
Understanding and Communicating Multimodal Transportation Data 83

Activity 20: Connecting to the Class Database via RODBC and PostgresSQL Drivers

using r With PostgresqL 21
Now that the connection between PostgreSQL and R has been established, access to the remaining data sets
is available. More significantly, the data from PostgreSQL can be queried and aggregated as needed rather
than requiring R to process through all the data. This saves programming and processing time, an important
consideration for projects that, even when narrowed, contain substantial amounts of data.

PurPose LeArning objective
The purpose of this activity is to introduce some ap-
plications of sqlQuery() and allow you to explore the
connection between R and PostgreSQL with empha-
sis in querying and aggregating information.

Use SQL queries to pull data from SQL
based resources into R.

required resources time ALLocAted

• R, R Studio
• ODBC connection to PostgreSQL

60 minutes in class

tAsks

A. Install and Load the RODBC Package

To make a call to RODBC we use this set of commands:

channel <- odbcConnect(“ce510”, uid=”ce510”)

qry <- “ SELECT * FROM wim.wimdata WHERE timestamp >= ‘08-08-2009’ AND
timestamp < ‘08-09-2009’”

wim <-sqlQuery(channel, qry)

Channel opens the connection to the ODBC driver you set up in Activity 20. The first “ce510”
in the odbconnect() call is the name of the driver in your windows ODBC library. This is the
“Datasource” you named. The uid=”ce510” is the name of the user that is authorized to access
the PostgreSQl database. This is the user name you set in Activity 20. The variable qry <- is just
a holder of the text string to pass to the database. The line wim <-sqlQuery(channel, qry)
calls the sqlQuery () function, passes the text in qry to the channel, then stores the return in a
dataframe that will be named wim. For the most part, the datatypes will be handled much better in this
rather than reading. For the most part, the datatypes will be handled much better using RODBC than
when reading the files in from CSV or other text file.

B. R Operations or SQL Operations

You can be ambidextrous when deciding whether to use R or SQL. In this activity, we will show you
some simple comparisons of R and SQL operations. Before we start, it is helpful to narrow the date
range in the WIM data frame since we may not want to query in all records (there are 1.4 million!)

qry <- “ SELECT min(timestamp), max (timestamp) FROM wim.wimdata “

range <-sqlQuery(channel, qry)

84 Understanding and Communicating Multimodal Transportation Data

Activity 21: Using R with PostgresSQL

So, for the purposes which follow, lets read in the data from the wim schema for the WIM records for
just one day

qry <- “ SELECT * FROM wim.wimdata WHERE timestamp >= ‘08-08-2009’ AND
timestamp < ‘08-09-2009’”

wim <-sqlQuery(channel, qry)

plot (wim$timestamp, wim$gvw)

We can easily add another criteria to the SELECT statement to be only type 11 trucks (5-axle semis)

qry <- “ SELECT * FROM wim.wimdata WHERE timestamp >= ‘08-08-2009’ AND
timestamp < ‘08-09-2009’ AND type=’11’”

wim.11 <-sqlQuery(channel, qry)

You could also do this in R from the original wim dataframe

wim.11R <- subset(wim, type==11)

In R Studio workspace, using the number of records, confirm that the subsets are the same.
Alternatively, use plots:

par (mfrow=c(1,2))

plot (wim.11$timestamp, wim.11$gvw, main=paste(“Num Recs”, nrow(wim.11),
“\nAvg GVW”, mean(wim.11$gvw)))

plot (wim.11R$timestamp, wim.11R$gvw, main=paste(“Num Recs”,
nrow(wim.11R), “\nAvg GVW”, mean(wim.11R$gvw)))

Figure 39

Note that since each record is a truck, we can count up records to get flow

qry <- “ SELECT hour, COUNT(hour) FROM wim.wimdata WHERE timestamp >=
‘08-08-2009’ AND timestamp < ‘08-09-2009’ GROUP BY hour”

wim5 <-sqlQuery(channel, qry)

barplot (wim5$count, names.arg=wim5$hour) # hours not in order!

Understanding and Communicating Multimodal Transportation Data 85

Activity 21: Using R with PostgresSQL

qry <- “ SELECT hour, COUNT(hour) FROM wim.wimdata WHERE timestamp >=
‘08-08-2009’ AND timestamp < ‘08-09-2009’ GROUP BY hour ORDER BY hour”

wim5 <-sqlQuery(channel, qry)

In R, we can use the table function to count

table (wim$hour)

If you want to turn the table return into a data frame, use the following syntax
wim5R <- as.data.frame(table (wim$hour))

names(wim5R) <- c(“hour”,”count”)

str(wim5R)

Show plots
par (mfrow=c(1,3))

barplot (wim5$count, names.arg=wim5$hour)

barplot (wim5R$count, col=”dodgerblue”) #use the dataframe

barplot (table (wim$hour), col=”green”) #just use the table function
return

Figure 40

Use SQL to calculate average GVW by station
qry <- “ SELECT stationnum, avg(gvw) AS avggvw FROM wim.wimdata WHERE
timestamp >= ‘08-08-2009’ AND timestamp < ‘08-09-2009’

GROUP BY stationnum

ORDER BY stationnum”

gvwbysta <-sqlQuery(channel, qry)

barplot (gvwbysta$avggvw, names.arg=gvwbysta$stationnum)

Doing aggregate operations in R is also easy (see Dalgaard, page 75 for more tips). A built-in function
called tapply does the grouping operation over any function that you can apply.

tapply (wimgvw, wimstationnum, mean)

It takes the variable gvw, groups it by stationnum, then applies whatever function you specify (here,
the mean). There is no limit to the types of operations that can be applied using tapply hence it is
more flexible than the SQL aggregate options.

Activity 21: Using R with PostgresSQL

86 Understanding and Communicating Multimodal Transportation Data

par (mfrow=c(1,2))

barplot (gvwbysta$avggvw, names.arg=gvwbysta$stationnum)

barplot(tapply (wimgvw, wimstationnum, mean), col=”dodgerblue”)

Figure 41

C. Group Collaborations

Now it is your turn to try to show your skills working with SQL and R selection and grouping methods.
Working with a partner, you will assigned by the instructor one of the data sets to explore further. We
will post these codes to a Google doc so that the instructor can share your code with the class.

First, after being assigned the data frame select the variable that appears most interesting to you.
Write a SQL statement to select “ALL” of the records. You will then show how these records could
be subset in SQL and R, how the GROUP BY and table functions return the same values, and how
the GROUP BY aggregate functions (avg, stddev, sum, variance, min, max) and match with the
tapply options in R. To “prove” they match you are required to make the comparison plots in R as
shown in the script examples.

The instructor will give you the data set (incident, trimet, loopdetector, weather, bicycle). Your team
should browse the tables and select the primary variable to work with and what a logical subset and
grouping variable should be. In the example, we picked gvw and subset by type (after limiting to
trucks for one day). Your script needs to produce, in a 2 column by 3 row arrangement, the following
comparisons (based on the sample R script):

SQL STATEMENT R OPERATIONS

PLOT 1 : SELECT A SUBSET OF RECORDS PLOT 2 :subset (df, criteria)

PLOT 3 :SELECT COUNT() GROUP BY PLOT 4 :table (df$col)

PLOT 5: SELECT GROUP BY AGGEGATE
FUNCTION

OPTIONS = avg, stddev, sum, variance,
min, max

PLOT 6: tapply (df$variable, df$groupby, fun)
OPTIONS FOR fun = mean, sd, sum, var, min,
max

The corresponding R Script for the activity includes sample code of what would this look like for the
following options:

1. Data set: wim
2. Selection of “ALL” records= all trucks from August 8, 2009

Activity 21: Using R with PostgresSQL

Understanding and Communicating Multimodal Transportation Data 87

3. Subsetting variable = trucks where type=11
4. Grouping variable = hour

Figure 42

Deliverable

A completed R code posted on the Google doc and your explanation shared with the class.

assessment
Participation!

Activity 21: Using R with PostgresSQL

88 Understanding and Communicating Multimodal Transportation Data

Student Notes

Activity 21: Using R with PostgresSQL

