<table>
<thead>
<tr>
<th>Recap: Core disciplines of the science of complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics: The study of continually changing structure and behavior of systems</td>
</tr>
<tr>
<td>Information: The study of representation, symbols, and communication</td>
</tr>
<tr>
<td>Computation: The study of how systems process information and act on the results</td>
</tr>
<tr>
<td>Evolution: The study of how systems adapt to constantly changing environments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information and Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivating questions:</td>
</tr>
<tr>
<td>• What are “order” and “disorder”?</td>
</tr>
<tr>
<td>• How do we define “information”?</td>
</tr>
<tr>
<td>• What is the “ontological status” of information</td>
</tr>
<tr>
<td>• How is information signaled between two entities?</td>
</tr>
<tr>
<td>• How is information processed to produce “meaning”?</td>
</tr>
<tr>
<td>• What are the limits of information processing? Are there things that cannot be “computed”?</td>
</tr>
</tbody>
</table>
Energy, Work, and Entropy

• What is energy?

• What is entropy?

• What are the laws of thermodynamics?

• What is “the arrow of time”?

Maxwell’s Demon

James Clerk Maxwell, 1831–1879
Szilard’s solution

Leo Szilard, 1898–1964

Bennett and Landauer’s solution

Rolf Landauer, 1927–1999

Charles Bennett, b. 1943
Entropy/Information in Statistical Mechanics

• What is “statistical mechanics”?

• Describe the concepts of “macrostate” and “microstate”.

Ludwig Boltzmann, 1844–1906

Entropy/Information in Statistical Mechanics

• What is “statistical mechanics”?

• Describe the concepts of “macrostate” and “microstate”.

• Some combinatorics...
Entropy/Information in Statistical Mechanics

• What is “statistical mechanics”?

• Describe the concepts of “macrostate” and “microstate”.

• Some combinatorics...

Boltzmann’s entropy, S

$$S = k \log W$$
Boltzmann’s entropy, S

Or, more precisely,

$$S = k \sum_i p_i \log p_i$$

What does this have to do with the “arrow of time”?
Shannon Information / Entropy

What were his motivations for defining/studying information?

What is a “message source”?

Claude Shannon, 1916–2001

Boltzmann Entropy

\[S = k \sum_i p_i \log p_i \]

Measured in units defined by \(k \) (often “Joules per Kelvin”)

Shannon Information

\[H = -\sum_i p_i \log_2 p_i \]

Measured in “bits”
\[H = -\sum_i p_i \log_2 p_i \]