Coevolutionary Learning with Genetic Algorithms
Problem for learning algorithms:

How to select “training environments” appropriate to different stages of learning?

One solution:

Co-evolve training examples, using inspiration from host-parasite coevolution in nature.
Host-parasite coevolution in nature

- Hosts evolve defenses against parasites
- Parasites find ways to overcome defenses
- Hosts evolve new defenses
- Continual “biological arms race”
Heliconius-egg mimicry in Passiflora

http://www.ucl.ac.uk/~ucbhdjm/courses/b242/Coevol/Coevol.html
• Darwin recognized the importance of coevolution in driving evolution
• Darwin recognized the importance of coevolution in driving evolution

• Coevolution was later hypothesized to be major factor in evolution of sexual reproduction
Coevolutionary Learning
Coevolutionary Learning

Candidate solutions and training environments coevolve.
Coevolutionary Learning

Candidate solutions and training environments coevolve.

– **Fitness of candidate solution (host):** how well it performs on training examples.
Coevolutionary Learning

Candidate solutions and training environments coevolve.

- **Fitness of candidate solution (host):** how well it performs on training examples.

- **Fitness of training example (parasite):** how well it defeats candidate solutions.
Sample Applications of Coevolutionary Learning
Sample Applications of Coevolutionary Learning

– Coevolving minimal sorting algorithms (Hillis)

- Hosts: Candidate sorting algorithms
- Parasites: Lists of items to sort
Sample Applications of Coevolutionary Learning

- Game playing strategies (e.g., Rosin & Belew; Fogel; Juillé & Pollack)

 • Hosts: Candidate strategies for Nim, 3D Tic Tac Toe, backgammon, etc.

 • Parasites: Another population of candidate strategies
Sample Applications of Coevolutionary Learning

- HIV drug design (e.g., Rosin)
 - Hosts: Candidate protease inhibitors to match HIV protease enzymes
 - Parasites: Evolving protease enzymes
Sample Applications of Coevolutionary Learning

- Robot behavior (e.g., Sims; Nolfi & Floreano)

 - Hosts: Robot control programs
 - Parasites: Obstacles; mazes; competing robot control programs;
Why should we expect coevolutionary learning to speed-up and/or improve evolution?
Why should we expect coevolutionary learning to speed-up and/or improve evolution?

“Biological” arms races

Increased “biodiversity”?
Practical problems observed in coevolutionary learning
Practical problems observed in coevolutionary learning

- Cycling:

 low "true" fitness
• Loss of gradient for hosts
- Over-“virulence” of parasites
Hypothesis

Distributing host and parasite populations in space will overcome these impediments by:

– Preserving diversity in the populations

– Fostering arms races between hosts and parasites
Our Experiments
(Mitchell, Thomure, & Williams, 2006)

Spatial Non-spatial

Coevolution

Evolution
Problem domains used in experiments

1. Function induction from data

I.e., given a set of points generated by a “secret” function, find the function.

- **Hosts**: Candidate functions
- **Parasites**: Points generated by the secret function

http://webscripts.softpedia.com/scriptScreenshots/Polynomial-curve-fitting-Screenshots-62898.html

2. Cellular automata
Spatial Coevolution

- Host and parasite populations live on a two-dimensional toroidal (i.e., donut-shaped) grid with one host (h) and one parasite (p) per site

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>
Spatial Coevolution

- Host and parasite populations live on a two-dimensional toroidal (i.e., donut-shaped) grid with one host (h) and one parasite (p) per site.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

Fitness of host $h = \text{fraction of 9 neighboring parasites (p) dealt with correctly}$

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

Fitness of parasite $p = \text{fraction of 9 neighboring hosts (h) which get p wrong}$

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>
Spatial Coevolution

- Host and parasite populations live on a two-dimensional toroidal (i.e., donut-shaped) grid with one host (h) and one parasite (p) per site.

<table>
<thead>
<tr>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

At each generation, each h is replaced by mutated copy of winner of tournament among itself and 8 neighboring hosts.

<table>
<thead>
<tr>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

At each generation, each p is replaced by mutated copy of winner of tournament among itself and 8 neighboring parasites.

<table>
<thead>
<tr>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>
Non-Spatial Coevolution

- Host and parasite populations live in a non-spatial world (no notion of “neighbor” or “distance)

Fitness of host $h = \text{fraction of } 9 \text{ random parasites (p) dealt with correctly}$

Fitness of parasite $p = \text{fraction of } 9 \text{ random hosts (h) which get } p \text{ wrong}$
Non-Spatial Coevolution

- Host and parasite populations live in a non-spatial world (no notion of “neighbor” or “distance)

At each generation, each h is replaced by mutated copy of winner of tournament among itself and 8 random hosts.

At each generation, each p is replaced by mutated copy of winner of tournament among itself and 8 random parasites.
• **Spatial Evolution:**

 – Same as spatial coevolution, except parasites don’t evolve.

 – A new population of random parasites is generated at each generation.
• **Non-Spatial Evolution:**

 – Same as non-spatial coevolution, except parasites don’t evolve.

 – A new sample of random parasites is generated at each generation.
Results

<table>
<thead>
<tr>
<th></th>
<th>Function Induction</th>
<th>Cellular Automata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Coev.</td>
<td>78% (39/50)</td>
<td>67% (20/30)</td>
</tr>
<tr>
<td>Non-Spatial Coev.</td>
<td>0% (0/50)</td>
<td>0% (0/20)</td>
</tr>
<tr>
<td>Spatial Evol.</td>
<td>14% (7/50)</td>
<td>0% (0/30)</td>
</tr>
<tr>
<td>Non-Spatial Evol.</td>
<td>6% (3/50)</td>
<td>0% (0/20)</td>
</tr>
</tbody>
</table>

Percentage of successful runs
In short: Spatial coevolution significantly out-performs other methods on both problems
Analysis

Why was spatial coevolution successful?

Hypotheses:

1. Maintains diversity over long period of time

2. Creates extended “arms race” between hosts and parasite populations

Here we examine these hypotheses for the cellular automaton task.

[That is, we will do so after the lecture on cellular automata. To be continued…]