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. . but shifted in time. Thus, the total vibration may be written
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Box 751, Portland, OR 97207-0751 wherev (r) is the vibration due to the first planet gear that passes

the transducer at the beginning of each revolution. The vibration
of the planet gears measured by a fixed sensor is modeled as
vi(r)=w;(r)m;(r), wherew;(r) represents the time-varying am-
plitude of the transmission path from the vibration source to the
Synchronous averaging is difficult to use with epicyclic gear sysensor due to the gearbox elasticity andr) represents the vi-
tems because the dominant frequencies are slightly skewed #&mgtion due to the planet meshing with the annulus. The baseband
asymmetrical. This Tech Brief uses Fourier series analysis to adifynalw;(r) is periodic with a fundamental frequency of 1 cycle
new insight to this phenomenon. The results are illustrated gyer revolution(cpr. The modulating signah;(r) is periodic with
vibration data recorded from a Cobra AH-1S helicopter gearbox fundamental frequency @f cpr, whereT is the number of teeth
[DOI: 10.1115/1.1403735 on the annulus gear.
One of the surprising consequences of a Fourier series repre-

sentation of the epicyclic vibration is that, under most conditions,

1 Introduction the power spectrum at the meshing frequengycpr) is zero.

: : . A Ithough the vibration of a single planet gear repeats every cycle
Epicyclic gears are used in many applications because they H::pr)g the total vibration cogtaig§ cogies of I1his vibrat)i/ony

achieve a large torque/speed ratio in a compact package. In most

gearboxes, the estimated spectrum of the vibration signal is sy\{j -L:Ztl!znsfhﬁi?oripﬁgsd:?uf daer?wcehntg]; ftrhe%féigibtcgp?ra; thEi total
metric and centered at the meshing frequency. For epicyclic ge htinuous-time Fourier serig€TFS representation of the total

the estimated spectrum is typically asymmetric and the dominal ration can be written as
frequency component does not occur at the meshing frequen\é g
This is an important observation because some of the popular

e-mail: mcnames@pdx.edu.

methods of fault detection use the meshing frequency and tee '
sideband signal power as an indication of the gearbox v(r)= Z o, @12kPT )
health[1,2]. k=—o

McFadden and Smith3] were the first to recognize that this ) ) ) )
effect was due to the varying phase angles of the vibration prbbus, the signal is only composed of frequencies that are integer
duced by each of the planet gears. They used phasor sumdMgtiples ofP cpr. Even though each planet is generating a vibra-
identify the dominant spectral components, but were unable #§n atT cpr, the total vibration does not have any components at
predict the relative amplitudes of the dominant components. THI¥ meshing frequency, unle3sis an integer multiple oP.
study generalizes their work using continuous-time Fourier seriesSince theith planet gear produces a vibration that is just a
(CTFS analysis. This provides a more thorough and intuitive exielayed copy of the first planet gear(r) =v(r — (i—1)/P), the
planation of the observed spectrum and leads to a number of aI FS coefficients of théth planet gear are related to the coeffi-
sights that could not be gained with phasor sums alone. cients of the first bya; = 127 ((~D/P)ka,,  where the CTFS

representation of the vibration due to H&planet is

2 Fourier Series Analysis

McFadden and Smith3] describe a model of the gearbox vi- * _
bration in which the total vibration is equal to the sum of vibra- vi(r)= 2 a; e 12T, (3)
tions due to each planet geazr(r)=2ipzlvi(r), whereP is the k=—e
number of planet gears amds the number of carrier revolutions. . -
The vibration due to each planet geaf(r), is modeled as a Although the amplitudes of these coefficients are equal for all of

periodic amplitude-modulated signal with a frequency equal to ifie planet gearsa; | =|ayd, the sum of the coefficients is zero,

meshing frequency that grows in amplitude and then decays %Ecept at multiples oP. This phenomenon is due to the phase

oo . 7> differences of the coefficients.
each planet passes the vibration sensor. Under ideal conditio At integer multiples ofP the phase shift of each planet's CTFS

_ o . . —j2mi_
Contributed by the Technical Committee on Vibration and Sound for pubIi(:atio%m:“f-nClema'vk IS a multlple of 2r and, sincee 1 for any

in the JDURNAL OF VIBRATION AND ACOUSTICS Manuscript received March 2000; Integeri, the coefficients are in phase with each other and equal.
revised June 2001. Associate Editor: G. W. Flowers. The total vibration may therefore be written as

150 / Vol. 124, JANUARY 2002 Copyright © 2002 by ASME Transactions of the ASME



Fourier Series Coefficients of Total Vibration
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Fig. 1 The stem plot shows the amplitude of continuous-time Fou-
rier series (CTFS) coefficients for the total vibration. The solid curve
represents the CTFS coefficients for a single planet multiplied by P.

Cobra AH-1S Estimated Fourier Series Coefficients
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Fig. 2 DFT approximation of continuous-time Fourier series coefficients for
the first harmonic of a vibration signal recorded from the upper planetary sys-
tem of a Cobra AH-1S helicopter gearbox

* a Cobra AH-1S gearbox. Synchronous averaging was used to
v(r)=P E alkaeJ'?ﬂkPr_ (4) eliminate_noise that was asynchronous with the carrier frequency.
k=—o The dominant components occurred at multiplesPohear the

This indicates that the CTFS representation of the total vibratiéﬂesmnr? freque_fr_1cf[119 cpy, as predicftekc]i by_lt_r'le mOdIeI'. < that i
is proportional to the CTFS representation of a single planet gearNother significant consequence of the CTFS analysis is that it

sampled at frequencies that are multiplesPofx, = Pay yp . Indicates the shqpe of spectrum near 'each of the meshing-
’ frequency harmonics should vary, depending on how the non-zero

3 Asymmetrical Sidebands coefficients are aligned.
Figure 1 shows the CTFS coefficients of a single, simulated
planet gear from the upper planetary system of a Cobra AH-1S
helicopter gearbox multiplied bf. This gearbox containB=38 4 C USi
planet gears and the annulus hi&s 119 teeth. This figure also onclusions
shows the simulated total vibration CTFS coefficieftts|. (2)]. This Tech Brief revisited the topic of epicyclic gearbox vibra-
Note that they coincide exactly at frequencies that are multiplestidn analysis using continuous-time Fourier sei€FFS analy-
P=8, as predicted by Eq4), and the significant componentssis. This yielded insights about how the elasticity of the gearbox
only occur near the meshing frequen@y 119 cpr. affects the shape of the spectrum as estimated by the CTFS coef-
The model developed here indicates that the cause of the as¥itients. Specifically, this analysis explains the source of the asym-
metry in the spectrum is due to the non-zero CTFS coefficientsetry observed in the spectrum and correctly predicts the location
being misaligned with the meshing frequency. This misalignmenf the dominant frequency components near all harmonics of the
will occur unlessT is a multiple ofP. meshing frequency. This is especially important for health moni-
Figure 2 shows the DFT approximation of the CTFS coeffitoring applications because it demonstrates that asymmetry occurs
cients near the first harmonic for a vibration signal recorded fromaturally and is not necessarily cause for alarm.

Journal of Vibration and Acoustics JANUARY 2002, Vol. 124 / 151



Acknowledgments nents are coupled to static components. Furthermore, motion of
The author is grateful to Edward Huff, Eric Barszcz, Mariann he piston is not mechalllnlclally constrained. Thergfore, piston mo-

Mosher, Mark Dzwonczyk, and the anonymous reviewers for thelP™ becomes l_Jncontro_ab e under some operating (_:ondltlons.

thoughtful review, assistance, and suggestions Choe and Kim(7] derived a dynamic mpdel for a linear com-

' ' ’ pressor and necessary conditions for the jump motion of the piston
to occur by employing the describing function approach under the
L ) o o ] ~assumption that the cylinder was fixed to the earth. In reality,
[1] Dousis, D|m|tr|_A., 1992, _“A\ﬁbr_atlon Monitoring Acquisition and Diagnostic however, the cylinder moves by interacting with the piston; this is

System for Helicopter Drive Train Bench Testd48th Annual Forum Proceed- . )
ings of the American Helicopter Socielol. 1, pp. 355—369. taken into accqunt for more accuracy and, so, the effects of piston
[2] Ma, J., and Li, C. J., 1996, “Gear Defect Detection Through Model-Base1@SS as a deS|gr_1 parameter on the Jjump phenomena are ar]alyzed
Wideband Demodulation of Vibrations,” Mech. Syst. Signal Proce®.No.  based on the derived model and compared with actual experimen-

5, pp. 653-665. tal results.
[3] McFadden, P. D., and Smith, J. D., 1985, “An Explanation for the Asymmetry

of the Modulation Sidebands About the Tooth Meshing Frequency in Epicycli . . .
Gear Vibration,” Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sk99, No. 1, bynamIC MOdeImg of Linear Compressor SyStem

pp. 65-70. The mechanical subsystem is treated as a two-degree of free-
dom (DOF) model as shown in Fig. 1, whene,(t) and u,(t)

. . . denote respectively displacements of the pistoaind the cylinder
Theoretical and Experimental AnalySiS m, from the static equilibrium positions.

; ; H The motion of piston and cylinder can be described by the
of Nonlinear Dynamics in a following equaione:
Linear Compressor
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e-mail: kikim@mail.kaist.ac.kr where fy(t) denotes gas force in the compression chamber and

fo(t) the electromagnetic exciting force exerted by the linear mo-

) ) ] tor. In the above equationXs denotes the position of the piston
Center for Noise and Vibration Control, whenf(t) andf,(t) don't act on the piston an¥, denoting the
Department of Mechanical Engineering, KAIST, equilibrium position of the piston varies with the piston amplitude
Science Town, Taejon 305-701, Korea and load(suction and discharge pressure _
The gas force is given by the following equation:
fg(t):Ap( Pc(t)—Py) (3)

Steady-state nonlinear response characteristics of a linear COWhereAp P.(t), and P, denote the cross sectional area of the
pressor are investigated theoretically and experimentally. In thgsion compression chamber pressure and suction pressure re-
theoretical approach, motions of not only piston but also cylindefhectively. It is assumed that the gas behaves as an ideal gas in the

are considered and dynamic models for steady-state response Ri§mpression cycle, that is, compression and expansion processes
dictions are formulated by applying the describing functioyre described by polytropic processes as follows:
method. Effects of piston mass on the jump phenomena are pre-

dicted by the derived models as an example of design parameter _ 1\" ‘ .
variation and compared with actual experimental results. P()=Ps X(t)] 'O compression process 4)
[DOI: 10.1115/1.1424297

n
Pc(t):PS():((—tél)) for expansion process (5)
Introduction
Linear oscillating motors are inherently more potential in en-
ergy efficiency than other types for light duty compressors. This is %
why research has focused on this topic for the past 30 years. The .. >
major concern in previous studigs—6| was that system perfor- X '
mance under stable operations and, system instability problems, sl 4 L
which might arise in practice, were not well understood probably Z |
because of complexities in the dynamic modeling of the system. / —> ] —>
Configuration of a linear compressor under study is simple: a f % : 1
circular cylinder fixed onto a stator is supported by ground springs ? ! | :
and a piston fixed onto a moving magnet is suspended by piston f_\/VV‘— —\/V\A— 1
springs. Piston movement, however, is determined in a rather é e i e . :
complicated way by interaction of mechanical parts with electro- %4 |:| ! |
magnetic and thermodynamic subsystems. The gas force in com- ? |:| ,' !
pression chamber possesses inherently nonlinear characteristicsf — (0 L :
with respect to the piston motion and, hence, its dynamic compo- g — () !
Contributed by the Technical Committee on Vibration and Sound for publication 5%/

in the DURNAL OF VIBRATION AND ACOUSTICS Manuscript received Jan. 2000;
Revised Aug. 2001. Associate Editor: A. F. Vakakis. Fig. 1 A two-DOF model of mechanical subsystem

152 / Vol. 124, JANUARY 2002 Copyright © 2002 by ASME Transactions of the ASME



wheren denotes the polytropic coefficient of the working gas andnd substituting Eqs(8) and (15) into this equation gives the
X4 andX, are respectively final and initial positions of the pistomelation between the voltage and the current in the frequency do-
relative to the discharge valve seat for suction process. The pistoain as follows:

displacemenk(t) is given by 2

. joa
X(1)=Xo+u(t) © Vo Retlelet o oMot jwot hegry)) |

whereu(t) is the dynamic component of piston displacement de-

fined by u(t) =u(t) —u,(t) and its amplitude idJ. In summary, the equilibrium position of the piston, its amplitude,
Applying the describing function methd®] to the gas force the current in the electric circuit, and required input voltage can be

and introducing a non-dimensional piston amplitude defined @iculated without any difficulty for given values of the single

ry=U/X, yields the following expressions: dimensionless parametey; as shown in Eqs(7), (8), (15) and
fo(ry) (17) respectively, which makes a parametric study very easy al-
Xo=Xg+ Sk - (7) though static and dynamic components are still coupled.
fo(ry) Theoretical and Experimental Analysis
U=|Xg+ —— 8
( s k ) ! ®) Natural Frequency. Since the gas force behaves as a hard-

fo(ry) ening spring at low amplitudes of the piston and a softening
_ _ 2 ; ; St'u spring at high amplitudes, the natural frequency of the piston mo-
Fe=(ktkeq(ru) —e Meq+JwC+]heq(r“))(xS+ k )r“ tion relative to the cylinder was expected to have such patterns.
(9) Figure 2 shows variations of the natural frequency with the non-
where F, represents complex amplitude of the electromagne mensional piston amplltud_e for _three cases of nondimensional
excitation forcef ((t) and ( ischarge pressure a_nd a given piston mass 0.534 kg). th-'
€ ing that the current in the coil is minimized when the driving

ApPs( (%2 141, \" frequency coincides with the natural frequency, consumption of
fs(ru)= o (f 1+r. cosd do+rp(m—06,) the electric energy can be minimized by adjusting the driving
0 ! frequency so that it may match well with the load and the required
fe4 1+rucose4)” stroke.
+ ——| db6—6, (20) .
» \ 1+r,cosé Jump Phenomena. Jump phenomenon may arise due to the
nonlinear spring characteristics of the gas force depending on the
NARPs [ % (1+r1,)"sir? @ combination of mechanical, thermodynamic, and electromagnetic
Keo(Fu) = X0 o (1+r,cosf)" T ¢ parametergChoe and Kim[7]). Steady state responses for three
piston masses are shown in Fig. 3. Theoretical results represented
9 (1+r,cosb,)" sir? 6 by solid lines in the figure show typical tangent bifurcatidtay-
f (141, c080)" T d9) (11) feh and Balachandrarfl10]) for the two piston massesn
g u =0.534 kg and 0.433 kg. The tangent bifurcation points denoted
NApPs by solid circles in the figures are defined 8y, /dV=0. Experi-

(rp(cosé,+1)+cosh,—1) (12) mental results are represented in the figure by stars for increase of
the input voltage and solid squares for decrease. The input volt-
K — 0?mg+ ] we ages, at which the bifurcation was observed in Figa) &nd(c),
5 c _ (13) are about 30 percent greater than the predictions. This discrepancy
ki—o(me+tm)+joc might have been caused by many assumptions, examples of which
In the above equations,,=P,/P is the nondimensional dis- would be the harmonic motion of the piston and the ideal behavior

charge pressure, denotes the coordinate of the piston in angule@f the gas compression cycle. When the piston masgas 0.467
scale, and¥, and 6, represent the starting positions of dischargkd. & value between two values, i.e., 0.534 kg and 0.433 kg, jump

Ned 1) D

Meq=

and suction respectively. phenomenon was not observed in the experiment as well as in the
The electromagnetic exciting force in frequency donfajrcan  Prediction as shown in Fig.(B). This means that the jump phe-
be described as followS]: nomenon can be avoided just by selecting the piston mass in an

optimum manner.
Fe=al (14 ) )
] i ) ) _Influence of the Cylinder Motion. A real part of the effec-
wherel is the complex amplitude of the current in the field coitive mass of the moving pistok oq Calculated by Eq(13) which
and the proportional constaatis defined as the spatial derivativetakes into consideration the cylinder mass of 5.637 kg and cylin-
of the flux in the direction of the piston movement. Substitutinger mounting stiffness of 2.9 kN/m in this study is 0.431 kg while

Eqg. (14) into (9) yields the current amplitude also as a function ofhe piston mass by itself is 0.467 kg. Theoretical results for the
the nondimensional piston amplitudg:

|:£(k+k (ry) — ©*Mggtjwc+jheg(ru))| X +w)r 58
o eq\'u eq eq\'u S Kk u _rp= 826
(15) 56l ----1,=10.68 ‘<
The governing equation for the electro-mechanical circuit of a —--r,71261

Natural Frequency (Hz)

linear motor can be expressed in the time domain as fol[@ks 54
du(t) di(t) i
Q’T-FLET‘FREI(U:U(I) (16) 52
where v(t) is the input voltage, and.g and Rg are effective 50+ 02 02 06 08 10
inductance and resistance, respectively. The first term inEg). r

u

represents the electromotive force induced by the motion of the
moving magnet. Transforming E(L6) into the frequency domain Fig. 2 Variations of piston natural frequency with amplitude
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input voltage

ot SISO control system is built by using a volume displacement
gensor and a set of actuators driven in parallel with a single
amplifier. The actuators location is optimized to achieve an open-
lpop transfer function which exhibits alternating poles and zeros,
as for systems with collocated actuators and sensors; the search
procedure uses a genetic algorithm. The ability of a simple
. lead compensator to control this SISO system is numerically
Concluding Remarks demonstrated.[DOI: 10.1115/1.1421610

A dynamic model of a linear compressor including motions of
not only piston but also cylinder has been developed for analysis
of its dynamic characteristics at the initial design stage. One im- |ntroduction
portant result is that variations of the natural frequency of the . .
piston motion due to design parameter changes can be predicte ccordl_ng to the modern control theofy], an afb'tfa.fy pon_trol
by introducing the nondimensional piston stroke, which will als8"™ lem is mathematically formulated as t_he minimization o_f
be useful to decide the driving frequency for enhancement of tl gme norm of the closed-loop transf(_er fqnctlgn between the dis-
system performance. Another important result is that the proposé'&banceW and the performance metric(Fig. 1.
model is capable of characterizing the nonlinear system behavior T,w=Gwt+ G, H(1 =Gy H) " 'Gyy (1)
relatively well so that input voltage can be controlled in an
optimum manner although the difference between the predict
input voltage for the tangent bifurcation and the measured is

piston mass of 0.433 kg without considering the cylinder moti
were close to Fig. @) where no jump phenomenon is expecte
while jump arises in reality as shown in Fig(c meaning that

stability analysis of the compressor system.

(Jj]ereGZW is the open-loop transfer function between the distur-
ncew and the performance metric G,, between the control
input u and the performance metr; andG,,, between the dis-

negligible. turbancew and the output measurementand G, between the
control inputu and the system outpuyt
References This abstract formulation, although mathematically attractive,
[1] Cadman, R. V., 1967, “A Technique for the Design of Electrodynamic Oscildoes not explicitly take into account the particular features of the
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[2] Pollak, E., Soedel, W., Friedlaender, F. J., and Cohen, R., 1978, “Mathemati e : : ;
Model of an Electrodynamic Oscillating Refrigeration CompressBrgceed- %all _Stabl|lt)_/ m""_rg'“ .Of the_planp, or its large modal denSIty and
ings of the Purdue Compressor Technology Confereppe246—259. large (in fact infinite) dlm_en3|one_1llty. )

[3] Polman, J., De Jonge, A. K., and Castelijns, A., 1978, “Free Piston Electro- For the problem considered in this study, the performance ob-
dynamic Gas CompressorProceedings of the Purdue Compressor Technoljective is to minimize the far field radiated noise power, which

ogy Conferen . 241-245. . . . .
(4] e Wahy‘ﬁ";” A Unger. R.. 1062, “The Simulation and Design of §&MNOt be used directly for feedback and requires the application

High Efficiency, Lubricant Free, Linear Compressor for a Domestic Refriger@f radiation f”te‘rs WhiCh reconStru‘Ct the radiated noise .power
tor,” Proceedings of the International Compressor Engineering Conference #itom the modal information of the vibrating structUrg]. Radia-
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154 / Vol. 124, JANUARY 2002 Copyright © 2002 by ASME Transactions of the ASME



disturbance w z performance metric Bandwidth
—_—p

] Plant [ h g
control input G ouput measurement G=? high peaks for i low peaks
u y T improved autority ¢ Torimproved
B 1 i gain margin
T T
L] 'l
H o RN
Controller \
Fig. 1 Block diagram of the control structure . . e k e
(DC
Alternating poles/zeros
p-synthesis[6]. Snyder et al.[7] used optimally shaped pi- +90°— - ~
ezopolymer(PVDF) films to measure transformed modes in order ¢ | \U \ qf \U
to reconstruct structural radiation. At low frequency, the asymmet 4. | \H
ric modes with zero net volume velocity radiate poorly in the far ... |
field and the odd-odd modes are the dominant radiators; there is _
strong correlation between the radiated sound power and the v r
ume velocity(in fact, asymptotically, as—0, the first radiation 3% | \
mode as defined by Cunefd2] or by Elliott and Johnsof8] is 450 C S —— ey,
proportional to the volume velocity This brought the idea of 10 10 ® 10

developing volume velocity(or volume displacementsensors
which would allow to identify the single output measurement to
the scalar performance metric. Identifyingand z in Eq. (1)

brings substantial simplification&,,=G,,,G,,~=G,,,, and

Fig. 2 Desired features of the open-loop FRF

Tow=Tyw= (=G, H) " 1G,,, (2) 2 Optimization

The actuator placement optimization uses a genetic algorithm
with the additional benefit of dealing with a single outg®0)  (our implementation of the genetic algorithm uses the MATLAB
system. Various volume velocity or displacement sensors hai@®lbox GAOT[22]). The challenge is to formulate a fitngg®s)
been proposef@-17. The volume displacement is assumed to b&inction which is easy to calculate and, at the same time, reflects
available in this study. the physical requirements of the open-loop FRHg. 2). The

For lightly damped vibrating structures, the open-loop systefodal expansion of the FRF between a single actuator and the
plays a role far more important than E®) suggests and the volume displacement sensor takes the classical form
structure ofG,,, depends critically on the type and location of the w
actuators and sensors. G- di(a)V;

The Hankel singular values are often used as optimization cri- “~ Mi(wiz_w2+ 2jéww;)
terion for actuator and sensor placem¢h8]; the method has
been adapted to disturbance rejecitd], to spillover alleviation Whereu;, w; and¢; are the modal mass, the natural frequency
[15] and mode targetinfL6], with various numerical applications @nd the modal damping of modeV; is the modal volume dis-
[17-19 and experimenf20]. These methods optimize the cou-Placement ana;(a) is the modal amplitudédisplacementat the
pling of certain modes with candidate actuator/sensor locatior&tuator location. In case of several actuators acting in parallel
without paying attention to the pole/zero pattern of the open-lodith a single power sourcep;(a) is simply the sum of modal
system. amplitudes at the actuators location.

On the other hand, it is widely known that collocated actuator/ The alternating poles/zeros requirement can be expressed by
sensor pairs are highly advisable whenever possible, because #&}g an interesting property of undamped SISO structural sys-
guarantee alternating poles and zeros; this key property is resptins:if two neighboring modes are such that their residues have
sible for the robustness of the control system with respect to tHee same sign in the modal expansion of the open-loop FRF, there
parametric uncertaintj21] (such as, for example, a shift in theiS always an imaginary zero between thga3]. We thus define

©)

natural frequency of the plate the following fitness function to be maximized:
In this paper, alternating poles and zeros, control authority and
spillover are considered simultaneously in the optimization pro- Flzz sigr ¢i(a)V,] (4)
I

cess. We consider the SISO transfer functi@y between a set of
actuators driven in parallel and a volume displacement sensor; thﬁe
actuator location is optimized to provide the open-loop frequen(é\{(J
response functioltFRF) with the following desirable features il-
lustrated in Fig. 2:

re sign(.¥ 1,0,—1 according to the sign of the argument. The
m overi extends to all the modes belonging to the frequency
band where alternating poles and zeros are sought. Clearly, maxi-
mizing F, is equivalent to enforcing positive residues in the
« Alternating poles and zeros are sought within the contréhodal expansioriEq. 3.

bandwidth to enhance the immunity with respect to the para- Next, the good controllability of the modes within the band-

metric uncertainty and to allow low order controllers. width calls for a large modal amplitude at the actuator for all the
« The magnitude of the resonance peaks is maximized withinodes within the controller bandwidth. This can be enforced by

the control bandwidth to increase the control authority.  defining the second contribution to the fitness function:
* The magnitude of the resonance peaks is minimized near and

right after the cross-over frequency to improve the gain mar- Fzzz ai| pi(a)] (5)

gin and reduce spillover.
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where «; are weighting factors. Finally, in order to minimize theover may be included irfF, to guarantee alternating poles and
controllability in the cross-over region and slightly beyond, theeros(in order to achieve phase stabilizatipbut also inF3, to
following contribution can be added:

this term is negative because the fithess function is maximjzed;

ng—; Bilb;(a)| (6)

are also weighting factors. The global fithess function is

F=F,+F,+F, @

minimize their impact on the open-loop FRF. The coefficients
and B; are free parameters which can be used for shaping the
open-loop transfer function.

3 Application

The proposed strategy has been applied numerically to a glass
plate [24]. The bandwidth has been chosen close to 250 Hz to

Notice that the above fitness function is straightforward to conficlude three modes contributing to the volume velocity. Figure 3
pute from the knowledge of the mode shapes only; this propertyS§0Ws the open-loop FRF for a single point force actuator arbi-
essential to speed up the optimization process. Note also that fiqgily located. Figure 4 shows the open-loop FRF after optimiza-
limit between the modes contributing to the various contributiorfton @nd the optimal actuator locations. The results are discussed
of the fitness function is flexible; some of the modes near crod8ore extensively ir{24] where piezoceramic actuators are also

dB

degrees

Fig. 3

4B

dB

d8

degrees

degrees

degrees

10 100 1000

10 100 1000
Hz

Hz

Open-loop FRF with arbitrary actuator location

Fig. 4 Open-loop FRF and optimum actuator locations for 1, 2
and 4 point force actuators
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considered.

Open-loop control systems with FRF like those of Fig. 4 are
easy to control. To illustrate this, the loop has been closed with a
lead compensator, the parameters of which have been tuned to
achieve a 10 dB gain margin and 65 deg phase margin. The FRF
between the disturbance and the volume displacement, and the
radiated sound power are compared in Fig. 5 for the case of 4
point force actuators. Figure 6 shows the 1/3 octave attenuation in
dB.

(a) disturbance to volume displacement FRF

Hz

(b) radiated sound power

1000

Fig. 5 Effect of a lead compensator (4 point force actuators )

25 "7 Volume displacement —-—- i
Sound power

AT S S e v
N N 1

AT 50 100 200 500 1000
Hz

Fig. 6 1/3-octave reduction (in dB). 4 point force actuators.
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4 Conclusions On the Proper Orthogonal Modes

This paper has addressed the actuator placement for a baﬁgﬁd Normal Modes of Continuous
plate with three simultaneous objectivé$:enhance the immunity

with respect to parametric uncertainty and allowing low orde¥/iDration Systems
controllers by enforcing alternating poles and zeros within the
bandwidth, (ii)) maximize the control authority andii) reduce
spillover. A very simple fitness function has been formulateB. F. Feeny

which makes the genetic algorithm very effective. Finally, th®epartment of Mechanical Engineering,
interest of this control architecture is confirmed by closing thgrichigan State University,

feedback loop with a lead compensator. East Lansing, Ml 48824
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Sampling the displacement(x,t) at coordinate, ... Xy, 05
leads to a set of measurements [u(x;,t) ...u(xy,t)]". The
displacement is approximated as a truncated series of linear nor- 0.4

mal modes, such thai(x,t)~=M,q;(t) i(x)=#"q, where ¢
=[1(X) ... u(x)]" is a vector of modal functions, ang(t)
=[q(t) ...qu(t)]" is the vector of modal coordinates. We 0.2
will take M=M. We define a matrix ®=[vy...vy]

=[p(x1) ... dp(xm)]". Thus, the vectors v, 0.1
=[¢i(x1) ...di(xy)]" are spatial discretizations of the mode

shapesp;(x). Then 0

0.3

u=adq(t) X

relates the discrete displacements of the beam to the discretiza- 0.5
tions of the mode shapes.
The displacements are sampled at timjesiAt, i=1,... N,
whereAt is the sampling rate. We construct Ak M ensemble
matrix U=[u(ty) ...u(ty)]"=[®q(t,) ...Pq(ty)]", or

U=(®Q)",

whereQ=[q(ty) ...q(ty)] is anM XN matrix. The correlation
matrix is thusR=1/NUTU=1/N®QQ'®".

We check whethew; is an eigenvector oR by examining 05
Rv;=1N®QQ'®'v;. The quantity®'v; has elements/v; . If o 0.5 1
the spatial discretization isevenly spaced then, viij X
:Ey:l(ﬁi(xk).(ﬁi(xk)%(1/.h)f(l3¢i(x)¢i(x)dx by the rectangular Fig. 1 The first two discretized linear normal modes of a
rule, whereh is the spacing of the spatial discretization. Thus Wginged-hinged beam are plotted with a solid line. The corre-
approximata/iij~(1/h)5ij . If this approximation is reasonable, sponding POMs are plotted with circles.
then the quantity®’v;~[0 ...0,1h,0...0]"=h; has elements
of approximately zero, except theh element which is approxi-
mately 1h. The error associated with the rectangular integration . . o
representation of the underlying orthogonality integral is on tHgOMS and normal modes in multi-modal responses. The limita-
order ofkh?, wherek is proportional to a characteristic curvaturdi©n is that the mass distribution must be uniform or known.
in the integrand5]. ThenRv;~1/N®QQ'h; . Theijth elements 22 Numerical Examples. We apply these ideas to a
of QQT areEEZlqi(tk)qj(tk). If the frequencies of oscillation of hinged-hinged beam, for which theoretical modes are readily
g;i(t) andg;(t) are distinct, the sampling rate ist is fixed, and available for comparison. For each numerical simulation, we
the time record gets arbitrarily large, then choose a uniform mass per unit lengthmfx) =1, a stiffness of

El=1, and a length o =1. The clamp is ak=0.

1 N o In putting ten “sensors” on the beam away from the endpoints,
lim NZ ai(ta;(t) =0, i#]. the spacing wasi=1/11. Here, the modal functions ag(x)
N KL =sin(mx). The inner product between the discretized modal vec-
Thus, tors was, to at least four decimal poinv§,vj: dij /h. The modal

frequenciesw;=i2#2, are distinct and widely spaced.
1 T Vibrations were induced through the modal variablgé)
Im §QQ' =P =[2,1,0.5,0.25,0.12,0.1,0.05,0.05,0.05,070%nd (0)=0 were
the initial conditions. The vibrations were sampled through four
which is diagonal with elements;; ==}_,q;(t) %N, which are fundamental periods at an interval M:0.0179(4Q0 samples
the mean squared values @ft). Figure 1 shows the comparison between the first two sets of
In such case,Rvj—>1/N<I>D<I>ij%<I>Dhj=<I>hjd“-=vjd“-/h. modes. The higher modes visually compared as well as those

; ; ; ) ; hown. The norms of the errors between the first four sets of
So, for increasingN, with a fixed sampling rate, evenly spaceo‘S
sensors and distinct modal frequencies, the POMs converge g}d€s are 0.0037, 0.0049, 0.0052 and 0.0055. The mean norm of

proximately tov;, which are the discretized linear modéghe € €rror between the ten computed modes is 0.0863. .
POMSs converge tv;+¢ whereeg, is an error vectoy. Further- A cantilevered beam model was similarly tested. This case is
more, the POVs converge th; /h, which is proportional to the more sensitive to the spatial dlscret!zatlon effg@$ The dis-
mean squared modal coordin]ate. cretized modes are not orthogonal, with errors of about 20 percent
Thus, we have an analysis which ties the statistically form@MOng the first three modes. Figure 2 compares the first two sets

lated POMs to the discretization of the nonlinear normal mod@4 modes.
for multi-modal free responses of undamped systems with known
mass distributions. .

The role of the mass distribution is critical. The modes of E¢ Synchronous Nonlinear Modes
(1) are orthogonal with respect to the mass distribufiand the Since the principal axes optimize the distribution of data from
linear operator;, and are not otherwise perpendicular to each othahe axes, the dominant POM can be considered as an optimal fit of
Discretized modes are therefore not perpendicular. The POMs,‘synchronous” nonlinear normal mode during a single-mode
however, are orthogondl.e. perpendicular sinceRT=R. Thus, respons¢4] (“synchronous” meaning that the displacement coor-
for general mass distributions, the POMs cannot represent tieates reach their extrema simultaneousfs the amplitude of
discretized linear normal modes. Formulating with respect to thlee response changes, the path of the synchronous normal mode
mass, as in Eq(2), allows us to make a connection betweerhanges, as does its best fit.
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Fig. 2 The first two discretized linear normal modes of a can- Fig. 4 The two most dominant POMs for a nonlinear beam
tilevered beam are plotted with a solid line. The corresponding vibrating in the first nonlinear normal mode. The dominant
POMs are plotted with circles. POM corresponds to 99.8 percent of the signal power.

This interpretation may extend to multi-modal nonlinear modal - . . .
responses in some caséd. However, the relationship between 0-0561,0" andq(0)=0, very nearly exciting only the first non-
the POMs and the “best fit” of the nonlinear normal modes idnear normal mode. Three periods of motion in this nonlinear
generally obscured if more than one mode is active. mode were sample(_j at a step 3'234“%9-0255 NZlSO)' Fig-

ure 3 shows the animated modal vibration and its shape variation

3.1 Nonlinear Example. The equation of motion of a with phase.

hinged beam with a discrete cubic spring at its midpp&itis The displacements along the beam were obtained from the trun-
. i3 cated modal expansion, and evaluatedvat 1 evenly spaced
mu+EIu""+u*8(x—1)=0, (3) locations along the beam. The redundant “sensor” was added so

; 0 _ _ = ; hat the evenly spaced discretization included the midpoint of the
with u(x,t)=u"(x,t)=0 atx=0 andx=L=2I, whereu(x,t) is | y Sp p
the deflection of the beam antiis the Dirac delta function. The 2&am. The three largest POVs were 46.9601, 0.1227, and 0.0003.
parameters aren=E|=L=1. Equation(3) can be discretized '"US the dominant POM comprised about 99.8 percent of the
using the assumed-modes metti6#l If u is expanded in a trun- M&an signal power. The two dominant POMs are plotted in Fig. 4.
cated modal series ag(x,t)==M ,q(t)d(x), where g (x) The dominant POM of the discrete measurements qualitively fits
=sin{mx/L), the resulting d’iscretilz:eldlequalltior;s of motioln gre tr}eﬁnlm%ted_ syn;:htqongus motion. Flg#red‘.r’ p:ots the dlspl?cem_ent
T > . . _of the midpoint of the beam against the displacement at location
*+Aq+f(q) =0, whereA is a diagonal matrix of natural frequen x=1/6. Superposed on this plot is a projection of the dominant

cies squared, anfiq) has element$;=u(l)3sin(w/2). POM onto this coordinate s i Al .
A o2 pace. The POM is aligned with the
The numerical solutioitfifth-order Runge-Kuttawas based at . . . - -
initial conditions q(0)=[4.0000,0,0.2244.0,0.2291.0.0.1023,0, principal axis of minimum moment of inertia of the data.

4 2
2 1
Z0 =0
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X
Fig. 5 The deflection u,(t) at x=0.0825 versus the deflection
Fig. 3 An animation of vibration in the first nonlinear normal ug(t) at x=0.5 during vibration in the first nonlinear normal
mode of a nonlinear beam mode. The straight line is the projection of the dominant POM.

Journal of Vibration and Acoustics JANUARY 2002, Vol. 124 / 159



04 The dominant POM produces a best fit of a single active “syn-
chronous” discretized nonlinear normal mode.
02 The results relate the statistically derived POMs and the geom-
’ etry of normal modes, for multi-modal responses of a class of
linear continuous systems, and also for single mode nonlinear
g o0 responses.
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