- **Hue**: dominant wavelength, does not change with robot’s relative position or object’s shape
- **Saturation**: lack of whiteness in the color (e.g., red is saturated, pink is less saturated)
- **Intensity/Value**: quantity of light received by the sensor
Representation of HSV

- **Hue**: 0-360 (wavelength)
- **Saturation**: 0-1 (decreasing whiteness)
- **Intensity**: 0-1 (increasing signal strength)
HSV Challenges for Robotics

• Requires special cameras and framegrabbers
• Very expensive equipment

• Alternative: Spherical Coordinate Transform (SCT)
 – Transforms RGB data to a color space that more closely duplicates response of human eye
 – Used in biomedical imaging, but not widely used for robotics
 – Much more insensitive to lighting changes
Region Segmentation

- **Region Segmentation**: most common use of computer vision in robotics, with goal to identify region in image with a particular color.

- **Basic concept**: identify all pixels in image which are part of the region, then navigate to the region’s centroid.

- **Steps**:
 - Threshold all pixels which share same color (thresholding).
 - Group those together, throwing out any that don’t seem to be in same area as majority of the pixels (region growing).
Example Code for Region Segmentation

for (i=0; i<numberRows; i++)
 for (j=0; j<numberColumns; j++)
 {
 if (((ImageIn[i][j][RED] >= redValueLow)
 && (ImageIn[i][j][RED] <= redValueHigh))
 && ((ImageIn[i][j][GREEN] >= greenValueLow)
 && (ImageIn[i][j][GREEN] <= greenValueHigh))
 && ((ImageIn[i][j][BLUE] >= blueValueLow)
 && (ImageIn[i][j][BLUE] <= blueValueHigh)))
 ImageOUT[i][j] = 255;
 else
 ImageOut[i][j] = 0;
 }

Note range of readings required due to non-absolute color values
Example of Region-Based Robotic Tracking using Vision
Another Example of Vision-Based Robot Detection Using Region Segmentation
Color Histogramming

- **Color histogramming:**
 - Used to identify a region with several colors
 - Way of matching proportion of colors in a region

- **Histogram:**
 - Bar chart of data
 - User specifies range of values for each bar (called buckets)
 - Size of bar is number of data points whose value falls into the range for that bucket

- **Example:**
Color Histograms (con’t.)

• Advantage for behavior-based/reactive robots: Histogram Intersection
 - Color histograms can be subtracted from each other to determine if current image matches a previously constructed histogram
 - Subtract histograms bucket by bucket; different indicates # of pixels that didn’t match
 - Number of mismatched pixels divided by number of pixels in image gives percentage match = Histogram Intersection

• Useful for detecting affordances

• This is example of local, behavior-specific representation that can be directly extracted from environment
Range from Vision

• Perception of depth from stereo image pairs, or from optic flow

• Stereo camera pairs: range from stereo

• Key challenge: how does a robot know it is looking at the same point in two images?
 – This is the correspondence problem.
Simplified Approach for Stereo Vision

- Given scene and two images
- Find interest points in one image
- Compute matching between images (correspondence)
- Distance between points of interest in image is called disparity
- Distance of point from the cameras is inversely proportional to disparity
- Use triangulation and standard geometry to compute depth map

- Issue: camera calibration: need known information on relative alignment between cameras for stereo vision to work properly
Example of Computing Depth from Multiple Images

Robot Team: 4 ATRV-mini robots (Manuf: RWI/iRobot)
 - Named (after Roman Emperors): Augustus, Constantine, Theodosius, Vespasian

Sensors:
 - 2 robots: PTZ camera
 - 2 robots: SICK laser
 - Compass/inclinometer
 - DGPS
 - Sonar
Example Results of Depth Maps

Augustus:

- Actual scene
- Depth map
- Depth covariance

Theodosius:
Preview of Next Class (Tuesday, Oct. 8th)

- More about Computer Vision robotic applications

- Conclusions of Sensing/Perception

- Representational Issues for Behavior-Based Robotics