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Abstract— A new fast nearest neighbor algorithm is de-
scribed that uses principal component analysis to build an
efficient search tree. At each node in the tree, the data set is
partitioned along the direction of maximum variance. The
search algorithm efficiently uses a depth-first search and a
new elimination criterion. The new algorithm was compared
to sixteen other fast nearest neighbor algorithms on three
types of common benchmark data sets including problems
from time series prediction and image vector quantization.
This comparative study illustrates the strengths and weak-
nesses of all of the leading algorithms. The new algorithm
performed very well on all of the data sets and was consis-
tently ranked among the top three algorithms.

Keywords— Nearest Neighbor, Vector Quantization En-
coding, Principal Components Analysis, Closest Point, In-
trinsic Dimension, Post Office Problem

I. INTRODUCTION

IVEN a data set of n, points, {z1,22,... ,2,,}, the

k nearest neighbors problem is to find the k points
that are closest to a query point, g, where ¢, x; € R"4 Vi.
This problem is encountered in a wide range of applica-
tions including density estimation, pattern recognition [1],
clustering [2], function approximation [3], time series pre-
diction [4], document retrieval [5], optical character recog-
nition [6], and vector quantization [2,7]. In many of these
applications, the computational cost of finding the nearest
neighbors imposes practical limits on the data set size and
the rate at which the application can operate. This has
motivated the development of many fast nearest neighbor
algorithms.

This article introduces a new algorithm based on princi-
pal axis trees called PAT, and compares it with other lead-
ing algorithms. Only algorithms that use the Euclidean
metric,

Nd

Dz(xaq) = Z(xl - qi)za

i=1

to measure the distance between two points, are included
in this study.

The performance of nearest neighbor algorithms is usu-
ally specified by the preprocessing time, memory required,
and average query time. For most applications, a mod-
erate amount of preprocessing and memory allocation are
acceptable if the average query time is small enough.

The following section reviews some of the most popular
and effective methods of reducing query time. Section III
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discusses how the dimension of the data set affects these
methods. Section IV describes principal axis trees (PAT)
in detail. Section V specifies the other algorithms included
in a comparative empirical study, discusses how the query
time was measured, and describes how user-specified pa-
rameters were chosen. Section VI reports the performance
of PAT and the other algorithms on a variety of benchmark
problems. PAT is shown to have excellent performance
across a broad range of data sets.

II. ELIMINATION CRITERIA

Many nearest neighbor algorithms have been proposed to
overcome the large computational cost of the obvious brute
force approach. Typically, these algorithms employ one or
more elimination criteria. Each estimates a lower bound
on the distance between a query point and a point, or set
of points, in the data set. If the lower bound is greater
than the distance to the kth nearest neighbor found so far,
the point can be eliminated without explicitly calculating
the distance to that point. This section describes three of

these elimination criteria that are included in principal axis
trees (PAT).!

A. Partial Distance Search

Full-search improvements apply an elimination criterion
to every point in the data set. Cheng et al. [7] originally
proposed an algorithm called partial distance search (PDS)
that is arguably the most popular full-search improvement.
The algorithm consists of a simple modification of the brute
force search: during the calculation of the distance, if the
partial sum of square differences exceeds the distance to the
nearest neighbor found so far, the calculation is aborted.
Like the brute force search, PDS does not require any pre-
processing or storage and the performance of PDS is almost
always substantially better.

B. Search Trees

During preprocessing, search trees divide the data set
into distinct subsets. Each subset is recursively subdivided
until the number of points in each terminal node is accept-
ably small. The search for the nearest neighbors begins
with the root node and works toward the terminal nodes.
At each step, a lower bound on the minimum distance to
each subset of points is calculated. If the lower bound is
greater than the distance to the kth nearest neighbor found

IMore thorough reviews of common elimination criteria are given
in [8,9].
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so far, then the entire subset can be eliminated without cal-
culating the distance to each point explicitly [10-14]. Be-
cause search trees are capable of eliminating entire groups
of points, query times of O(logn,) are frequently achieved,
in low dimensions [11,12].

C. Projection Methods

Projection methods reduce computation by projecting
the data set and the query point into a linear subspace,
which is usually spanned by the first few principal compo-
nents [2,5,15,16]. Section IV describes a new algorithm
that uses the principal component projection to construct
efficient search trees.

III. THE PROBLEM OF DIMENSIONALITY

Many of the elimination criteria employed by fast near-
est neighbor algorithms require O(n,logn,) preprocessing
time, O(n,) storage space, and achieve O(logn,) mean
query time or better in low dimensions, where n, is the
number of points in the data set [11-13]. However, if
the data set variables are independently distributed, the
elimination criteria become less effective as the dimension
increases and the average query times of the fastest al-
gorithms scale exponentially with dimension, O(c™) [9].
When the dimension becomes large enough, the elimina-
tion criteria become mostly ineffective and the distance is
calculated for nearly every point in the data set. At this
point, the average query time transitions from an expo-
nential growth to linear growth, which is equivalent to a
full-search algorithm. Moreover, in high dimensions “fast
algorithms” can have a larger query time than full-search
algorithms due to the computational overhead of the elim-
ination criteria.

Fortunately, much better performance is typically ob-
served in practice because real data sets are rarely com-
posed of independently distributed variables. The intrinsic
dimension, defined as the minimum number of parameters
needed to account for the observed properties of a data
set, is often much less than the spatial dimension [9]. Con-
ceptually, this occurs when all of the points in a data set
lie on a m;-dimensional nonlinear surface, or manifold, in a
ng-dimensional space, where n; < ng.

The performance of fast algorithms on data sets with
an intrinsic dimension that is significantly less than the
spatial dimension is sensitive to the type of elimination
criterion used [9]. The new algorithm described in the next
section uses principal component analysis to adapt to the
data set distribution and it performs well when the intrinsic
dimension is less than the spatial dimension.

IV. PRINCIPAL AXIS TREES

This section describes a new method of using principal
component analysis (PCA) to build an efficient search tree.
Although PCA has been used in other nearest neighbor al-
gorithms, it has not been combined with the efficient struc-
ture of a search tree or the elimination criteria described
here. The combination of the search tree and PCA enables
PAT to find the k nearest neighbors efficiently.

A. Search Tree Construction

Search tree construction begins by projecting the entire
data set along the principal axis. Next, the data set is
partitioned along the principal axis into n. distinct regions
such that each region contains roughly the same number of
points. The process is repeated for each subset of points
recursively until each subset contains fewer than n. points.
The algorithm for the search tree construction is described
in Appendix B. This algorithm requires O(n,logn,) pre-
processing and O(n,) storage.

Although the principal axis in the second step could be
found by performing a complete principal components anal-
ysis, it is much faster to use the power method [18]. This
technique has also been used in clustering algorithms and
for codebook generation in vector quantization [17]. The
implementation of the power method used in this study is
described in [9], though a standard implementation would
also work. A discussion of the method’s convergence prop-
erties can be found in [18].

A two-dimensional example of the type of partition gen-
erated by this type of search tree is shown in Fig. 1. This il-
lustrates the ability of PAT to efficiently partition the data
set into regions that have approximately the same density
locally.

B. Search Algorithm

The depth-first search process begins with the root node
and uses a binary search to determine which region the
query point is in. The child node that contains this region
is then searched, and the process is repeated recursively
until a terminal node is reached. Partial distance search
(PDS) is used to calculate the distance to points in the
terminal node [7]. The algorithm then moves to the parent
of the terminal node. The elimination criterion (described
below) is applied to the closest sibling node. If it is not
satisfied, the sibling node is searched. If the criterion is
satisfied, one or more sibling nodes are eliminated. The
algorithm then works its way back up to the root node,
either searching or eliminating sibling nodes along the way.

The elimination criterion is based on a lower bound of
the distance to the points assigned to sibling nodes. If the
lower bound is greater than the distance to the kth nearest
neighbor found so far, none of the points assigned to the
sibling is a neighbor and the node does not need to be
searched. Other siblings can also be eliminated that have
greater lower bounds.

The calculation of the lower bound is illustrated in Fig. 2.
During the construction of the search tree, the points as-
signed to each node are subdivided by hyperplanes located
along the principal axis. At the root node, the distance
from the query point, ¢, to the boundary of a child node,
ba, is shown by the chord labeled dgo. This distance is
a lower bound on the distance to all of the points in the
gray region. If this distance is greater than the distance
to the kth nearest neighbor found so far, then all points in
this region can be eliminated. Similarly, all of the regions
that are further along the principal axis can be eliminated
including, for example, Region 5.
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If a region cannot be eliminated by the lower bound,
a different lower bound on the distance to a point within
the region can be calculated. For example, consider the
point z in Region 2. Since the chord gbs is a normal of
the hyperplane separating Region 1 from Region 2, the
angle /gbox is no smaller than 90°. A lower bound on the
distance between ¢ and x is given by the law of cosines:

d2, = diy+d3, — 2dgada, cos Lgbyx,
> d2,+d3,. (1)

This method can also be used to establish a lower bound
for subregions of the gray region. For example, if the
boundary point between Region 2 and Region 3 is calcu-
lated (shown as b3 in Fig. 2), a lower bound on the distance
from by to the points in Region 3 can be calculated by pro-
jecting by onto the principal axis of the gray region and
calculating the distance from by to bs. Since d3; is a lower
bound on the distance from bs to any point in Region 3,
Equation 1 can be used to find a lower bound on the dis-
tance from ¢ to any point in Region 3:

D?*(q,x) > d3,+d3, Yz e Gray Region,
d3, > d3s Vz € Region 3, and therefore,
D*(q,x) > dly,+d3; Vre Region 3.

The same reasoning can be extended to other subregions.
For example, a lower bound on the distance from ¢ to all
points in Region 4 is given by

D*(q,x) > d2y + d33 +d3, Va € Region 4.

The boundary points, b, and distance lower bounds, d ,
are calculated recursively in the search algorithm. The
search algorithm is described in detail in Appendix C.

V. EXPERIMENTAL DESIGN

This section lists the other algorithms included in this
study, describes how the user-specified parameters were
chosen, and describes how the mean query time was es-
timated.

A. Algorithms

Section IV described the new algorithm PAT. Table I
lists the other sixteen algorithms included in this study.
All of the algorithms find the exact nearest neighbors of a
query point. Most of these algorithms also calculate the
distance to the nearest neighbors in the process, but for
this study the algorithms were only required to find the
indices of the neighboring points.

Two of the algorithms, K-D Tree [11] and OPS [12], were
modified for this study such that they incorporate the par-
tial distance search [7] (PDS) in the terminal nodes, in-
stead of the originally proposed brute force search (Brute).
This significantly improves performance. A modification to
OPS described in [19] was also implemented to guarantee
the exact nearest neighbors are found.

B. User-Specified Parameters

User-specified parameters enable the user to tune the
performance of an algorithm to a particular data set. How-
ever, this process requires additional computation, analy-
sis, and user expertise that is usually impractical. Instead,
users often pick a value that is recommended by the authors
of the algorithm or simply pick a value that has worked well
in the past.

Some of the nearest neighbor algorithms included in this
study have a single user-specified parameter. For exam-
ple, PAT, FN, and FNM all require the user to specify
the number of partitions of each non-terminal node, K-D
Trees require that the user specify the number of points
contained in each terminal node, and Bak and TLAESA
require the user to specify the number of anchor points for
the triangle-inequality. It is possible to generalize some of
the other algorithms to include similar parameters.

User-specified parameters make it difficult to compare
the performance of algorithms fairly. For all of the results
reported here, the user-specified parameters were fixed at
a constant value. This ensured that the algorithms with
user-specified parameters could not be tuned to a particular
data set, giving them an unfair advantage over algorithms
that could not be likewise optimized.

Since a broad range of data sets were included in this
study, the user-specified parameters were selected to en-
sure good overall performance. Specifically, the values were
based on the algorithms’ average query time on twenty-four
simulated data sets. Twelve of the data sets were drawn
from a uniform distribution with one to twelve dimensions.
Twelve other data sets were drawn from a normal distribu-
tion over the same range of dimensions. Each data set con-
tained 2,000 points. The parameter values were selected
from a range of two to fifty.

In most cases, the best parameter value varied only
slightly with dimension and distribution. For example,
Fig. 3 shows the average query time for PAT for various
dimensions and parameter values. For PAT, the best pa-
rameter values were in the range of five to eight. In this
case, the parameter value was fixed at seven. Table II lists
the values chosen for each of the algorithms that had a
user-specified parameter. These values were selected prior
to the study described in Section VI.

C. Measures of Performance

The goal of this study was to compare the average query
times of the leading algorithms, the most critical considera-
tion for many applications. However, there is no consensus
on how to measure query time and researchers have used a
wide variety of different measures in previous studies [9].

For this study, the average query time was measured
directly. The disadvantage of this approach is that the re-
sults depend on the characteristics of the hardware and
software?, but, for lack of a better measure, it is assumed

2The results reported here were generated using a Pentium 200 MHz
MMX processor with 512 KB Cache, 128 MB RAM, Windows NT 4.0
SP5, and Visual C++ 6.0 SP1.
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that similar results would be obtained with other imple-
mentations and systems.

VI. EMPIRICAL PERFORMANCE

This section reports the algorithms’ empirical perfor-
mance on several benchmark data sets. The accuracy of
each algorithm was confirmed by comparing the nearest
neighbor indices with those found by Brute. All of the
algorithms found the same neighbors as Brute except in
cases where different data set points were equidistant to
the query point. A more thorough discussion and a more
detailed description of the data sets® and results are given
in [9].

A. Uniform Distribution

The average query times were calculated for uniformly
distributed data sets with dimensions ranging from one to
twenty. Each data set contained 5,000 points and the av-
erage query times were calculated using 5,000 queries. For
each dimension, the algorithms were ranked in order of in-
creasing average query times. Fig. 4 shows a plot of the
average query time versus dimension for the top five algo-
rithms. An exponential growth in low dimensions and the
linear growth in high dimensions is apparent, as discussed
in Section III.

For this type of data set, PDS performed best in high
dimensions because the elimination criteria of the other
algorithms are ineffective in high dimensions and have more
overhead than PDS. In low dimensions, algorithms that
used a search tree performed better than PDS.

According to an average ranking, PAT and DOSVQ were
tied for best performance. However, as shown in Fig. 4,
DOSVQ performed better in high dimensions due to a
smaller overhead and PAT performed better in low dimen-
sions.

The average query times were also measured for vari-
ous data set sizes. Each data set contained eight variables
and the average query times were calculated using 5,000
queries. For each data set size, the algorithms were ranked
in order of increasing average query times. Fig. 5 shows
the average query time versus the data set size for the
best five algorithms. In this case the average query time
of PAT scaled as O(logn,), whereas DOSVQ and scaled
as O(np). This is an important advantage of PAT. Al-
though the slower algorithms may also eventually scale as
O(log n,) for larger data sets or lower dimensions, it is sig-
nificant that PAT achieves logarithmic query time more
readily.

B. Normal Distribution

The analysis performed using a uniform distribution was
repeated using a normal distribution. Fig. 6 shows a plot
of the average query time versus dimension for the top five
algorithms.

3The time series and vector quantization data sets were available at
http://www.ece.pdz. edu/~mcnames/DataSets at the time of writing.

The results are very similar to those obtained using a
uniform distribution, which suggests that the relative per-
formance of the algorithms is insensitive to the marginal
distributions of data set variables when they are indepen-
dently distributed.

As with the uniform distribution, PAT had the best over-
all performance in low and moderate dimensional spaces;
other search trees also performed well. PDS had the best
performance in high dimensions, though other methods
with small overhead had comparable performance.

Fig. 7 shows the average query times of the best five al-
gorithms for various data set sizes. The averages were cal-
culated using eight dimensional data sets and 5,000 queries
for each data set. As with the uniform distribution, PAT
achieved logarithmic query time, O(logn,). The average
query times of DOSVQ scaled roughly linearly with the
data set size, O(n,).

C. Chaotic Time Series

Local models are commonly used for time series predic-
tion [9]. These models use a data set that is constructed
from overlapping segments of the time series. A simple
model is constructed for every query using only a portion
of the points neighboring the input vector. The neighbors
are usually found by a fast nearest neighbor algorithm. The
models are often constructed to predict one step ahead us-
ing a window of previous values as the input. For example,
if the time series is represented by [y1, Y2, . .. , Yn], an input
at time ¢ is given by

T = (Y, Yt—1,Yt-2, - -+ s Yt—(ng—1) J-

Usually these models are applied to time series generated
by nonlinear dynamic systems. If the systems have no ex-
ternal inputs and they meet other very general criteria, the
time series are chaotic and all of the points in the data set
lie on a low dimensional manifold [9]. Consequently, the
intrinsic dimension of these data sets does not change as
the spatial dimension, ng, is increased.

The Lorenz time series is a common benchmark for mea-
suring the accuracy of time series prediction algorithms [4].
Using this time series, the average query times were cal-
culated for various dimensions using a data set containing
5,000 points and averaging over 5,000 queries. Fig. 8 shows
the average query times of the top five algorithms.

In moderate to high dimensional spaces, DOSV(Q had
the best performance, though PAT also performed very
well. Elimination criteria that are insensitive to the spatial
dimension of the data set performed much better on this
problem than on the independently distributed data sets.
For example, algorithms such as DWCS, TLAESA and FN,
which rely on the triangle inequality, improved significantly
in rank. The query time of K-D Tree grew much more
quickly with dimension than the top algorithms because
it is less able to adapt to the data set distribution, espe-
cially when the intrinsic dimension is much smaller than
the spatial dimension.

This analysis was repeated using the Santa Fe laser time
series [20], another common time series prediction bench-
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mark. The average query times were measured for various
dimensions using a data set containing 5,000 points and
averaging over 5,000 queries. Fig. 9 shows the average
query times of the top five algorithms. In this case, PAT
performed slightly better than DOSVQ.

D. Vector Quantization

Vector quantization is a popular and powerful method
of compression. It begins with the construction of a code-
book, which is a sample data set of the signals to be com-
pressed. The codebook is typically constructed by applying
a clustering algorithm to a large representative sample of
the signals to be transmitted. Once the codebook is cre-
ated, the signal to be compressed is divided into blocks, or
vectors, of a user-specified length. The nearest neighbor
in a codebook is found for each vector and the index of
the nearest neighbor is used to encode, or represent, the
vector. In a communications application, the sender and
the receiver are both given a copy of the codebook. Only
the indices of the nearest neighbors are transmitted. Once
the receiver receives an index, the corresponding vector in
the codebook is retrieved and used to represent the origi-
nal vector. This technique is commonly used to compress
speech and images. One of the practical limitations of this
method is the large computational cost of finding the near-
est neighbor in the codebook.

To test the performance of the nearest neighbor al-
gorithms in vector quantization encoding applications, a
range of different codebooks were constructed for a speech
signal and three gray-scale images that are commonly used
as benchmarks for vector quantization algorithms. The
codebooks were constructed using the clustering algorithm
described by Franti et al. [17].

Table I1I shows the average query times, calculated using
35,000 queries, to find the nearest neighbor for the speech
signal. Tables IV, V, and VI show the average query times
for the benchmark images Lena, Boat, and Baboon*, re-
spectively. For the images, the average query times were
calculated using 20,000 queries for the 2 x 2 image blocks
and 15,000 queries for the 4 x 4 image blocks. In all cases,
the query vectors were taken from the original signals used
to construct the codebook. The results are similar to those
obtained for chaotic time series: PAT and DOSV(Q were
statistically tied for the best performance.

VII. CONCLUSIONS

This work introduced a new nearest neighbor algorithm
based on principal axis trees called PAT. The performance
of this algorithm was compared to sixteen other of the lead-
ing fast nearest neighbor algorithms on a variety of bench-
mark problems, including independently-distributed simu-
lated data sets, chaotic time series, and vector quantization
codebooks.

Some of the algorithms used in this study had a sin-
gle user-specified parameter. These parameters were fixed
at the value that optimized the overall performance on

4This image is sometimes called Mandrill.

independently-distributed data sets ranging from one to
twelve dimensions. Better performance may be achievable
on other data sets if different user-specified parameter val-
ues are used.

The algorithms would certainly have performed better if
general purpose improvements had been used. For exam-
ple, in many applications nearest neighbor algorithms are
applied to a set of query points that are highly correlated.
Many researchers have independently proposed using the
nearest neighbors of the previous query as initial candi-
dates for the nearest neighbors of the current query [1,21].
This type of improvement can be applied to any nearest
neighbor algorithm, but it was not used here.

The algorithms were applied to three different types of
problems and many different data sets. One of the impor-
tant conclusions from this study is that the performance of
nearest neighbor algorithms varies substantially with the
properties of the data set. Thus, when the properties of
a data set is known, such as the intrinsic dimension, this
should be taken into account when choosing an algorithm.
If the properties are not known, an algorithm with good
overall performance, such as PAT, should be chosen.

The algorithms that performed best in this study incor-
porated search trees and partial distance search (PDS).
It was surprising to find that PDS performed best on
independently-distributed data sets in high dimensions.
Since the elimination criteria of all algorithms become in-
effective in high dimensional spaces, the good performance
of PDS in this case is due to the minimal overhead of its
elimination criteria.

One of the most popular algorithms included in this
study, K-D Trees, shares some similarities with PAT and
also had good overall performance in this study. Both al-
gorithms construct balanced search trees and use elimina-
tion criteria to eliminate entire subtrees during a recursive
search. There are also important differences between the
two algorithms. PAT requires the user to specify the num-
ber of branches at each node whereas K-D Tree uses a
binary tree, which is generally narrower and deeper. PAT
partitions the search space into hyper-polygons whereas
K-D Tree partitions the space into hyper-rectangles. The
elimination criteria for the algorithms is very different due
to the different geometry of the partitions. Although both
algorithms used PDS to search terminal nodes for this
study, the original description of K-D Tree used Brute [11].

Overall, PAT and DOSVQ [14] had the best overall per-
formance. In many cases, the average query times of PAT
and DOSVQ were statistically indistinguishable. In other
cases, the difference was significant. For example, DOSVQ
had better performance on independently-distributed data
sets in high dimensions, mostly due to the smaller overhead
of its elimination criteria. PAT had superior performance
on large independently-distributed data sets and scaled as
O(logn,) as opposed to O(n,) for DOSVQ, where n,, is
the number of points in the data set. PAT also requires
less memory, O(n,), than DOSVQ, O(n,logn,). Conse-
quently, PAT has a significant advantage over DOSVQ on
large data sets.
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PAT was designed to combine the best features of the
fastest algorithms, such as search trees and PDS, with a
new method of partitioning the data set along the direc-
tions of maximum variance and a new elimination criterion.
These new features enable PAT to construct a partition of
the data set that can be searched efficiently. This type of
partitioning, as illustrated by Fig. 1, helps PAT perform
especially well when the spatial dimension of the data set
is significantly higher than the intrinsic dimension.
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APPENDICES
A. NOTATION

This section uses the following notation. The variable n,,
denotes the number of points in the data set, {z1,z2,...
,Tn, }, Where each point exists in a ng4-dimensional space,
x; € R™ fori=1,2,... ,np. The vector d € R* represents
the distance to the nearest neighbors found so far and d?
represents a vector of the square of these distances.

The element of each data set vector, x;, is specified by
a second subscript. For example, z;; represents the jth
element of the vector x;. The elements of other vectors are
specified by a single subscript. For example, p; represents
the ith element of the vector p. The distinction between
scalars and vectors is made clear from the context.

B. SEARCH TREE CONSTRUCTION

Principal Axis Tree Construction

1. Define n, as the number of points assigned to a node N

and define y; € R™¢ as the ith point. Define n. as the

number of child nodes assigned to each non-terminal
node.

d? :=ccfori=1,2,... k.

N := the root node.

Assign all of the points in the data set to V.

. BuildTree(N).

Function BuildTree(N)

1. If ny, < n., then N is a terminal node. Exit function.

2. Calculate the principal axis, p, for the points assigned
to N.

3. Calculate the projections of all of the points assigned to
N onto the principal axis:
9i =252 yigpy for i =1,2,...,ny,.

4. Sort the projected values in increasing order.

5. Divide the principal axis into n. distinct regions such
that the number of projected values in each region is
either [n,/n.] or |[n,/n.] + 1. Define G; as the set of
points contained in the 7th region for i =1,2,... ,n..

6. Calculate the smallest and largest projection for each
subset of points, G;:

G oo
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Ji,min := Mmin g; and
Yi G;
Ji,max ‘= Mmaxg;
v €670

7. Store the principal axis, p, and subset projection bound-
aries7 9i,min and Ji,max-
8. Create a child node for each subset of points.
For i =1 to n.,
8.1 Create a child node C; and assign the points in
the subset G; to this node.
8.2 BuildTree(C;).
8.3 Next 1.

C. SEARCH ALGORITHM

Search Algorithm
1. Define ¢ as the query vector and define N as a node in
the tree. If IV is a non-terminal node, define n. as the
number of child nodes contained in N, C; as the ith
child node, and G; as the group of points assigned to
C;. Define p as the projection vector of N and define
Gi,max and g; min as the maximum and minimum values
of the points in G; projected onto p. If N is a terminal
node, define n, as the number of points assigned to N
and y; € R™ as the ith point. Define L as the list of
nearest neighbors.
2. d?:=o00fori=1,2,...,k.
3. N := the root node.
4. L = Search(N ,q,q,0).
Function L = Search(N,qb,di)
1. If N is a terminal node, then
1.1 Perform a Partial Distance Search on the points
assigned to this node.
1.2 Return the updated list of nearest neighbors, L,
and exit function.
2. Calculate the projection of the boundary point onto p:
g = 2721 bzpz
3. Initialize stopping-criteria variables:
LowerDone := false and
UpperDone := false.
4. Find the closest group of points using the upper bound-
aries. Begin by checking end conditions.
If 0 < g1,max, then 7, :== 1 and LowerDone := true.
Else if 0 > ¢, —1,max, then i, := n., iy :=n. — 1, and
UpperDone := true.
Else, perform a binary search:
4.1 iy :=1.
4.2 iy = ne.
4.3 While i, —ip > 1,
i (i +0)/2).
- If 0 < gimax, then i, :=1.
Else, iy := 1.
5. Search the child node that contains the region that b is
in.
Search(C;, ,q,b,d? ) and
Ty = 1y + 1.
6. Initalize variables for main loop:
If LowerDone = false, then d; := 0 — gi;, max-
If UpperDone = false, then d,, := gi, min — 0.
7. Search the remaining child nodes starting with the clos-
est until the bounding conditions apply.

While UpperDone = false or LowerDone = false,
7.1 If (UpperDone = true or dy < d,,) and Lower-
Done = false, then check Cj,.

- Calculate lower bound on distance to
points in G;,:
d%Bg = d%B + d%.

- If di, < dig,, then none of the points in G;
fori=1,2,... i, is a nearest neighbor of
q. LowerDone := true. Goto 7.

- If Cj, is not a terminal node, then calcu-
late the boundary point:

by := b — dyp.
. Search(Cu,qviadiBz)-
1p:=1p — 1.

- If 1 = 0, then LowerDone := true.
Else, d¢ := 0 — i, max-
- Goto 7.

7.2 Else, check node C;,

- Calculate lower bound on distance to
points in G
diBﬁ = d;B + d2. o

- If di < dip,, then none of the points in
G; for i = dy,1, + 1,... ,n. is a nearest
neighbor of g. UpperDone := true. Goto
7.

- If C;, is not a terminal node, then calcu-
late the boundary point:

by = b+ dyp.
- Search(Cy, ,q,bu,di g, ).
C oy =0y + 1

- If i, = ne + 1, then UpperDone := true.
Else, dy, = gi,, ,min — 0.
- Goto 7.
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Algorithm  Source

Bak Bakamidis [6]

Brute Not Applicable

BJS Baek et al. [22]

Cube Soleymani and Morgera [23]

DOPAT McNames [9]
DOSVQ Katsavounidis et al. [14]

DWCS Tai and Lin [15,16]
FN Fukunaga and Narendra [10]
FNM McNames [9]

K-D Tree  Friedman et al. [11]
MiniMax  Cheng et al. [7]

OPS Kim and Park [12]
PDS Cheng et al. [7]
Poggi Poggi [21]

TLAESA  Micé et al. [13]
WL-AESA  Wu and Lin [24]

TABLE I
LIST OF ALGORITHMS IMPLEMENTED FOR THIS STUDY.

Algorithm  Value

PAT 7
FN 16
FNM 50
TLAESA 3
K-D Tree 40
Bak 2
TABLE II

VALUES CHOSEN FOR ALGORITHMS THAT HAVE A USER-SPECIFIED
PARAMETER.
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Algorithm 8 Dimensions 16 Dimensions Rank
1024 2048 4096 8192 1024 2048 4096 8192
PAT 0.056 0.076 0.108 0.122 | 0.214 0.300 0.385 0.442 1.4
DOSVQ 0.057 0.081 0.132 0.159 | 0.185 0.272 0.375 0.478 1.6
DOPAT 0.068 0.101 0.175 0.221 0.242 0.382 0.579 0.867 3.0
DWCS 0.103 0.174 0.290 0.417 | 0.297 0.500 0.773 1.163 4.1
K-D Tree 0.191 0.231 0.327 0.357 | 0.647 0.940 1.221 1471 5.0
FNM 0.329 0.538 0.925 1.337 | 0.601 0.968 1.601 2.669 5.9
FN 0.544 0.828 1.438 2.065 | 1.363 1.991 3.089 4.906 7.6
PDS 0.590 1.118 2.265 4.378 | 0.895 1.684 3.159 5.975 8.4
BJS 0.581 1.210 2.340 4.524 | 1.088 2.161 3.980 7.585 9.3
Cube 0.718 1.326 2.607 4.955 | 1.490 2.661 4.693 8.433 10.9
Poggi 0.789 1.595 3.615 7.171 | 1.166 2.289 4.566 9.223 11.1
OPS 0.839 1.100 1.514 1.982 | 2.655 5.399 11.005 22.855 11.6
TLAESA 1.118 2.722 2991 3.983 | 2.017 4.479 7.739 11.589 12.5
WL-AESA 1.044 2.302 4.665 9.889 | 2.044 4.045 8.204 16.030 13.1
Bak 1.112 2.530 5.500 10.344 | 2.528 5.663 11.611 21.877 14.5
Brute 1.903 3.769 7.672 15.460 | 3.581 7.243 14.629 29.606 16.0
MiniMax 3.128 6.250 12.632 25.639 | 5.867 11.884 23.845 48.220 17.0

TABLE III
T E E E TIME E TO F THE NEAREST NE F E T TED F / speec
ALGORITHMS’ AVERAGE QUERY TIMES (MILLISECONDS O FIND THE NEAREST NEIGHBOR FOR A CODEBOOK CONSTRUCTED FROM A speech
stgnal. THE RESULTS ARE SHOWN FOR FOUR CODEBOOK SIZES AND TWO VECTOR SIZES.

Algorithm 2 X2 4 x4 Rank
1024 2048 4096 8192 1024 2048 4096 8192
DOSVQ 0.028 0.034 0.045 0.055 | 0.075 0.105 0.134 0.159 1.5
PAT 0.026 0.035 0.043 0.048 | 0.090 0.130 0.168 0.186 2.3
DWCS 0.027 0.039 0.059 0.084 | 0.077 0.116 0.156 0.178 2.8
DOPAT 0.028 0.038 0.053 0.062 | 0.085 0.132 0.184 0.243 3.5
K-D Tree 0.054 0.069 0.088 0.106 | 0.237 0.349 0.457 0.526 5.0
FNM 0.134 0.257 0.406 0.562 | 0.288 0.567 0.849 1.287 6.5
FN 0.215 0.367 0.558 1.006 | 0.610 0.976 1.432 2.062 8.1
Bak 0.156 0.343 0.772 1.577 | 0.563 1.158 1.871 2.451 8.6
TLAESA 0.247 0.469 0.770 1.371 | 0.546 1.112 1.911 2.552 8.9
PDS 0.456 0.942 1.867 3.720 | 0.609 1.184 2.369 4.607 10.4
OPS 0.080 0.103 0.142 0.143 | 2.386 4.984 10.129 21.602 10.5
Cube 0.495 1.014 2.005 3.982 | 0.873 1.618 3.086 5.747 11.8
WL-AESA | 0.474 1.047 2.153 4.553 | 0.971 1.884 3.392 5.666 12.3
BJS 0.669 1.351 2.685 5.671 | 1.362 2.727 5.561 12.346 13.5
Poggi 0.876 1.761 3.541 7.167 | 2.328 4.774 9.991 20.699 14.5
Brute 1.013 2.079 4.150 8.352 | 3.504 7.102 14.674 29.761 16.0
MiniMax 1.755 3.498 7.121 14.336 | 5.690 11.575 23.633 47.709 17.0
TABLE IV

ALGORITHMS’ AVERAGE QUERY TIMES (MILLISECONDS) TO FIND THE NEAREST NEIGHBOR FOR A CODEBOOK CONSTRUCTED FROM THE IMAGE
Lena. THE RESULTS ARE SHOWN FOR FOUR CODEBOOK SIZES AND TWO VECTOR SIZES.
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Algorithm 2 x 2 4 x4 Rank
1024 2048 4096 8192 1024 2048 4096 8192
DOSVQ 0.026 0.034 0.043 0.053 | 0.084 0.110 0.139 0.154 1.5
PAT 0.025 0.032 0.040 0.044 | 0.097 0.132 0.174 0.194 1.8
DWCS 0.028 0.042 0.063 0.090 | 0.092 0.138 0.184 0.207 34
DOPAT 0.028 0.037 0.049 0.064 | 0.096 0.138 0.194 0.262 34
K-D Tree 0.054 0.066 0.083 0.108 | 0.274 0.393 0.510 0.547 5.0
FNM 0.140 0.254 0.384 0.617 | 0.318 0.575 0.900 1.361 6.5
FN 0.212 0.330 0.559 0.797 | 0.621 1.037 1.595 2.327 7.6
TLAESA 0.262 0.560 1.083 1.317 | 0.672 1.224 2.598 3.756 9.1
Bak 0.171 0.403 0.911 2.030 | 0.732 1.470 2.723 3.120 9.3
PDS 0.486 0.908 1.841 3.699 | 0.672 1.266 2.542 4.884 10.0
OPS 0.079 0.101 0.136 0.163 | 2.416 4.924 10.591 23.157 10.5
Cube 0.525 0.985 1.981 3.957 | 0.998 1.797 3.401 6.255 11.5
WL-AESA | 0.604 1.245 2.589 5.381 1.142  2.101 4.095 7.030 12.6
BJS 0.706 1.384 2.653 5.139 | 1.431 2.615 5.117 10.409 13.4
Poggi 0.934 1.856 3.692 7.990 | 2.381 4.661 9.536 19.432 14.5
Brute 1.039 2.013 4.103 8.250 | 3.549 7.068 14.686 29.536 16.0
MiniMax 1.719 3.412 7.027 14.052 | 5.779 11.514 23.585 47.598 17.0
TABLE V

10

ALGORITHMS’ AVERAGE QUERY TIMES (MILLISECONDS) TO FIND THE NEAREST NEIGHBOR FOR A CODEBOOK CONSTRUCTED FROM THE IMAGE

Boat. THE RESULTS ARE SHOWN FOR FOUR CODEBOOK SIZES AND TWO VECTOR SIZES.

Algorithm 2 X 2 4 x4 Rank
1024 2048 4096 8192 1024 2048 4096 8192
PAT 0.033 0.041 0.051 0.054 | 0.304 0.446 0.553 0.385 1.5
DOSVQ 0.034 0.044 0.061 0.073 | 0.273 0.431 0.596 0.468 1.8
DOPAT 0.036 0.045 0.065 0.079 | 0.284 0.443 0.621 0.503 2.8
DWCS 0.052 0.080 0.130 0.182 | 0.312 0.526 0.748 0.636 4.4
K-D Tree 0.071 0.082 0.107 0.122 | 0.710 1.129 1.602 1.327 5.0
FNM 0.174 0.255 0.449 0.667 | 0.587 1.042 1.757 2.313 6.3
FN 0.255 0.382 0.636 0.837 | 1.182 1.927 3.370 4.679 7.8
PDS 0.482 0914 1961 3.872 | 1.011 1.913 3.601 6.397 9.0
TLAESA 0.385 0.609 1.077 2.624 | 1.742 3.205 6.315 10.311 9.3
OPS 0.110 0.126 0.159 0.179 | 2.632 5.617 11.786 22.936 10.1
Cube 0.532 1.006 2.119 4.162 | 1.917 3.412 5.947 9.945 10.8
Bak 0.427 0.903 2.064 4.668 | 1.996 4.193 8.829 11.489 11.6
BJS 0.610 1.146 2.333 4.489 | 1.849 3.550 7.032 12.732 11.9
Poggi 0.732 1.427 3.047 6.511 | 2.069 4.157 8.536 16.237 13.4
WL-AESA | 1.162 2.557 5.516 11.462 | 3.159 5.975 9.613 13.260 15.1
Brute 0.999 1.967 4.145 8.313 | 3.514 7.150 14.700 29.636 15.5
MiniMax 1.754 3.395 7.093 14.160 | 5.801 11.663 23.802 47.870 17.0
TABLE VI

ALGORITHMS’ AVERAGE QUERY TIMES (MILLISECONDS) TO FIND THE NEAREST NEIGHBOR FOR A CODEBOOK CONSTRUCTED FROM THE IMAGE

Babbon. THE RESULTS ARE SHOWN FOR FOUR CODEBOOK SIZES AND TWO VECTOR SIZES.
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Fig. 1. Partition of a two-dimensional data set using a principal axis
tree. Each non-terminal node in the tree subdivided its assigned
set of points into seven subsets. In this example, the tree had a
depth of two and divided each of the seven primary regions into
seven subsets. Note that the direction of each partition is in the
direction of maximum variance.

Fig. 2. Tllustration of the bounding criteria of principal axis trees. In
this example the query point is located in Region 1 and denoted
by g. The chords labeled dg42, d23, and d34 are used to establish a
lower bound on the distance to points in the gray region, Region
3, and Region 4 respectively.
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Fig. 3. Average query time of PAT to find five nearest neighbors
as a function of dimension for various numbers of children per
non-terminal node, the user-specified parameter. The data set
consisted of 2,000 points drawn from a normal distribution. The
white circles show the average query times for seven children per
non-terminal node.
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Fig. 4. Average query time to find five nearest neighbors as a function
of dimension. The data sets and query points were drawn from a
uniform distribution. The data set contained 5,000 points. Only
the best five algorithms are shown.
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Fig. 5. Average query time to find five nearest neighbors as a func-
tion of the data set size. The data sets and query points were
drawn from a uniformly distribution in eight dimensions. Since
the horizontal axis is on a log scale, a straight line indicates that
the average query time scales as O(lognp) and an exponentially
increasing trace scales as O(np), where nyp is the number of points
in the data set. Only the best five algorithms are shown.
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Fig. 6. Average query time to find five nearest neighbors as a function
of dimension. The data sets and query points were drawn from a
normal distribution. The data set contained 5,000 points. Only
the best five algorithms are shown.
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Fig. 7. Average query time to find five nearest neighbors as a function
of the data set size. The data sets and query points were drawn
from a normal distribution in eight dimensions. Only the best
five algorithms are shown.
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Fig. 8. Average query time to find five nearest neighbors as a function
of dimension. The data sets and query points were created from
the Lorenz time series. The data set contained 5,000 points.
Only the best five algorithms are shown.
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Fig. 9. Average query time to find five nearest neighbors as a function
of dimension. The data sets and query points were created from
the Santa Fe time series. The data set contained 5,000 points.
Only the best five algorithms are shown.



