
Understanding and Communicating Multimodal Transportation Data	 91

Working with Time in R 23
This activity orients you with time class operations, time string and time plotting functions in R. This is a
somewhat tricky topic, mostly because of the way that the basic packages within R handle time operations.
This activity exposes some of the intricacies of time class operations and introduces the lubridate package
which takes the complexity of working with time and simplifies the scripting process by generating more
intuitive functions for working with time.

Purpose Learning Objective
The purpose of this activity is to familiarize
you with POSIXlt and “POSIXct” time classes
operations in R, and ways to format and convert
time objects, and plot with time series axes by
using R.

To develop an understanding of how R stores and
displays time-based data and some techniques for
manipulating, displaying and modifying.

Required Resources Time Allocated

•	 R, R Studio
•	 R code on working with time
•	 Packages: RODBC and lubridate

60 minutes out-of-class

Tasks

“POSIXlt” and “POSIXct” are two main classes that represent calendar dates and time to the nearest
second. Class “POSIXct” is a numeric vector that represents the (signed) number of seconds since
the beginning of 1970. Think of “ct” as continuous time. An object that is POSIXct is stored in R as a
decimal, in seconds since 1-1-1970.

When you plot time or look at the data at the R prompt, R knows this is a time/date and displays it in a
more human readable format: POSIXlt. A POSIXlt is a vector of characters that represent time (e.g.,
month, day, hour, second, timezone, etc). With the POSIXlt class you can control the format or order
of how the characters are displayed (e.g., MM-DD-YY or YYYY-Month). Think of this like changing
the “format” of date/time cells in Excel. You can convert from one to the other pretty easily (and R is
usually fairly smart about it), or you can use the functions to explicitly make conversions. For example,
as.POSIXlt() converts POSIXct class values to POSIXlt values.

As mentioned in the introduction to this activity, there is a package available that greatly reduces the
complexity of working with time by making the process more intuitive. A prime example of this is the
function now() which returns the system time the same as Sys.time() and today() which returns
the same value as Sys.date(). The following sections describe both the R way of working with time
and the lubridate simplification.

Let’s start with a sample working with time.

 Sys.time()

This function returns the system’s idea of the current date with time.

[1] “2012-07-04 11:58:47 PM”

92	 Understanding and Communicating Multimodal Transportation Data

Activity 23: Working with Time in R

Similarly Sys.Date()_ returns the date without the time.

[1] “2012-07-04”

Logical comparisons and limited arithmetic are available for both POSIXlt and POSIXct. One can add
or subtract a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to using the function difftime. Be aware that POSIXlt objects will be
interpreted as being in the current time zone for these operations, unless a time zone has been specified.

A.	 Paste Function

You have not yet seen this, but the paste function is very helpful for “adding” strings and variables
together to form a new string. Try this code in R

string <- paste (“hello”, “world”, sep=” “)

print (string)

text1 <- “hello”

text2 <- “world”

print (paste (text1, text2, sep=” “)

You can use this function so many ways; it will be a common tool in your toolbox!!

B.	 Convert and Format

Numeric input is first converted to class POSIXct. Similarly, character input is first converted to class
POSIXlt by strptime function. Try the following two lines of code:

str(as.POSIXct(strptime(paste(“02/28/92”,”07:03:20”),“%m/%d/%y
%H:%M:%S”)))

str(as.POSIXlt(as.POSIXct(699260600,origin=ISOdateti
me(1970,01,01,0,0,0))))

Either format or as.character converts both POSIXlt and POSIXct to character vectors.
Conversion to and from character strings require definition of which values are days, months, AM/
PM indicator and separators in formats such as %x. A full list of the multitude of character options
can be viewed using ?strptime. Let’s explore some of the options!

First, let’s see what time it is:

Sys.time()

Notice how the format is “Year-Month-Day Hour-Minute-Second”? This is the standard form and is
coded like this:

format(Sys.time(), format=”%Y-%m-%d %H:%M:%S”)

To rearrange the values or change what time format is displayed, change the character to the wanted
outcomes within the formal argument format=” ” demonstrated by the following examples;

24-Hour Clock:

format(Sys.time(), format=”%m-%d-%Y %H:%M:%S”)

12-Hour Clock with AM/PM:

format(Sys.time(), format=”%m-%d-%Y %I:%M:%S %p”)

Understanding and Communicating Multimodal Transportation Data	 93

Activity 23: Working with Time in R

Numerical Month:

format(Sys.time(), format=”%m”)

Abbreviated Month Name:

format(Sys.time(), format=”%b”)

Full Month Name:

format(Sys.time(), format=”%B”)

Redundant:

format(Sys.time(), format=”%Y-%y %B”)

Lubridate simplifies the conversion of dates with the use of a function in the form of

ymd_hms()

Use of this function format simplifies the formatting of time and dates while still allowing for diverse
options regarding the formatting of time found within the basic R packages. Lubridate refers to
these functions as parsing and recognizes y as year, m as month, and d as day. Similar to the basic
R functions, lubridate uses h as hour, m as minute, and s as second. Although possibly confusing
the double use of m, lubridate uses a function structure as opposed to the argument used by the
strptime() function within the basic R packages. A list of the parsing functions can be found using
the help call, ?lubridate. In some situations, text character strings need to be defined as POSIXlt
or POSIXct time classes. To do this, use the strptime() function to define how the text string is
structured. For example, if the text string is “July 4, 2012” then the command in R would be:

strptime(“July 4, 2012”, “%B %d, %Y”)

The important thing to remember when converting text strings to POSIXct or POSIXlt classes is
that the spaces and delimiters like commas are necessary in the object argument of the function. In
the above example, the comma is after the day of the month, just as it is in the original text string.

The result of converting text strings without class specification is POSIXlt. However, as already
demonstrated, a simple conversion can be completed to define the class as POSIXct. Now change
the code in the script provided, getting comfortable with converting text strings and format changes.

If a numeric representation is given, the ISOdatetime() function can generate a POSIXct class.
The function is relatively simple, requiring only integer entries for the object arguments. Or,

ISOdatetime(2012,07,04,14,0,0,tz = ””)

Which returns,

[1] “2012-07-04 14:00:00 PDT

Use the provided script to explore the use of the vector generating functions to create a series of
POSIXct time classes.

C.	 Time Zone

In the previous task we changed the format of the date and time without consideration of the time
zone. R assumes the current time zone unless otherwise specified (tz=””).

With POSIXlt the time zone is an item in the list or,

Activity 23: Working with Time in R

94	 Understanding and Communicating Multimodal Transportation Data

POSIXlt(x,”EST”)

With POSIXct the time zone is an attribute that you can define or,

POSIXct(x,tz=” ”)

Beware that some operations will cause vectors to lose their attributes. This means that if you have
defined a time zone (i.e., tz=”GMT”), you could lose it and R will revert to the current time zone.
Always double-check your plots to ensure that the hours are correct (this includes daylight savings
time effects). For example,

as.POSIXct(1472562988, origin=”1965-01-01”, tz=”GMT”)

[1] “2011-08-31 13:16:28 GMT”

as.POSIXct(1472562988, origin=”1965-01-01”, tz=””)

[1] “2011-08-31 14:16:28 PDT”Since the UTC does not undergo changes like daylight savings, an
unwanted change in the time could occur as shown above.

As is demonstrated by the use of as.POSIXct function, the assignment of an origin is required to
establish a time datum. In lubridate, the origin date (1970-01-01 00:00:00 UTC) is assigned as origin
for convenience. All numeric representations of time and dates are based on this datum without the
necessity of forcing an origin. If a different origin is wanted or warranted, the use of the as.POSIXct
function can provide the appropriate change. Another difference between the basic R time package
and lubridate is with respect to the establishment of a time zone. The majority of functions within the
lubridate package generate values based on UTC, but can be changed by the with_tz() function
within lubridate. If the only change that is wanted is to change the time zone element the function
force_tz() can be used. However, it should be noted that the time difference between time zones
will change as it does with the use of the with_tz() function. Explore the differences between these
two functions within the R script provided for this discovery exercise.

D.	 Plot in Time Series Axes

Now to make plot() do what you want, you have to learn make “custom” axes. It is good to think
of figure creation in R as “painting.” Each command you issue adds that element to the plot. When R
creates a plot, the first thing it does is draw the plot region. This is scaled to the data (though you can
control with xlim and ylim options). If you suppress the x-axis, you can “paint” on your own, but
you have to tell R where to put the tick marks and what to label the ticks with. The axis will be at the
same scale as the figure region you created. This might make sense when you run the script.

All three plots represent data in time series. With the axis function, you can get more control of labels
and their positions. (See Figure 43.)

E.	 Generate Data with Time Parameters

In the previous sections of this activity we explored how to convert and work with time. Therefore,
in this final section we will apply what we have learned to the loop dataset. Let’s start with a plot of
the subset data from the most recent section.

plot(ll$starttime, ll$volume)

We can see from the daily data that volume decreases after midnight and increases throughout the
morning and into the late afternoon where the volume begins to decrease steadily. Is this indicative
behavior of OR-217 SB for a weekday? To answer that, plot a week’s worth of data from February.

Activity 23: Working with Time in R

Understanding and Communicating Multimodal Transportation Data	 95

loopfeb<-subset(loop, starttime < force_tz(ymd(20090210), “America/Los_
Angeles”)

 & starttime >= force_tz(ymd(20090203),

 “America/Los_Angeles”))

plot(loopfeb$starttime, loopfeb$volume)

Describe the differences between the previous two plots and provide suggestions for similarities.

To take this one step further we can use lubridate to further narrow down the data without having to
the generate a looping function. Instead we can use the hour() function to generate a look into the
afternoon hours of the week of 2/3/2009- 2/10/2009. This is accomplished with the following script:

lll<-subset(loop, hour(starttime) >=14 & hour(starttime) < 18

 & starttime < force_tz(ymd(20090210),

 “America/Los_Angeles”)

 & starttime >= force_tz(ymd(20090203),

 “America/Los_Angeles”))

Figure 43 Plots showing R time

Activity 23: Working with Time in R

96	 Understanding and Communicating Multimodal Transportation Data

After plotting the data, we see the
volumes between the hours of
2:00PM and 6:00PM for every day
within the week of data (Figure 44).

F. Create a Plot
Your final task is to generate a plot
of the speed data for the first two
weeks of February speed data us-
ing the loop dataset. Only include
weekdays. Briefly discuss the ba-
sic descriptive statistics (i.e., mean,
standard deviation) detailed analy-
sis is not required. In order to de-
tect differences, try to plot both time
series on the same graph or arrange
them so that you can see differences

Deliverable

Submit the cleaned R code generating the work week subsets and basic statistics to the class website
dropbox.

Assessment

This is a discovery activity where you put together a variety of things you have learned to this point.
Don’t worry about going into detail about why it worked (assuming it did), but do upload your R code,
cleaned up and commented upon, to the class dropbox.

Activity 23 Grading Rubric

 Excellent (10) Good (8) Poor (6) NONE

Script Organized, complete,
accurate and executes.

Missing minor parts,
but executes and is
otherwise organized
and accurate.

Missing significant portions
of the activity, unorganized,
inaccurate, but executes.

Code does
not execute

Annotation Annotations are
complete and describe
what the code is
accomplishing.

Some annotations are
incomplete or do not
describe what the code
is accomplishing.

No annotations were
provided.

Code does
not execute

Commentary Demonstrated active
engagement with
exploring the various
options of the functions
within the activity.

Demonstrated some
minor changes to the
instructors code.

No changes and thus
no commentary that
demonstrates active
engagement with exploring
the options within the
activity.

Code does
not execute

Figure 44 Volume on SB OR-217at OR-10 2:00PM-6:00PM in five
 minute intervals for a seven day period

Activity 23: Working with Time in R

