Central question for the sciences of complexity
Central question for the sciences of complexity

How do large networks with
Central question for the sciences of complexity

How do large networks with

— simple components
Central question for the sciences of complexity

How do large networks with

— simple components
— limited communication among components
Central question for the sciences of complexity

How do large networks with

— simple components
— limited communication among components
— no central control
Central question for the sciences of complexity

How do large networks with

— simple components
— limited communication among components
— no central control

give rise to complex (“adaptive”, “living”, “intelligent”) behavior, involving
Central question for the sciences of complexity

How do large networks with

— simple components
— limited communication among components
— no central control

give rise to complex (“adaptive”, “living”, “intelligent”) behavior, involving

— information processing and computation
Central question for the sciences of complexity

How do large networks with

- simple components
- limited communication among components
- no central control

give rise to complex ("adaptive", "living", "intelligent") behavior, involving

- information processing and computation
- complex dynamics
Central question for the sciences of complexity

How do large networks with

— simple components
— limited communication among components
— no central control

give rise to complex ("adaptive", "living", "intelligent") behavior, involving

— information processing and computation
— complex dynamics
— evolution and learning?
Core disciplines of the science of complexity

Dynamics: The study of continually changing structure and behavior of systems

Information: The study of representation, symbols, and communication

Computation: The study of how systems process information and act on the results

Evolution: The study of how systems adapt to constantly changing environments
What We’ve Covered
What We’ve Covered

• Netlogo

• Dynamics:
 – Linear vs. nonlinear behavior
 – Logistic map, fixed point vs. periodic vs. chaotic attractors
 – “Random” complex behavior from simple deterministic rules
 – Period doubling route to chaos
 – Feigenbaum’s constant
• **Information:**
 – Energy, work, entropy
 – 2nd law of thermodynamics
 – Maxwell’s demon
 – Statistical mechanics / Boltzmann entropy
 – Microstates and macrostates
 – Shannon information content

• **Computation:**
 – Gödel’s theorem
 – Entscheidungs problem
 – Turing machines
 – Uncomputability of the Halting Problem
• **Evolution:**
 – Darwinism
 – Mendelism
 – Modern Synthesis
 – Challenges to Modern Synthesis

• **Defining and measuring complexity**
 – Algorithmic information content
 – Logical depth
 – Thermodynamic depth
 – Fractals and fractal dimension
 – L-systems

• **The evolution of altruism** (Jeff Fletcher)
• **Genetic algorithms**
 – Robby the robot

• **Cellular automata**
 – Game of Life
 – Wolfram’s classes
 – Langton’s lambda parameter
 – Evolving cellular automata with genetic algorithms
 – “Particle-based computation” in cellular automata

• **Random Boolean networks** (Christof Teuscher)

• **Information Processing in Living Systems**
 – Ant colonies
 – Immune system
 – Bacteria
• **Modeling**
 – Prisoner’s dilemma
 – Modeling social norms and metanorms
 – Spatial prisoner’s dilemma

• **Networks**
 – Network structure: path length, clustering, degree distribution, etc.
 – Small-world networks
 – Scale-free networks

• **Scaling**
 – Metabolic scaling
 – Scaling in cities
 – Zipf’s law
 – Benford’s law

• **Analogy-making**
 – Copycat
Goals of the Science of Complexity
Goals of the Science of Complexity

• Cross-disciplinary insights into complex systems
Goals of the Science of Complexity

- Cross-disciplinary insights into complex systems
- General theory?
Goals of the Science of Complexity

- Cross-disciplinary insights into complex systems
- General theory?
Goals of the Science of Complexity

- Cross-disciplinary insights into complex systems ✔
- General theory? ☑