In this homework you will experiment on using the $K$-means clustering algorithm to cluster and classify the OptDigits data, originally from the UCI ML repository.

**Dataset:** Download the data from our class website:
http://web.cecs.pdx.edu/~mm/MachineLearningSpring2017/optdigits.zip
Each instance has 64 attributes, each of which can have value 0–16. Each instance also has a label specifying which of 10 digit classes it belongs to.

**Code to write:** Write a program to implement $K$-means clustering using Euclidean distance, and to evaluate the resulting clustering using average mean-square-error, mean-square-separation, mean entropy, and accuracy. (Note you must write your own code for this, not use an existing package.)

**Experiment 1:** Repeat the following 5 times, with different random number seeds.

Run your clustering program on the training data (optdigits.train) with $K = 10$, obtaining 10 final cluster centers. (Remember not to use the class attribute in the clustering!)
Your initial cluster centers should be chosen at random, with each attribute $A_i$ being an integer in the range $[0,16]$. Stop iterating $K$-Means when all cluster centers stop changing.

Choose the run (out of 5) that yields the smallest average mean-square-error (mse).

- For this best run, in your report give the average mean-square-error, mean-square-separation, and mean entropy (using the class labels) of the resulting clustering on the training data. (See the class slides for definitions.)

- Now use this clustering to classify the test data, as follows:
  - Associate each cluster center with the most frequent class it contains in the training data. If there is a tie for most frequent class, break the tie at random.
  
  - Assign each test instance the class of the closest cluster center. Again, ties are broken at random.
    
    **Note:** It’s possible that a particular class won’t be the most common one for any cluster, and therefore no test digit will ever get that label.

- Calculate the accuracy on the test data and create a confusion matrix for the results on the test data.

- Visualize the resulting cluster centers. That is, for each of the 10 cluster centers,
use the cluster center’s attributes to draw the corresponding digit on an 8 x 8 grid. To do this, each value in the cluster center’s feature vector is interpreted as a grayscale value for its associated pixel.

- (You can do this using any matrix-to-gray-scale format – e.g., pgm: http://en.wikipedia.org/wiki/Netpbm_format#PGM_example)

- In your report, include the following:
  - Average mean-square-error, mean-square-separation, and mean entropy of your resulting clustering on the training data in the best run of the five you did.
  - Classification accuracy on the test data and the confusion matrix over the test data (for this same run).
  - Visualization results (for this same run).
  - Discussion paragraph: Summarize your results. Answer: Do the visualized cluster centers look like their associated digits?

**Experiment 2:** Run $K$-means on the same data but with $K = 30$. In your report, include the same things that were asked for in Experiment 1 (note: here, visualize all 30 cluster centers), and in your discussion paragraph, compare the results of Experiments 1 and 2, including a comparison of the various metrics (mean-square-square error, mean-square-separation, mean entropy, and accuracy).

**Here is what you need to turn in:**

Your spell-checked, double-spaced report with the information requested above. Also, your commented $K$-means code with instructions how to run it.

**How to turn it in (read carefully!):**

- Send these items in electronic format to mm@pdx.edu by 2pm on the due date. No hard copy please!
- The report should be in pdf format and the code should be in its original format (e.g., .py, .m, etc.)
- Put "MACHINE LEARNING HW 5" in the subject line.

If there are any questions, don’t hesitate to ask me or e-mail the class mailing list.

**Policy on late homework:** If you are having trouble completing the assignment on time for any reason, please see me before the due date to find out if you can get an extension. Any homework turned in late without an extension from me will have 5% of the grade subtracted for each day the assignment is late.