
IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 9, SEP. 2000 244

Rotated Partial Distance Search for Faster Vector
Quantization Encoding

James McNames

Abstract— Partial Distance Search (PDS) is a method of
reducing the amount of computation required for vector
quantization encoding. The method is simple and general
enough to be incorporated into many fast encoding algo-
rithms. This paper describes a simple improvement to PDS,
based on principal components analysis, that rotates the
codebook without altering the interpoint distances. Like
PDS, this new method can be used to improve many fast
encoding algorithms. The algorithm decreases the decoding
time of PDS by as much as 44% and decreases the decod-
ing time of k-d trees by as much as 66% on common vector
quantization benchmarks.

Keywords—Vector Quantization Encoding, Nearest Neigh-
bor, Principal Components Analysis, k-d Tree, Eigenvector
Method

I. Introduction

VECTOR quantization is a popular and powerful
method of compression. During encoding, the near-

est neighbor in a codebook is found for each signal vec-
tor and the index of the nearest neighbor is used to en-
code, or represent, the signal vector. The most common
measure of nearness is the Euclidean distance, or equiv-
alently, the square of the Euclidean distance, d2(s, xi) =∑nd

j=1 (sj , xi,j)
2, where s is the signal vector, xi is the ith

vector in the codebook, and nd is the dimension of the
vectors.
Although vector quantization is theoretically a power-

ful method of compression, the large computational cost of
finding the nearest neighbor during encoding imposes prac-
tical limits on the codebook size and the compression rate.
In some applications, it is impractical to use a brute force
approach of exhaustively calculating the distance to each
vector in the codebook. This has motivated the develop-
ment of many fast vector quantization encoding algorithms,
which are also known as fast nearest neighbor algorithms
in the literature.

A. Partial Distance Search

Cheng et al. originally proposed a method called par-
tial distance search (PDS)1 that has gained widespread ac-
ceptance as a more efficient method than the brute force
method [4]. PDS consists of a simple modification to the
way that distances are calculated. During the calculation
of the distance sum, if the partial distance exceeds the dis-
tance to the nearest neighbor found so far, the calculation

J. McNames is with the Electrical and Computer Engineering De-
partment at Portland State University. Mail: Electrical Engineering
Department, Portland State University, Post Office Box 751, Port-
land, Oregon 97207-0751. Phone: 503.725.5390. Fax: 503.725.3807.
E-mail: mcnames@ee.pdx.edu. Web: www.ee.pdx.edu/∼mcnames.

1Others have also proposed PDS independently [1–3].

is aborted. This method substantially decreases the com-
putation despite the added cost of performing a comparison
for each element of the distance sum.

B. Previous Work

Many other encoding algorithms have been proposed to
overcome the large computational cost of the brute force
method. Each estimates a lower bound on the distance
between the signal vector and a vector, or set of vectors,
in the codebook. If the lower bound is greater than the
distance to the nearest neighbor found so far, the point can
be eliminated without explicitly calculating the distance to
that point. When the bounding criteria fail, the fastest
algorithms use PDS to calculate the true distance [5].
This work describes how PDS can be improved by a prin-

cipal component rotation (PCR) of the codebook. Other
methods have incorporated PCR as part of their bound-
ing criteria, but if the bounds are not satisfied, most of
these methods revert to calculating the full distance in the
original coordinates using either the brute force method or
PDS [6–10]. PCR has also been reported to improve per-
formance in a voronoi-based encoding algorithm, but this
method did not use PDS or discuss the potential of PCR
to increase performance in other encoders [11].

II. Codebook Rotation

Principal components analysis (PCA) can be used to ro-
tate the signal vector and code vectors without changing
the interpoint distances. For example, if we represent the
codebook as a matrix A such that each row contains the
transpose of a codebook vector, the singular value decom-
position of this matrix, A = UΣV T, can be used to find the
principal directions in the matrix V . Since V is a unitary
matrix, that is V TV = I, multiplying the signal vector and
the codebook vectors by this matrix does not change the
distance between them. Specifically,

d2(V s, V xi) = (V s − V xi)T(V s − V xi),
= (s − xi)TV TV (s − xi),
= (s − xi)T(s − xi),
= d2(s, xi).

The matrix V can also be calculated by an eigenvector
decomposition of the correlation matrix C = ATA.
If the vectors in the matrix V are arranged in order

of decreasing singular values, this rotation causes the dis-
tance along the directions of largest variance to be calcu-
lated first. Thus, on average, the distance summations can
be aborted more quickly than in the original coordinates.



IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 9, SEP. 2000 245

This new method is called rotated partial distance search
(RPDS).
A strong advantage of RPDS is that it can be incorpo-

rated into other fast encoding algorithms just like PDS.
When the bounding criteria of the other methods fail, the
true distance can be calculated using RPDS instead of
PDS. PCR also improves the effectiveness of the bound-
ing criteria of some encoders which further decreases the
average encoding time [11].

III. Performance

To determine how much principal component rotation
improves performance of encoders in vector quantization
applications, a range of different codebooks were con-
structed for two speech signals and two gray-scale images
that are commonly used as benchmarks for vector quanti-
zation algorithms.2 The codebooks were constructed using
the clustering algorithm described by Franti et al. [12].
For each codebook the average encoding time was mea-

sured for the brute force method (Brute), PDS, and RPDS.
To illustrate that RPDS can also be used to improve the
performance of established fast encoding algorithms such
as k-d trees [13], the average encoding time was also mea-
sured for k-d trees with PDS (KD-PDS) and k-d trees with
RPDS (KD-RPDS)3.
Table I shows the average encoding times for the speech

signals calculated using 35, 000 signal vectors and Table II
shows the average encoding times for the benchmark im-
ages Lena and Baboon4. For the images, the average en-
coding times were calculated using 20, 000 signal vectors
for the 2 × 2 image blocks and 15, 000 signal vectors for
the 4 × 4 image blocks. In all cases, the signal vectors
were taken from the original data sets used to construct
the codebook.
The performance improvement of RPDS as compared

to PDS ranged from slightly worse to more than a 65%
decrease in encoding time. The performance was slightly
worse for low dimensional vectors due to the increased over-
head of RPDS. The improvement was more dramatic in
higher dimensions because the distance sums were larger
and there was greater potential decrease in encoding time
from truncating the distance sums.

IV. Discussion

In some applications, RPDS requires approximately
twice as much storage as PDS because both the original
codebook and the rotated codebook must be stored. Once
the index of the nearest neighbor is found using the rotated
codebook, the original vector is retrieved from the original
codebook. This extra storage can be eliminated by storing
only the rotated codebook and rotating the vector back
to the original coordinates by a multiplication with V T.

2At the time of writing, the data sets were available at
http://www.ece.pdx.edu/∼mcnames/DataSets.

3The results reported here were generated using a Pentium 200
MHz MMX processor with 512 KB Cache, 128 MB RAM, Windows
NT 4.0 SP5, and Visual C++ 6.0 SP1.

4This image is sometimes called Mandrill.

TABLE I

Algorithms’ average encoding times (milliseconds) to find

the nearest neighbor for a codebook constructed from the

speech signals WetSucker and DarkSide. The results are

shown for four codebook sizes and two vector sizes.

Algorithm 8 Dimensions 16 Dimensions
1024 2048 4096 8192 1024 2048 4096 8192

Brute 1.959 3.779 7.782 15.577 3.684 7.278 14.544 29.672
PDS 0.613 1.127 2.286 4.443 0.924 1.691 3.121 5.976
RPDS 0.512 0.933 2.035 3.989 0.609 1.096 2.294 4.661
Decrease 16.5% 17.2% 11.0% 10.2% 34.1% 35.2% 26.5% 22.0%
KD-PDS 0.200 0.230 0.320 0.342 0.649 0.930 1.197 1.528
KD-RPDS 0.132 0.152 0.219 0.226 0.365 0.503 0.661 0.840
Decrease 33.8% 34.0% 31.7% 33.8% 43.7% 45.9% 44.8% 45.0%

(a) WetSucker

Algorithm 8 Dimensions 16 Dimensions
1024 2048 4096 8192 1024 2048 4096 8192

Brute 1.951 3.878 7.776 15.836 3.611 7.314 14.212 29.656
PDS 0.622 1.200 2.348 4.660 0.959 1.802 3.204 6.276
RPDS 0.530 0.995 1.831 4.149 0.599 1.165 2.128 4.539
Decrease 14.8% 17.0% 22.0% 11.0% 37.6% 35.4% 33.6% 27.7%
KD-PDS 0.179 0.250 0.377 0.496 0.604 0.869 1.231 1.556
KD-RPDS 0.107 0.147 0.225 0.373 0.219 0.312 0.418 0.613
Decrease 40.5% 41.3% 40.4% 24.8% 63.8% 64.1% 66.0% 60.6%

(b) DarkSide

TABLE II

Algorithms’ average encoding times (milliseconds) to find

the nearest neighbor for a codebooks constructed from the

images Baboon and Lena. The results are shown for four

codebook sizes and two vector sizes.

Algorithm 2 × 2 4 × 4
1024 2048 4096 8192 1024 2048 4096 8192

Brute 1.085 2.134 4.253 8.618 3.704 6.965 14.570 30.024
PDS 0.529 1.045 2.032 4.067 1.075 1.846 3.530 6.378
RPDS 0.515 0.968 1.911 4.037 0.645 1.019 2.184 4.457
Decrease 2.6% 7.3% 6.0% 0.7% 40.0% 44.8% 38.1% 30.1%
KD-PDS 0.074 0.094 0.108 0.135 0.754 1.100 1.479 1.184
KD-RPDS 0.074 0.092 0.114 0.140 0.321 0.447 0.582 0.589
Decrease 0.7% 2.2% -5.6% -3.7% 57.4% 59.4% 60.7% 50.3%

(a) Baboon

Algorithm 2 × 2 4 × 4
1024 2048 4096 8192 1024 2048 4096 8192

Brute 1.100 2.103 4.289 8.565 3.414 7.013 14.447 29.855
PDS 0.504 0.963 1.961 3.919 0.581 1.155 2.284 4.593
RPDS 0.480 0.927 1.871 3.823 0.463 0.955 1.833 4.009
Decrease 4.8% 3.7% 4.6% 2.5% 20.3% 17.3% 19.8% 12.7%
KD-PDS 0.054 0.071 0.088 0.112 0.230 0.334 0.432 0.479
KD-RPDS 0.049 0.063 0.082 0.106 0.107 0.164 0.198 0.240
Decrease 9.3% 11.3% 6.8% 5.4% 53.5% 50.9% 54.3% 49.9%

(b) Lena

Since V is unitary, V TV xi = xi. In most cases, the ex-
tra computation of this technique is negligible compared
to the cost of finding the nearest neighbor. For vector
quantization applications this problem is averted entirely
if the rotated codebook is stored by the transmitter and
the original codebook is stored in the receiver.
Encoding algorithms are also often part of the clustering

algorithm used for codebook construction. Unlike most en-
coding applications, the codebook construction algorithms
are sensitive to the amount of preprocessing required be-
cause during each iteration of the clustering algorithm the
data set changes and the preprocessing of the encoding al-



IEEE SIGNAL PROCESSING LETTERS, VOL. 7, NO. 9, SEP. 2000 246

gorithm must be repeated. PDS is one of the most popular
encoding algorithms for codebook construction because it
is substantially faster than the brute force method and does
not require any preprocessing. RPDS is also an appealing
algorithm for codebook construction because it is signif-
icantly faster than PDS and the amount of preprocessing
can be controlled by limiting the number of data set vectors
used to estimate the principal components.

V. Conclusions

This paper described how partial distance search (PDS),
a general-purpose improvement to fast encoding algo-
rithms, could be improved by a principal component ro-
tation (PCR) of the codebook. The new method, called
RPDS, was compared to PDS on several different vector
quantization benchmarks. When used alone the reduction
in average encoding time was as much as 44%. When com-
bined with k-d trees the encoding time was decreased by
as much as 66%.

References

[1] Chang-Da Bei and Robert M. Gray, “An improvement of the
minimum distortion encoding algorithm for vector quantiza-
tion,” IEEE Transactions on Communications, vol. 33, no. 10,
pp. 1132–1133, Oct. 1985.

[2] Jack Bryant, “A fast classifier for image data,” Pattern Recog-
nition, vol. 22, no. 1, pp. 45–48, 1989.

[3] Patrick J. Grother, Gerald T. Candela, and James L. Blue, “Fast
implementations of nearest neighbor classifiers,” Pattern Recog-
nition, vol. 30, no. 3, pp. 459–465, 1997.

[4] De-Yuan Cheng, Allen Gersho, Bhaskar Ramamurthi, and Yair
Shoham, “Fast search algorithms for vector quantization and
pattern matching,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, Mar.
1984, vol. 1, pp. 9.11.1–9.11.4.

[5] James McNames, Innovations in Local Modeling for Time Series
Prediction, Ph.D. thesis, Stanford University, 1999.

[6] Chang-Hsing Lee and Ling-Hwei Chen, “High-speed closest
codeword search algorithms for vector quantization,” Signal
Processing, vol. 43, pp. 323–331, 1995.

[7] Yih-Chuan Lin and Shen-Chuan Tai, “Dynamic windowed code-
book search algorithm in vector quantization,” Optical Engi-
neering, vol. 35, no. 10, pp. 2921–2929, Oct. 1996.

[8] Chin-Chen Chang, Wen-Tsai Li, and Tung-Shou Chen, “Two
improved codebook search methods of vector quantization based
on orthogonal checking and fixed range search,” Journal of Elec-
tronic Imaging, vol. 7, no. 2, pp. 357–366, Apr. 1998.

[9] S. C. Tai, C. C. Lai, and Y. C. Lin, “Two fast nearest neigh-
bor searching algorithms for image vector quantization,” IEEE
Transactions on Communications, vol. 44, no. 12, pp. 1623–
1628, Dec. 1996.

[10] Chin-Chen Chang and Dai-Chuan Lin, “An improved VQ
codebook search algorithm using principal component analysis,”
Journal of Visual Communication and Image Representation,
vol. 8, no. 1, pp. 27–37, 1997.

[11] V. Ramasubramanian and Kuldip K. Paliwal, “Fast nearest
neighbor search based on voronoi projections and with its ap-
plication to vector quantization encoding,” IEEE Transactions
on Speech and Audio Processing, vol. 7, no. 2, pp. 221–226, Mar.
1999.

[12] Pasi Fränti, Timo Kaukoranta, and Olli Nevalainen, “On the
splitting method for vector quantization codebook generation,”
Optical Engineering, vol. 36, no. 11, pp. 3043–3051, Nov. 1997.

[13] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel,
“An algorithm for finding best matches in logarithmic expected
time,” ACM Transactions on Mathematical Software, vol. 3, no.
3, pp. 209–226, Sept. 1977.

James McNames is currently an assistant
professor at Portland State University. He re-
ceived his B.S. degree in Electrical Engineer-
ing from California Polytechnic State Univer-
sity, San Luis Obispo, in 1992. He received
his M.S. degree in Electrical Engineering from
Stanford University in 1995 and his Ph.D. de-
gree in Electrical Engineering from Stanford
University in 1999. His research is primarily in
the areas of biomedical signal processing, non-
linear modeling, and time series prediction.


