CS 445/545
Machine Learning
Spring, 2017

See syllabus at
http://web.cecs.pdx.edu/~mm/MachineLearningSpring2017/

Lecture slides will be posted on this website before each class.
What is machine learning?

- Textbook definitions of “machine learning”:
 - Detecting patterns and regularities with a good and generalizable approximation (“model” or “hypothesis”)
 - Execution of a computer program to optimize the parameters of the model using training data or past experience.
Training Examples: Class 1

Test example: Class = ?

Training Examples: Class 2
Training Examples: Class 1

Training Examples: Class 2

Test example: Class = ?
Training Examples: Class 1

Test example: Class = ?

Training Examples: Class 2
Training Examples: Class 1

Training Examples: Class 2

Test example: Class = ?
Training Examples: Class 1

Test example: Class = ?

Training Examples: Class 2
Types of machine learning tasks

• Classification
 – Output is one of a number of classes (e.g., ‘A’)

• Regression
 – Output is a real value (e.g., ‘$35/share’)

Types of Machine Learning Methods

• **Supervised**
 - provide explicit training examples with correct answers
 • e.g. neural networks with back-propagation

• **Unsupervised**
 - no feedback information is provided
 • e.g., unsupervised clustering based on similarity

• **“Semi-supervised”**
 - some feedback information is provided but it is not detailed
 • e.g., only a fraction of examples are labeled
 • e.g., reinforcement learning: reinforcement single is single-valued assessment of current state
Relation between “artificial intelligence” and “machine learning”?
Key Ingredients for Any Machine Learning Method

- **Features (or “attributes”)**
- Underlying **Representation** for “hypothesis”, “model”, or “target function”
- **Hypothesis space**
- **Learning method**
- **Data:**
 - **Training data**
 - Used to train the model
 - **Validation (or Development) data**
 - Used to select model hyperparameters, to determine when to stop training, or to alter training method
 - **Test data**
 - Used to evaluate trained model
- **Evaluation method**
Constructing Features
Wassup mm, how are you?!
Hurry up, last day huge discount...

Our shop have more than 3085 pills online.
Buy more, pay less!

Today TopSellers:

** Propecia - 0.12$
** Levitra - 1.64$
** Cialls - 1.78$
** Vaigra - 0.79$

Purchase here http://TvBqeUP.ngadocotor.ru/
Times is Formal
Fontin is Informal
Goudy Old Style is Classic
Verdana is Modern
Benton Gothic is Light
ChunkFive is Dramatic
Helvetica is Neutral
Notation for Instances and Features

Instance: \(\mathbf{x} \) (boldface \(\Rightarrow \) vector)

Set of \(M \) instances:
\[
\{ \mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^M \}
\]

Instance as feature vector, with \(N \) features:
\[
\mathbf{x} = (x_1, x_2, ..., x_N)
\]

Instance as a point in an \(N \)-dimensional space:
Assumption of all ML methods:

Inductive learning hypothesis:

Any hypothesis that approximates target concept well over sufficiently large set of training examples will also approximate the concept well over other examples outside of the training set.

Difference between “induction” and “deduction”?
Goals of this course

• Broad survey of modern ML methods

• Learn by hands-on experience

• Good preparation to go further in the field, with more advanced courses or self-learning
Class Syllabus

http://web.cecs.pdx.edu/~mm/MachineLearningSpring2017/
Homework Collaboration

• Discussion is encouraged

• Actual code / experiments / writeup must be done entirely by you
Don’t forget to ask questions!
“To do” handout
Pre-Test

- 10 minutes
- Doesn’t count for grade
- Just for me to find out what math I need to review in class
- And for you to find out what math you need to review outside of class
Email me (mm@pdx.edu) if you are on the waiting list and would still like to join the class.