
Understanding and Communicating Multimodal Transportation Data 71

Activity 17: Code Sharing

thinking Like A comPuter: Pseudo-coding & Functions 18
Sometimes it is helpful prior to tackling writing code to spend just a minute and think about the problem
and then jot down the general steps that you need to accomplish in order to complete the task. This pseudo-
code need not be written in syntax but can provide a map that helps you to accomplish the code. The key to
successfully turning your map into code will be to link these steps with what you know about R so far. The
other key is to recognize that a computer script will only do what you tell it! We will also write our own
functions in this activity.

PurPose LeArning objective
The purpose of this activity is to help facilitate think-
ing like a computer (i.e., in logical step sequence).
You will also reinforce the looping logic and vector
applications by writing the code for yourself.

• Step-by-step thinking and analysis
• Pseudo-coding
• Writing functions

required resources time ALLocAted

• R, R Studio
• TriMet dataframe

50 minutes in class

tAsks
This activity begins assuming R Studio is open.

If not, please start R Studio and open the sample script for the activity (if provided).

A. Control Structures

Control structures such as loops and if-then statements are easy ways to control the execution of a
set of commands. R’s indexing of vectors make looping through code to generate plots very easy.
Dalgaard has a quick summary on page 336.

Loops are the first syntax:
--

5 – Control Structure

#--

Loops

#+++++++++++++++++++++++++++++++

for (j in 1:4){

print (j)

}

This loop will execute the code between the {} four times. Each time j gets incremented when step
(e.g., j=1, j=2, j=3, and j=4).

 Note you do not need to initialize the loops with a j=1 or add a j+1 at the last step nor does the code
after the in statement need to be sequential. Let’s look at this for statement:

x <- 1:10

72 Understanding and Communicating Multimodal Transportation Data

y <- 1:10

col.list <- c(“red”, “blue”, “green”)

par (mfrow=c(1,3))

for (k in col.list) {

 plot (x,y, col=k, main=k, pch=16)

 }

The table shows the number of steps in the loop and the value of k in each step. See how the value of
k changes based on the loop step? The resulting plot is shown below (Figure 35).

Start of Loop Step 1 Step 2 Step 3

Value of k null red blue green

col.list col.list[1] col.list[2] col.list[3]

Figure 35 Plot outputs from sample loop code

Conditional statements such as if-then are the next most common control structure. R’s syntax for
defining your own function in code looks like this;

#if then conditions

#+++++++++++++++++++++++++++++++

#if (condition is TRUE){

do

} else {

#do this

}

mileposts<- c(22.1, 25.2, 43, 29.1,29.2,26.3)

for (j in 1:length(mileposts)) {

 if (mileposts[j]<27) {

 print(“too slow”)

 } else {

 print(“too fast”)

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

Understanding and Communicating Multimodal Transportation Data 73

 }

 }

In this code, R loops three times and evaluates mileposts[j]. If it is less than 27, it prints the
logical evaluation of mileposts[j]. If this condition is not met, it executes the code in the else
{} braces. A common error is not including the correct matching braces. R Studio highlights the
matching pairs.

B. Functions

You have already seen built-in functions in R such as:

plot(x,option1=1, option2=2,option3=3)

The plot function takes the input x and returns a plot. Any options are also specified and passed to
the function.

It is easy to write your own function in R. R’s syntax for defining your own function in code looks
like this:

testfunc <- function(x,y){

 z <- x + y

 return (z)

}

#testfunc is created (see object appear in R studio objects)

testfunc(3600,86400)

Here testfunc is created as a function. It takes inputs x and y, executes the code enclosed by { } and
returns the output of z. The return is optional, but is required if you have something specific you want
the function to return. This is because the value of z is not stored by R (it will not show in your R
Studio workspace, it is internal to the function operation).

A function will be helpful if you are planning to repeat a set of code again and again. It is helpful
to first write working code, identify the variables you might want the function to take as input, then
create the function.

C. Good Practice: Write Psuedo Code

I often find it is helpful to spend just a minute and think about the code I am trying to write. If you
remember to think like a computer this will easily translate to code. Obviously the program will only
do what you tell it.

Let’s return to the code you wrote for the last activity using the data frame trimet.

1. Create a new R script file for this activity, copy the commands to load the trimet data frame
and load the data from the course website.

You’ve been asked to create a function that creates plots for an entire day that show (1) pattern
distance vs. load, (2) pattern distance vs. dwell, (3) pattern distance vs. max speed. You need to create
these 3 plots for AM peak (6AM-9AM), off-peak (9AM-4PM), and PM peak (4PM-7PM). The user
of your function will also want to specify direction.

If I wanted to write the pseudo-code it might look something like this :

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

74 Understanding and Communicating Multimodal Transportation Data

1. Read in the trimet data table

2. Subset data frame

a. To user specified date (service_day) and to user specified (direction).

i. To AM Peak (leave_time >= 6*3600 and < 9*3600)

ii. To Mid Day (leave_time >= 9*3600 and <= 16*3600)

iii. To PM peak (leave_time >= 16*3600 and <= 19*3600)

3. Arrange a 3 column by 3 column plot window

4. Check the y and x ranges of each so the plot will be on the same scale.

5. Plot

a. From data set (i), pattern_dist vs est_load, pattern_dist vs dwell, pattern_dist vs max_
speed for AM peak.

b. From data set (ii), Plot pattern_dist vs est_load, pattern_dist vs dwell, pattern_dist vs
max_speed for mid-day

c. From data set (iii), pattern_dist vs est_load, pattern_dist vs dwell, pattern_dist vs max_
speed for PM peak.

6. Label the plots with service_day and direction

When I first translate my code and look at the plots, I notice that I missed step 4. If I don’t check the
range for entire data set, I won’t be able to easily compare the plots for each day. I have a decision
to make: Do I want the ranges to vary by day or should i hard code them so that each day looks the
same? Right now, I opt for each day to be different.

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

Understanding and Communicating Multimodal Transportation Data 75

The base code looks like this:

day <- subset(trimet, service_day==”2007-03-08” & direction==0)

am <- subset(day, leave_time >= 6*3600 & leave_time< 9*3600)

mid <- subset(day, leave_time >= 9*3600 & leave_time < 16*3600)

pm <- subset(day, leave_time >= 16*3600 & leave_time < 19*3600)

#Find the range for the plots, hard code some after inspection

x.dist <- range (day$pattern_dist)

y.load <- range (day$est_load)

y.dwell <- c(0,200)

y.speed <- c(0,60)

par (mfrow=c(3,3), oma=c(1,1,3,1)) #set up 3x3 plot window and create
an outer margin to label all the plots with oma

plot (am$pattern_dist, am$est_load, xlim=x.dist, ylim=y.load)

plot (am$pattern_dist, am$dwell, main=”AM Peak”, xlim=x.dist, ylim=y.
dwell)

plot (am$pattern_dist, am$max_speed, xlim=x.dist, ylim=y.speed)

plot (mid$pattern_dist, mid$est_load, xlim=x.dist, ylim=y.load)

plot (mid$pattern_dist, mid$dwell, main=”Mid-day”, xlim=x.dist, ylim=y.
dwell)

plot (mid$pattern_dist, mid$max_speed, xlim=x.dist, ylim=y.speed)

plot (pm$pattern_dist, pm$est_load, xlim=x.dist, ylim=y.load)

plot (pm$pattern_dist, pm$dwell, main=”PM Peak”, xlim=x.dist, ylim=y.
dwell)

plot (pm$pattern_dist, pm$max_speed, xlim=x.dist, ylim=y.speed)

#label the plot sets

mtext (line=0, “service_day==2007-03-08 & direction==0” , outer=TRUE,
font=2)

You could make a few more tweaks but seems to be useful and working for one day and direction.

To turn this into a function, what are the things that will need to change for each set of plots?

Circle those items in the code above before going on to the page.

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

76 Understanding and Communicating Multimodal Transportation Data

What needs to be changed is highlighted:

day <- subset(trimet, service_day==”2007-03-08” & direction==0)

am <- subset(day, leave_time >= 6*3600 & leave_time< 9*3600)

mid <- subset(day, leave_time >= 9*3600 & leave_time < 16*3600)

pm <- subset(day, leave_time >= 16*3600 & leave_time < 19*3600)

#Find the range for the plots, hard code some after inspection

x.dist <- range (day$pattern_dist)

y.load <- range (day$est_load)

y.dwell <- c(0,200)

y.speed <- c(0,60)

par (mfrow=c(3,3), oma=c(1,1,3,1)) #set up 3x3 plot window and create
an outer margin to label all the plots with oma

plot (am$pattern_dist, am$est_load, xlim=x.dist, ylim=y.load)

plot (am$pattern_dist, am$dwell, main=”AM Peak”, xlim=x.dist, ylim=y.
dwell)

plot (am$pattern_dist, am$max_speed, xlim=x.dist, ylim=y.speed)

plot (mid$pattern_dist, mid$est_load, xlim=x.dist, ylim=y.load)

plot (mid$pattern_dist, mid$dwell, main=”Mid-day”, xlim=x.dist, ylim=y.
dwell)

plot (mid$pattern_dist, mid$max_speed, xlim=x.dist, ylim=y.speed)

plot (pm$pattern_dist, pm$est_load, xlim=x.dist, ylim=y.load)

plot (pm$pattern_dist, pm$dwell, main=”PM Peak”, xlim=x.dist, ylim=y.
dwell)

plot (pm$pattern_dist, pm$max_speed, xlim=x.dist, ylim=y.speed)

#label the plot sets

mtext (line=0, “service_day==2007-03-08 & direction==0” , outer=TRUE,
font=2)

So, we just have to figure out how to get R to the subset by accepting a variable as the logic for the
subset. Fortunately, this is easy:

day.plt <- ‘2007-03-08’

dir.plt <- 0

test <- subset(trimet, service_day==day.plt & direction==dir.plt)

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

Understanding and Communicating Multimodal Transportation Data 77

Now let’s rewrite our code as a FUNCTION

trimet.plot <- function (df, day.plt, dir.plt) {

 day <- subset(df, service_day==day.plt & direction==dir.plt)

 am <- subset(day, leave_time >= 6*3600 & leave_time< 9*3600)

 mid <- subset(day, leave_time >= 9*3600 & leave_time < 16*3600)

 pm <- subset(day, leave_time >= 16*3600 & leave_time < 19*3600)

 x.dist <- range (day$pattern_dist)

 y.load <- range (day$est_load)

 y.dwell <- c(0,200)

 y.speed <- c(0,60)

 par (mfrow=c(3,3), oma=c(1,1,3,1))

 plot (am$pattern_dist, am$est_load, xlim=x.dist, ylim=y.load)

 plot (am$pattern_dist, am$dwell, main=”AM Peak”, xlim=x.dist, ylim=y.
dwell)

 plot (am$pattern_dist, am$max_speed, xlim=x.dist, ylim=y.speed)

 plot (mid$pattern_dist, mid$est_load, xlim=x.dist, ylim=y.load)

 plot (mid$pattern_dist, mid$dwell, main=”Mid-day”, xlim=x.dist,
ylim=y.dwell)

 plot (mid$pattern_dist, mid$max_speed, xlim=x.dist, ylim=y.speed)

 plot (pm$pattern_dist, pm$est_load, xlim=x.dist, ylim=y.load)

 plot (pm$pattern_dist, pm$dwell, main=”PM Peak”, xlim=x.dist, ylim=y.
dwell)

 plot (pm$pattern_dist, pm$max_speed, xlim=x.dist, ylim=y.speed)

 #label the plot sets

 mtext (line=0, paste(“service_day==”, day.plt, “ & direction==”, dir.
plt) , outer=TRUE, font=2)

}

This function takes three inputs (df, day.plt, dir.plt) and assigns them to these respective values
in the function code. You can follow this in the code with color coding. Now to create our six plots,
all that is required is:

trimet.plot (df=trimet, day.plt=’2007-03-05’, dir.plt=0)

Experiment with changing the date and direction. We will work as a class to turn this into a loop!

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

78 Understanding and Communicating Multimodal Transportation Data

deLiverAbLe

None, but save your R script file.

Assessment

None

Activity 18: Thinking Like a Computer: Pseudo-coding & Functions

