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Locating Disturbances in Semiconductor
Manufacturing With Stepwise Regression

Anthony T. McCray, Student Member, IEEE, James McNames, Senior Member, IEEE, and David Abercrombie

Abstract—The ability to locate disturbances in semiconductor
manufacturing processes is critical to developing and maintaining
a high yield. Analysis of variance (ANOVA), the best current
practice for this problem, consists of conducting a series of hy-
pothesis tests at each individual processing step. This approach
can lead to excessive false alarms and limited sensitivity when the
process contains more than one disturbance. We describe how
this problem can be framed as a subset selection problem and
propose two new methods based on stepwise regression. Results of
over 90 000 Monte Carlo simulations suggest that these new SWR
methods locate disturbances with fewer false positives and false
negatives than ANOVA. This means process engineers will spend
less time responding to false alarms and will be able to locate real
disturbances more often.

Index Terms—Analysis of variance (ANOVA), fault isolation,
semiconductor manufacturing, statistical process control and
monitoring, stepwise regression, variance reduction, variance
source isolation.

I. INTRODUCTION

MODERN semiconductor manufacturing processes typi-
cally consist of 200 or more processing steps with mul-

tiple tools at most steps. The combined number of tools at all
of the steps typically exceeds 1000. Fig. 1 shows a conceptual
diagram of three consecutive steps of the process. Each lot is
processed by a single tool at each processing step. Lots typi-
cally consist of 25 wafers and each wafer can have up to several
thousand die. The sequence of tools at each step that process
a lot, called the tool trajectory, are determined by a scheduling
algorithm. Although the transition probabilities between tools
are nominally uniform, in practice tools have nonuniform usage
and transition probabilities, as illustrated in Fig. 1.

Tools at a single step are designed to perform the same pro-
cessing. In practice, tools differ and cannot process lots identi-
cally. For processes that are well under control, the processing
variability between tools at a step is minor and does not impact
die quality. We define a disturbance as a tool that processes lots
differently enough from other tools at the same step to impact
performance of the die and yield of the lot. Process engineers
face the challenge of locating steps with disturbances with little
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Fig. 1. Conceptual diagram of three consecutive processing steps in a
semiconductor manufacturing process. Each lot is processed by a single tool
at each step. The probability of making a transition between tools at adjacent
steps is represented by line thickness. Thicker lines indicate higher transition
probabilities.

data and many possibilities. This problem applies to many dif-
ferent measures of the lot and die quality including electrical
test (e-test) parameters, in-line metrology, and defect data.

The difficulty of this problem is compounded by several
limitations of the available data. First, many measurements
cannot be taken until the end of the process when the devices
are complete enough to be tested and characterized electrically.
Second, only lot-level statistics can be treated as statistically
independent observations because all of the wafers in a lot have
the same tool trajectory. Examples of lot-level statistics include
yield, electrical test (e-test), die leakage, and defectivity mea-
sured between inspection points [1]. Third, the data sets often
contain a small number of observations (10–100), compared
to the number of steps (25–500) or step-tool combinations

1000 that must be analyzed. To locate steps with distur-
bances, analysis techniques divide the data into subsets based
on which tools at a step processed the lots. Small data sets make
it difficult to estimate properties (e.g., mean and variance) of
these even smaller subsets accurately. Fourth, nonuniform tool
usage and transition probabilities can cause these subsets from
different steps to have significant overlap. This makes them less
statistically distinguishable and thereby makes it more difficult
to locate disturbances.

Analysis of variance (ANOVA) is the most common method
used to locate disturbances. In practice, it is applied to each of
the steps consecutively. At each step, the data is grouped into
subsets according to which tool processed each lot. A statistical
hypothesis test is performed to determine whether the subset
means are significantly different. Small data sets diminish the
statistical power of ANOVA to detect disturbances. Nonuniform
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Fig. 2. These distributions represent the responses associated with tools at Step
2 of the conceptual model shown in Fig. 1. The solid black line is the average
of each distribution. A disturbance has shifted the averages of these tools away
from each other.

Fig. 3. Due to nonuniform mixing between Steps 2 and 3 in Fig. 1, the
averages of the tools at Step 3 are statistically different. This causes ANOVA
to incorrectly indicate that this step contains a disturbance (i.e., generate an FP
error).

tool usage and transition probabilities can have the same effect.
We quantify this problem by the false negative (FN) rate, de-
fined as the probability that ANOVA fails to locate steps with
disturbances.

Nonuniform transition probabilities can also increase the
false positive (FP) rate, defined as the probability that ANOVA
incorrectly detects a disturbance at a step. This is illustrated by
the following example. Fig. 2 shows the subset distributions
of lots grouped by two tools at Step 2 in the simulated process
shown in Fig. 1. The only disturbance in the process is at Tool
A in this step. ANOVA correctly detects the disturbance. Due
to the nonuniform transition probabilities, lots processed by
Tool A in Step 2 are likely to be processed by Tool A in Step 3.
As shown in Fig. 3, this shifts the mean of the lots processed by
Tool A more than Tools B or C at Step 3. Even though none of
these tools contains a disturbance, ANOVA detects the differ-
ence in the means of the tool subsets and incorrectly indicates
there is a disturbance at this step (i.e., generates an FP error).
Thus, the practical limitations of semiconductor manufacturing

cause ANOVA to generate more FN and FP errors than would
be expected if the tool usage and transition probabilities were
uniform [2].

We propose two new methods to locate disturbances based
on stepwise regression (SWR). The first is called step-at-a-time
stepwise regression (S-SWR). Like ANOVA, S-SWR is
designed to locate steps in the process with disturbances.
The second method is called step-tool stepwise regression
(ST-SWR). Unlike ANOVA and S-SWR, ST-SWR is designed
to locate tools in the process with disturbances. We designed
both SWR methods to consider the entire process during the
analysis, rather than analyzing each step individually like
ANOVA. This gives these methods the ability to account for
the nonuniform transition probabilities that confound ANOVA.

Although ANOVA is the primary method used to locate dis-
turbances in practice, several alternatives have been proposed.
For example, tool commonality analysis can identify some tools
that decrease yield [3]. Unlike ANOVA and the SWR methods,
this analysis only applies to categorical data and only uses data
from bad lots to locate disturbances. The binomial test can be
used to detect when disturbances exist, but does not locate where
the disturbances are in the process [4]. Multi vari analysis and
ANOVA can be combined to detect changes in the process, but
this is used on individual tools and cannot be used to locate
disturbances in the entire process with one analysis [5]. Linear
regression can also be used to locate tools between inspection
points that generate defects, but this requires many more lots
than ANOVA and the SWR methods [1].

An earlier version of the S-SWR was first described in [6].
The proposed stopping rule for this algorithm causes a higher
rate of false positives (FPs) than the new stopping rule proposed
here and did not have a user-specified parameter for controlling
the level of significance [7]. The S-SWR algorithm described in
this paper overcomes both of these problems.

This paper makes several new contributions to help address
the problem of locating disturbances. First, we frame the
problem as a type of subset selection. Second, we describe two
new SWR methods that are data efficient and take account of
the nonuniform transition probabilities that confound methods
that analyze steps independently such as ANOVA. Third, we
describe a novel method of statistically modeling semicon-
ductor manufacturing processes that can be used to assess the
effectiveness of these methods. Finally, we perform a thorough
assessment of ANOVA and the SWR methods with Monte
Carlo simulations over a wide range of realistic processing
conditions.

II. ALGORITHM DESIGN

A. Subset Selection

Fundamentally, the problem of locating disturbances can be
framed as a subset selection problem where the goal is to iden-
tify subsets of lots that are statistically distinct from other sub-
sets. A different subset can be defined for each sequence of
step-tool combinations in the process.

The natural analysis method for this problem is -way
ANOVA, where is the number of steps in the process. In
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this application, however, the data sets are often too small to
divide into all possible subset combinations. A process with
process steps and tools at each step would require forming

(1)

different subsets. For a process with 200 steps and five tools at
each step, this works out to be 10 possible subsets. Since
the data sets available for analyzing the process typically con-
tain only 25–100 lots, a full consideration of all possible sub-
sets with -way ANOVA is computationally and statistically
impractical.

There are a number of suboptimal subset selection methods
that can be applied to smaller data sets. Details of these methods
and comparisons of their performance relative to one another
can be found in [8]–[10].

B. Statistical and Regression Models

Of these subset selection methods, SWR is one of the simplest
to implement and is well suited for use with additive data. In this
application, SWR is based on the following statistical model of
how the data was generated:

(2)

where is the th observation (e.g., yield of th lot), is an
independent and identically distributed (i.i.d.) random variable,

is the number of subsets with different means, is the con-
tribution to the mean by the th subset, and is an indicator
variable. This variable is one if the th observation is included
in the th subset and zero otherwise. In our application, each in-
dicator variable represents a single tool at a single step. If lots
were processed by this tool at this step, the indicator variable is
assigned a value of one for these lots. For other lots, this indi-
cator variable is assigned a value of zero.

This statistical model assumes that each subset is normally
distributed, that has constant variance, and that is the only
source of random variation. ANOVA is based on the same sta-
tistical model and assumptions.

The SWR regression model is then defined as

(3)

where is the model output and the model coefficients, , are
estimated from the data using linear least-squares regression.

C. Stepwise Regression

SWR can be understood as a form of regularization that per-
mits linear regression models to be applied to applications in
which the number of input variables exceeds the number of ob-
servations. There are several variations of SWR. The version we
propose for this application, called forward stepwise regression,
begins by modeling the process as a constant: the sample mean
of the observations. The model is then constructed sequentially.

The algorithm first searches for the single input variable that
explains the most variation. If this input increases the explained
variation sufficiently, it is added to the model. This step is called
forward selection. The algorithm then searches for the best input
to remove from the model. If the removal of this input does not
decrease the explained variation significantly, it is removed from
the model. This step is called backward elimination. These two
steps are repeated until no more input variables can be added or
removed. A complete description of the algorithm is as follows.

Stepwise Regression
1. Initialize the set of variables that
are included in the model,
2. Forward Selection
For to ,
2.1 Construct a test model that includes
the input variable and all input vari-
ables in the set
2.2 Calculate the test model’s
statistic
2.3 If of all prior test models in
this loop, store this input variable as
the best so far,
3. Calculate the statistic of a model
that includes the th variable and all
variables in the set
4. If , add to the set
5. Backward Elimination
For to ,
5.1 Construct a test model with all the
variables in except
5.2 Calculate the test model’s
statistic
5.3 If of all prior test models in
this loop, store this input variable as
the best so far,
6. Calculate the statistic of a model
that includes all variables in except

7. If , remove from the set
8. If an input variable was added in Step
4 or removed in Step 7, go to Step 2.

In this algorithm represents the number of possible input
variables that could be included in the model, represents the
number of input variables currently included in the model,
is a user-specified threshold for adding an input variable to the
model, and is a user-specified threshold for dropping an input
variable from the model.

The statistic is one of the key components of this algorithm.
This statistic is used to compare two models. During forward
selection the reduced model contains all of the input variables
currently in the model and the full model contains these vari-
ables and the input variable under consideration. During back-
ward elimination the reduced model contains all of the variables
currently in the model except the variable under consideration
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and the full model contains all of the variables currently in the
model. For both cases, the statistic is then defined as

(4)

where and are the sum of squared errors of the re-
duced and full models, respectively. Similarly, and are
the degrees of freedom of the reduced and full models, respec-
tively. The degrees of freedom of a model are equal to the dif-
ference of the number of observations, , and the number of
variables in the model, . In (4) the difference is
called the numerator degrees of freedom and is called the
denominator degrees of freedom. is the sum of squared er-
rors, defined as

(5)

where is the th observation and is the th model output
given by (3).

D. Step-Tool Stepwise Regression (ST-SWR)

We call the process of applying stepwise regression to this
problem step-tool stepwise regression (ST-SWR). The primary
information produced by ST-SWR is the list of input variables
included in the model. These represent the step-tool combina-
tions that explain the most variance. This list represents the lo-
cations of probable disturbances in the process.

E. Step-at-a-Time Stepwise Regression (S-SWR)

Step-at-a-time stepwise regression (S-SWR) is an unconven-
tional application of stepwise regression. Instead of considering
single step-tool combinations during forward selection and
backward elimination, S-SWR considers all of the tools at
each step simultaneously. This requires some modifications
to the canonical SWR algorithm that is designed to add or
drop a single input variable during each iteration through the
main loop. These modifications are described in the following
section.

Like ANOVA, the primary information produced by S-SWR
is a list of manufacturing steps that explain the most variance.
This list can help process engineers locate which manufacturing
steps are likely to contain disturbances in the manufacturing
process.

F. Stopping Rules

SWR uses a stopping rule to determine when to stop testing
variables for addition to or removal from the model. While there
are several stopping rules that could be used [11], the test
stopping rule described earlier is the most common. This stop-
ping rule requires two user-specified thresholds: one for adding
variables to the model, , and one for dropping variables from
the model, . During forward selection, if the largest statistic
among all the test models is greater than or equal to , then the
corresponding variable is added to the model (Step 4 in the algo-

rithm). During backward elimination, if the smallest statistic
among all the test models is less than , then the corresponding
variable is dropped from the model (Step 7 in the algorithm).
The process of adding and dropping variables continues until
none of the remaining variables have an value larger than
and none of the variables in the model have an value smaller
than .

While a statistical hypothesis test is used to add or drop vari-
ables, the statistics only approximately follow an distribu-
tion [12]. This prevents the calculation of meaningful values
for adding or dropping variables. Despite these deficiencies, the

test is the most popular stopping rule for stepwise regression
and has worked well in many practical applications.

G. New Stopping Rule for S-SWR

Normally the user-specified and thresholds, or their
corresponding -values, are specified at the beginning of the
SWR process. This is possible with canonical SWR because
only one input variable is considered during forward selection
and backward elimination. Thus, there is one degree of freedom
in the numerator and approximately degrees of freedom
in the denominator. This approximation to the true degrees of
freedom, , is acceptable in most applications because
the number of observations is usually much larger than the
number of variables in the model .

S-SWR considers whether to add groups of input variables
during each forward selection iteration and whether to remove
groups of input variables during each backward elimination it-
eration. Each group includes indicator variables for all of the
tools at a single step under consideration. Since the numerator
degrees of freedom are equal to the number of tools in the step
under consideration, the distribution of the statistic varies and
fixed thresholds and are inappropriate. We overcome this
problem by replacing the forward selection and backward elim-
ination steps with more traditional hypothesis tests and specify
thresholds in terms of values that are based on the correct de-
grees of freedom.

Step-at-a-time Stepwise Regression (S-SWR)
1. Initialize the set of steps that are
included in the model
2. Forward Selection
For to ,
2.1 Construct a test model that includes
the input variables representing all of
the tools at step and all of the steps
in the set
2.2 Calculate , the test model’s
value
2.3 If of all prior test models in
this loop, store this step as the best so
far,
3. Calculate the value of a model that
includes input variables representing all
of the tools at step and the steps in
the set
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4. If , add the step to the set
5. Backward Elimination
For to ,
5.1 Construct a test model with all the
steps in except those in step
5.2 Calculate , the test model’s
value
5.3 If of all prior test models in
this loop, store this step as the best so
far,
6. Calculate the value of a model that
includes all input variables for the
steps in except step
7. If , remove step from the set
8. If a variable was added in Step 4 or
removed in Step 7, go to Step 2.

The use of values for thresholds instead of statistics
has the additional benefit that the user can loosely interpret the
thresholds as levels of significance (i.e., false positive rate) that
are commonly used with ANOVA and other hypothesis tests.
Typical values are and 0.01.

H. Multicollinearity and Regularization

To calculate the model coefficients in (3) that minimize the
sum of squared errors, the input variables are typically collected
into a single matrix, . One row is used for each observation
and each column represents the value of the corresponding input
variable. Similarly, the lot statistic of interest (e.g., yield or de-
fectivity) can be collected into a single vector, . Each element
of the vector contains the value of the lot characteristic for each
observation. The least squares estimate of the model coefficients
can be found by solving the normal equations

(6)

where is a vector containing the model coefficients in (3) and
is a vector containing the observed statistics for each lot mod-

eled by (2). If has full column rank, then the least squares
solution for the model coefficients is given by

(7)

If does not have full column rank, the columns of are not
linearly independent and is said to be collinear. This makes it
difficult to solve the normal equations because the product
is singular and does not have an inverse.

Although SWR normally prevents collinear variables from
entering the model, it is not prevented with the S-SWR vari-
ation of SWR proposed here. This is because each set of input
variables for a step has exactly one column with a 1 representing
the tool that was used to process the lot at that step. Thus, the
columns for a step sum to 1 in every row of . If a second step
is added, the columns representing that step will also sum to 1
causing the matrix to be collinear. Thus, with S-SWR, collinear
variables must be allowed to enter the model.

To eliminate the influence of multicollinearity, we calculate
the model coefficients using principal components regression
(PCR). This is based on a singular value decomposition of

(8)

where is a unitary matrix, is a unitary
matrix, and is a diagonal matrix. The diagonal
elements of are called the singular values of , and they are
normally arranged in decreasing order so that for all

. The vector of coefficients can then be written as

(9)

where is the th column of , is the th column of ,
is the th diagonal element of , and is the number of input
variables included in the model. If is collinear, then one or
more singular values will be zero. PCR merely truncates this
sum so as to exclude minor components with singular values
that are too small. If only terms are included in (9), then the
degrees of freedom of the reduced and full models is given by

(10)

The values can then be calculated from the inverse of the
distribution in the usual way. For the results reported here, we
excluded terms in (9) with a singular value less than 3.16% of
the maximum singular value, .

III. DESIGN OF ALGORITHM ASSESSMENT

We used Monte Carlo simulations to assess the ability of
ANOVA and the new SWR methods to locate disturbances in
a semiconductor manufacturing process. These were based on
statistical models of four actual manufacturing processes at LSI
Logic’s fabrication facility in Gresham, Oregon. The results of
simulations from one of these processes are included in this
paper. The results of simulations of the remaining processes can
be found in [7]. These models were composed of the same man-
ufacturing steps and tools as the actual processes. The effect
of each manufacturing step on a lot was modeled as additive
Gaussian noise. The mean and variance of the distribution for
each tool at each step were scaled so that the final distribution at
the end of the process was the same as the actual yield. The tran-
sition probabilities between steps were estimated from data sets
of the actual process. This ensured that the tool usage at each
step was the same as the actual manufacturing process. Distur-
bances were modeled as having an additional, constant additive
effect on lots that were processed by specific tools.

The following sections describe simulation parameters that
we varied to assess the SWR methods’ ability to locate dis-
turbances over a range of different manufacturing conditions.
These simulation batches have some properties in common. For
every set of simulation parameters, we created 1000 separate re-
alizations, or simulated data sets. This enabled us to accurately
estimate the false positive (FP) and false negative (FN) error
rate of each method. When the simulated process included one
or more disturbances, the size of the disturbance is expressed
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in terms of the standard deviation of the output of a distur-
bance-free process. The first four simulations, described in Sec-
tions III-A–D used only 25 steps of the manufacturing process.
These steps were randomly selected from the entire simulated
process for each of the 1000 simulations. These roughly corre-
spond to the number of steps between inspection steps in the
actual manufacturing process.

A. Number of Lots

The purpose of these simulations was to assess the variability
of the methods’ FP rates as , the number of lots in the data
set, varied. There were no disturbances included in this batch of
simulations, so any step or tool that was indicated as having a
disturbance by any of the methods was an FP error.

Since these techniques are based on statistical hypothesis
tests, ideally the FP rate will not be affected by . We varied
the number of lots processed during each of the 1000 simula-
tions from 20 to 200.

B. Number of Lots With One Disturbance

This purpose of these simulations was to assess the ability of
the methods to detect a single disturbance. The design of this
batch is identical to the previous one, except each simulation
included one disturbance. The size of the disturbance was al-
ways , where is defined as the standard deviation of the
data produced by an undisturbed process. This batch of simula-
tions tested each method’s ability to detect one disturbance in
25 steps. Since there was always one disturbance in the process,
one FN error could occur during each of the 1000 simulations.

C. Number of Disturbances

The purpose of these simulations was to determine how the
methods’ sensitivity was affected by multiple disturbances. In
this batch of simulations we varied the number of disturbances
from 1 to 10. Only one disturbance was placed at any given step.
The number of lots was fixed at 25 and each disturbance had a
value of .

D. Two Disturbances

The purpose of these simulations was to compare the speci-
ficity of the SWR methods with ANOVA. Each simulation in
this batch included two disturbances. One was held constant at

while the second varied from 0 to . The number of lots
was fixed at 25. As many as two FN errors could occur during
any simulation.

E. Number of Steps

The purpose of these simulations was to assess the ability
of the methods to detect disturbances with measurements ob-
tained from the end of the manufacturing process. We varied
the number of steps from 25 to the maximum number of steps
in each of the processes being simulated. The number of lots
was fixed at 50. Each simulation included two disturbances: one
with an amplitude of and another with an amplitude of .
Thus, up to two FN errors could occur during each simulation.

F. Performance Metrics

During each simulation, we counted the number of times one
or more FP errors occurred and the number of times one or more
FN errors occurred. Since each of the simulations was statisti-
cally independent, the total number of times one or more errors
occurred has a binomial distribution. This permitted us to find
the maximum likelihood estimates of the probability of one or
more FP and FN errors and the 2.5%–97.5% confidence interval
of each probability estimate. This confidence interval is shown
by the thin vertical lines in the following figures.

Since ST-SWR locates tools with disturbances, instead of
steps with disturbances, as does ANOVA and S-SWR, we had
to diminish its precision and merely decide whether it located
one or more disturbances at a step that actually contained a dis-
turbance. Thus, for all of the methods an FP error was counted
for each step that was indicated as having one or more tool dis-
turbances that actually did not have one. Similarly, an FN error
was counted for each step that was not indicated as having one
or more tool disturbances that actually did have one.

Each of the three methods included in the study had a single
user-specified parameter, , that is approximately equivalent to
the level of significance, or expected rate of false positives, in a
hypothesis test. We report the results for ANOVA with a typical
value of . We chose for S-SWR. We
selected a smaller equivalent for ST-SWR
because this method has a much larger pool of possible input
variables to include in the model: one for each step-tool combi-
nation. Thus smaller and are necessary to make the per-
formance of ST-SWR comparable to the other methods.

Ideally we would like to adjust for each of the three methods
so that each had the same FP rate. We could then compare the
techniques based on their sensitivity to disturbances alone. Un-
fortunately, these are not canonical hypothesis tests and it is
not known how the expected FP rate is related to for such
a complex application. We have intentionally chosen a value of

for ANOVA that results in a larger FP rate than is obtained by
the SWR methods. Because this also increases the sensitivity
of ANOVA, this enables us to interpret the FN rate as a lower
bound on the FN rate that would have been obtained if ANOVA
had exactly the same FP rate as either of the SWR methods.
Thus, if a SWR method has both a smaller FP rate and a smaller
FN rate than ANOVA, we can conclude that the SWR method
would perform better even if the FP rate of ANOVA was chosen
to be the same as the SWR method. Thus, if SWR has better FP
and FN rates, we conclude that the method is better regardless
of the level of significance. Results for ANOVA with
can be found in [7].

IV. RESULTS

A. Number of Lots

Fig. 4 shows the results of a simulation in which the number
of lots was varied from 20 to 200. These results show that all of
the methods maintain a relatively constant FP error rate regard-
less of the number of lots in the data set. These results do
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Fig. 4. Probability of one or more FP errors in a process with no disturbances. The number of steps was fixed at 25 and the number of lots varied.

Fig. 5. Estimated FP and FN error probabilities. The processes in these simulations included 1 disturbance, a varying number of lots, and 25 steps. (a) Estimated
probability of one or more FP errors. (b) Estimated probability of one or more FN errors.
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Fig. 6. Estimated FP and FN error probabilities. The processes in these simulations included a varying number of disturbances, 25 lots, and 25 steps. (a) Estimated
probability of one or more FP errors. (b) Estimated probability of one or more FN errors.

not give any information about which methods perform best be-
cause they give no indication of how sensitive the methods are
to detecting disturbances.

B. Number of Lots With One Disturbance

Fig. 5 shows the FP and FN error rates for a process with one
disturbance. Both of the SWR methods have FP error rates that
are much lower than ANOVA, and all three methods have nearly
the same FN error rate. Thus the SWR methods perform better
than ANOVA.

C. Number of Disturbances

Fig. 6 shows the FP and FN error rate over a range of dis-
turbances. Like the results in the previous section both SWR

methods have lower FP error rates than ANOVA. In these sim-
ulations, however, the SWR methods also have lower FN error
rates than ANOVA. Thus, both SWR methods significantly out-
perform ANOVA in these simulations.

D. Two Disturbances

Fig. 7 shows the FP and FN error rate over a range of ampli-
tudes of a second disturbance. As with the previous batch of sim-
ulations, both SWR methods significantly outperform ANOVA.

E. Number of Steps

Fig. 8 show the FP and FN error rates for simulated processes
with a varying number of processing steps. Again, the SWR
methods significantly outperform ANOVA. In this case, the FN
rate is lower for all of the techniques than in the previous simu-
lations because 50 lots were used instead of 25.
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Fig. 7. Estimated FP and FN error probabilities. The processes in these simulations included two disturbances, 25 lots, and 25 steps. (a) Estimated probability of
one or more FP errors. (b) Estimated probability of one or more FN errors.

V. DISCUSSION

Although the simulation model accounted for the nonuniform
tool usage and transition probabilities between manufacturing
steps, it does not account for tool drift, maintenance cycles, and
outliers that occurs in practice. These effects cause the obser-
vations to be correlated over time and degrade the performance
of all three methods. Nonetheless, the relative performance of
these methods is likely to remain the same in real manufacturing
processes.

Throughout all five batches of simulations both SWR methods
consistently outperformed ANOVA. The disadvantages of
ANOVA, the best current practice, are exemplified by the results
in Fig. 8. For a process with 140 steps, ANOVA with a 5% level of
significance has nearly a 100% probability of generating one or
more FP errors and a 75% probability of generating one or more
FN errors. This means that for any process with more than 140
steps, which is essentially all modern semiconductor manufac-
turing processes, ANOVA will generate at least one false alarm

every time it is used to analyze the process while failing to detect
all of the disturbances 75% of the time.

The SWR methods perform much better. They achieve an FP
error probability of approximately 80% and an FN error prob-
ability of approximately 55%–65%. Both of these probabilities
are lower than ANOVA. Thus, the SWR methods generate fewer
false alarms and detects actual disturbances more often.

A. Advantages and Limitations of SWR

The primary advantage of the new SWR methods as compared
to ANOVA is that they are able to consider the entire process as a
holisticproblem,rather thananalyzingeachstepindependentlyof
the other steps. When an input variable is added to the regression
model with SWR, the variance associated with it is essentially re-
movedfromthevarianceoftheoutputdatathattheremaininginput
variables try to explain. This enables the distributions of the re-
mainingvariables to be estimatedmore accurately and minimizes
the confounding caused by nonuniform mixing.
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Fig. 8. Estimated FP and FN error probabilities. The processes in these simulations included two disturbances, 50 lots, and a varying number of steps. (a) Estimated
probability of one or more FP errors. (b) Estimated probability of one or more FN errors.

To demonstrate this advantage consider using S-SWR to
analyze the process shown in Fig. 1. A simulation of this process
results in the distributions shown in Figs. 2 and 3 for Steps 2 and
3. S-SWR finds that Step 2 is the most significant and places it
in a model. With Step 2 in the model, the variance associated
with it is essentially removed from Step 3. The resulting residual
distributions for the tools in Step 3 are shown in Fig. 9. The
distributions appear more normal, and they have nearly equal
averages. S-SWR correctly does not detect a disturbance at this
step. Thus while ANOVA generated a FP error at this step due
to nonuniform mixing, S-SWR accounts for the nonuniform
mixing and correctly decides there is no disturbance at this
step.

Another advantage of SWR over ANOVA is its ability to re-
move a step from the model that had previously been added.
It is possible that, on the first pass through the variables, the
most significant variable only appeared significant due to the
problems caused by nonuniform mixing. Once the steps that
are truly responsible for the disturbances are identified, the first

Fig. 9. Histograms of the residuals after the disturbance in the process in Fig. 1
at Step 2 is accounted for by SWR. In this case, there is no significant difference
between the averages of the distributions and SWR correctly decides there is no
disturbance at this step.

step that was added to the model would likely no longer appear
significant and could be removed. Thus even if SWR initially
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added an incorrect step, it is possible that it would remove it
later. ANOVA does not have this capability.

The combination of principal components regression (PCR)
and SWR may be novel. Canonical SWR prevents collinear
steps from entering the model, so collinearity is normally not a
problem. In this application, however, collinear variables must
be allowed into the model. PCR makes this possible.

VI. CONCLUSION

We introduced two new methods for locating disturbances
in semiconductor manufacturing processes. S-SWR is used to
build a linear model of the process by considering whether each
step can explain a significant portion of the variance. ST-SWR
is used to build a linear model of the process by considering
whether each step-tool combination can explain a significant
portion of the variance.

Results of over 90 000 Monte Carlo simulations suggest that
these new SWR methods locate disturbances with fewer false
positives and false negatives than ANOVA, the best current prac-
tice. In practical terms, this means process engineers will spend
less time responding to false alarms and will be able to locate
real disturbances more often.
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