Logistic Regression

Reading:

X. Z. Fern’s Notes on Logistic Regression

(linked from class website)
Discriminative vs. Generative Models

• Discriminative: NN, SVM, Logistic Regression

• Generative: Naïve Bayes, Markov Chains, etc.

• E.g.: http://projects.haykranen.nl/markov/demo/

• E.g., how could you use a Naïve Bayes model to learn to generate spam-like messages?

• How could you use one to fool spam detectors?
Learning Probabilistic Models

Goal is to learn a function mapping an instance
\(x = (x_1, \ldots, x_n) \) to a probability distribution over classes \(y \)

I.e., learn \(P(y \mid x) \)
Softmax

Computes $P(y \mid x)$ by turning output values into probability distribution

$$P(y \mid x) = y_{sm}(o_i) = \frac{e^{o_i}}{\sum_{k=1}^{K} e^{o_k}}$$

$y_{sm} = .501$ \quad $y_{sm} = .499$

Bayesian learning

Computes $P(y \mid x)$ by learning $P(y)$ and $P(x \mid y)$ from data, and computing

$$P(y \mid x) \approx \frac{P(x \mid y)P(y)}{P(x)}$$

Logistic Regression

Learns to directly map inputs to probabilities.

$$x \quad \xrightarrow[]{} \quad P(\text{class} \mid x)$$
Logistic Regression:
Binary Classification Case

For ease of notation, let $\mathbf{x} = (x_0, x_1, \ldots, x_n)$, where $x_0 = 1$.

Let $\mathbf{w} = (w_0, w_1, \ldots, w_n)$, where w_0 is the bias weight.
Logistic Regression: Binary Classification Case

Define:

\[P(y = 1 \mid x) = \sigma(w \cdot x) = \frac{1}{1 + e^{-w \cdot x}} \]

\[P(y = 0 \mid x) = 1 - \sigma(w \cdot x) = \frac{e^{-w \cdot x}}{1 + e^{-w \cdot x}} \]

Note: \(P(y = 0 \mid x) + P(y = 1 \mid x) = 1 \)

To classify a new \(x \), assign class that maximizes \(P(y = y_k \mid x) \).

Class is 1 if \(1 > e^{-w \cdot x} \Rightarrow \log 1 > \log e^{-w \cdot x} \Rightarrow 0 > -w \cdot x \)

\[class_{LR}(x) = \begin{cases}
1 & \text{if } w \cdot x > 0 \\
0 & \text{otherwise}
\end{cases} \]
Logistic Regression: Learning Weights

Goal is to learn weights w.

Let (x^j, y^j) be the jth training example and its label.

We want:

$$w \leftarrow \arg \max_w \prod_j P(y^j | x^j, w), \text{ for training examples } j = 1, ..., M$$

This is equivalent to:

$$w \leftarrow \arg \max_w \sum_j \ln P(y^j | x^j, w)$$

This is called “log of conditional likelihood”
We can write the log conditional likelihood this way:

\[l(w) = \sum_j \ln P(y^j \mid x^j, w) \]

\[= \sum_j y^j \ln P(y^j = 1 \mid x^j, w) + (1 - y^j) \ln P(y^j = 0 \mid x^j, w) \]

since \(y^j \) is either 0 or 1

\[= \sum_j y^j \ln \sigma(w \cdot x) + (1 - y^j) \ln (1 - \sigma(w \cdot x)) \]

This is what we want to maximize.
Use gradient ascent to maximize $l(w)$.

This is called “Maximum likelihood estimation” (or MLE).

Recall: \[
\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))
\]

We have:

\[
l(w) = \sum_j y^j \ln \sigma(w \cdot x) + (1 - y^j) \ln (1 - \sigma(w \cdot x))
\]

Let’s find the gradient with respect to w_i:

\[
\frac{\partial l(w)}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\sum_j y^j \ln \sigma(w \cdot x) + (1 - y^j) \ln (1 - \sigma(w \cdot x)) \right)
\]
Using chain rule and algebra

\[
\frac{\partial l(w)}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\sum_j y^j \ln \sigma(w \cdot x) + (1-y^j) \ln (1-\sigma(w \cdot x)) \right)
\]

\[
= \sum_j y^j \frac{1}{\sigma(w \cdot x)} (\sigma(w \cdot x)(1-\sigma(w \cdot x)x_i) + (1-y^j) \frac{1}{1-\sigma(w \cdot x)} (-\sigma(w \cdot x)(1-\sigma(w \cdot x)x_i))
\]

\[
= \sum_j y^j (1-\sigma(w \cdot x))x_i - (1-y^j)\sigma(w \cdot x)x_i
\]

\[
= \sum_j x_i \left(y^j - y^i \sigma(w \cdot x) - \sigma(w \cdot x) + y^j \sigma(w \cdot x) \right)
\]

\[
= \sum_j (y^j - \sigma(w \cdot x))x_i
\]
Stochastic Gradient Ascent for Logistic Regression

- Start with small random initial weights, both positive and negative:

\[w = (w_0, w_1, \ldots, w_n) \]

Repeat until convergence, or for some max number of epochs

For each training example \((x^j, y^j)\):

\[
\Delta w_i = \left(y^j - \sigma(w \cdot x^j) \right) x_i^j
\]

\[w_i \leftarrow w_i + \eta \Delta w_i \]

Note again that \(w\) includes the bias weight \(w_0\), and \(x\) includes the bias term \(x_0 = 1\).
Homework 4, Part 2