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Synchronous averaging is difficult to use with epicyclic gear s
tems because the dominant frequencies are slightly skewed
asymmetrical. This Tech Brief uses Fourier series analysis to
new insight to this phenomenon. The results are illustrated
vibration data recorded from a Cobra AH-1S helicopter gearbo
@DOI: 10.1115/1.1403735#

1 Introduction
Epicyclic gears are used in many applications because they

achieve a large torque/speed ratio in a compact package. In
gearboxes, the estimated spectrum of the vibration signal is s
metric and centered at the meshing frequency. For epicyclic ge
the estimated spectrum is typically asymmetric and the domin
frequency component does not occur at the meshing freque
This is an important observation because some of the pop
methods of fault detection use the meshing frequency
sideband signal power as an indication of the gearb
health@1,2#.

McFadden and Smith@3# were the first to recognize that thi
effect was due to the varying phase angles of the vibration p
duced by each of the planet gears. They used phasor sum
identify the dominant spectral components, but were unable
predict the relative amplitudes of the dominant components. T
study generalizes their work using continuous-time Fourier se
~CTFS! analysis. This provides a more thorough and intuitive e
planation of the observed spectrum and leads to a number o
sights that could not be gained with phasor sums alone.

2 Fourier Series Analysis
McFadden and Smith@3# describe a model of the gearbox v

bration in which the total vibration is equal to the sum of vibr
tions due to each planet gear,v(r )5( i 51

P v i(r ), whereP is the
number of planet gears andr is the number of carrier revolutions
The vibration due to each planet gear,v i(r ), is modeled as a
periodic amplitude-modulated signal with a frequency equal to
meshing frequency that grows in amplitude and then decay
each planet passes the vibration sensor. Under ideal condit
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the shape of the vibration pattern is the same for each planet g
but shifted in time. Thus, the total vibration may be writte
as

v~r !5(
i 51

P

v1S r 2
i 21

P D , (1)

wherev1(r ) is the vibration due to the first planet gear that pas
the transducer at the beginning of each revolution. The vibra
of the planet gears measured by a fixed sensor is modele
v i(r )5wi(r )mi(r ), wherewi(r ) represents the time-varying am
plitude of the transmission path from the vibration source to
sensor due to the gearbox elasticity andmi(r ) represents the vi-
bration due to the planet meshing with the annulus. The baseb
signalwi(r ) is periodic with a fundamental frequency of 1 cyc
per revolution~cpr!. The modulating signalmi(r ) is periodic with
a fundamental frequency ofT cpr, whereT is the number of teeth
on the annulus gear.

One of the surprising consequences of a Fourier series re
sentation of the epicyclic vibration is that, under most conditio
the power spectrum at the meshing frequency (T cpr! is zero.
Although the vibration of a single planet gear repeats every cy
~1 cpr!, the total vibration containsP copies of this vibration
equally spaced apart due to each of the planet gears. The
vibration therefore has a fundamental frequency ofP cpr and the
continuous-time Fourier series~CTFS! representation of the tota
vibration can be written as

v~r !5 (
k52`

1`

ake
j 2pkPr. (2)

Thus, the signal is only composed of frequencies that are inte
multiples ofP cpr. Even though each planet is generating a vib
tion at T cpr, the total vibration does not have any components
the meshing frequency, unlessT is an integer multiple ofP.

Since thei th planet gear produces a vibration that is just
delayed copy of the first planet gear,v i(r )5v1(r 2 ( i 21)/P), the
CTFS coefficients of thei th planet gear are related to the coef
cients of the first byai ,k5e2 j 2p (( i 21)/P) ka1,k , where the CTFS
representation of the vibration due to thei th planet is

v i~r !5 (
k52`

`

ai ,ke
2 j 2pkr. (3)

Although the amplitudes of these coefficients are equal for al
the planet gears,uai ,ku5ua1,ku, the sum of the coefficients is zero
except at multiples ofP. This phenomenon is due to the pha
differences of the coefficients.

At integer multiples ofP the phase shift of each planet’s CTF
coefficientai ,k is a multiple of 2p and, sincee2 j 2p i51 for any
integeri, the coefficients are in phase with each other and eq
The total vibration may therefore be written as

ion
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Fig. 1 The stem plot shows the amplitude of continuous-time Fou-
rier series „CTFS… coefficients for the total vibration. The solid curve
represents the CTFS coefficients for a single planet multiplied by P.

Fig. 2 DFT approximation of continuous-time Fourier series coefficients for
the first harmonic of a vibration signal recorded from the upper planetary sys-
tem of a Cobra AH-1S helicopter gearbox
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k52`

`

a1,kPej 2pkPr. (4)

This indicates that the CTFS representation of the total vibra
is proportional to the CTFS representation of a single planet g
sampled at frequencies that are multiples ofP, ak5Pa1,kP .

3 Asymmetrical Sidebands
Figure 1 shows the CTFS coefficients of a single, simula

planet gear from the upper planetary system of a Cobra AH
helicopter gearbox multiplied byP. This gearbox containsP58
planet gears and the annulus hasT5119 teeth. This figure also
shows the simulated total vibration CTFS coefficients@Eq. ~2!#.
Note that they coincide exactly at frequencies that are multiple
P58, as predicted by Eq.~4!, and the significant component
only occur near the meshing frequency,T5119 cpr.

The model developed here indicates that the cause of the a
metry in the spectrum is due to the non-zero CTFS coefficie
being misaligned with the meshing frequency. This misalignm
will occur unlessT is a multiple ofP.

Figure 2 shows the DFT approximation of the CTFS coe
cients near the first harmonic for a vibration signal recorded fr
d Acoustics
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a Cobra AH-1S gearbox. Synchronous averaging was use
eliminate noise that was asynchronous with the carrier freque
The dominant components occurred at multiples ofP near the
meshing frequency~119 cpr!, as predicted by the model.

Another significant consequence of the CTFS analysis is th
indicates the shape of spectrum near each of the mesh
frequency harmonics should vary, depending on how the non-z
coefficients are aligned.

4 Conclusions
This Tech Brief revisited the topic of epicyclic gearbox vibr

tion analysis using continuous-time Fourier series~CTFS! analy-
sis. This yielded insights about how the elasticity of the gearb
affects the shape of the spectrum as estimated by the CTFS
ficients. Specifically, this analysis explains the source of the as
metry observed in the spectrum and correctly predicts the loca
of the dominant frequency components near all harmonics of
meshing frequency. This is especially important for health mo
toring applications because it demonstrates that asymmetry oc
naturally and is not necessarily cause for alarm.
JANUARY 2002, Vol. 124 Õ 151
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Steady-state nonlinear response characteristics of a linear c
pressor are investigated theoretically and experimentally. In
theoretical approach, motions of not only piston but also cylind
are considered and dynamic models for steady-state response
dictions are formulated by applying the describing functi
method. Effects of piston mass on the jump phenomena are
dicted by the derived models as an example of design param
variation and compared with actual experimental results.
@DOI: 10.1115/1.1424297#

Introduction
Linear oscillating motors are inherently more potential in e

ergy efficiency than other types for light duty compressors. Thi
why research has focused on this topic for the past 30 years.
major concern in previous studies@1–6# was that system perfor
mance under stable operations and, system instability proble
which might arise in practice, were not well understood proba
because of complexities in the dynamic modeling of the syste

Configuration of a linear compressor under study is simple
circular cylinder fixed onto a stator is supported by ground spri
and a piston fixed onto a moving magnet is suspended by pi
springs. Piston movement, however, is determined in a ra
complicated way by interaction of mechanical parts with elect
magnetic and thermodynamic subsystems. The gas force in c
pression chamber possesses inherently nonlinear character
with respect to the piston motion and, hence, its dynamic com

Contributed by the Technical Committee on Vibration and Sound for publica
in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received Jan. 2000
Revised Aug. 2001. Associate Editor: A. F. Vakakis.
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nents are coupled to static components. Furthermore, motio
the piston is not mechanically constrained. Therefore, piston
tion becomes uncontrollable under some operating conditions

Choe and Kim@7# derived a dynamic model for a linear com
pressor and necessary conditions for the jump motion of the pi
to occur by employing the describing function approach under
assumption that the cylinder was fixed to the earth. In rea
however, the cylinder moves by interacting with the piston; this
taken into account for more accuracy and, so, the effects of pi
mass as a design parameter on the jump phenomena are ana
based on the derived model and compared with actual experim
tal results.

Dynamic Modeling of Linear Compressor System
The mechanical subsystem is treated as a two-degree of

dom ~DOF! model as shown in Fig. 1, whereu1(t) and u2(t)
denote respectively displacements of the pistonm and the cylinder
mc from the static equilibrium positions.

The motion of piston and cylinder can be described by
following equations:

m
d2u1~ t !

dt2
1cS du1~ t !

dt
2

du2~ t !

dt D1k~u1~ t !2u2~ t !!1k~X02XS!

2 f g~ t !5 f e~ t ! (1)

mc

d2u2~ t !

dt2
1cI

du2~ t !

dt
1kIu2~ t !2cS du1~ t !

dt
2

du2~ t !

dt D
2k~u1~ t !2u2~ t !!2k~X02XS!1 f g~ t !52 f e~ t ! (2)

where f g(t) denotes gas force in the compression chamber
f e(t) the electromagnetic exciting force exerted by the linear m
tor. In the above equations,Xs denotes the position of the pisto
when f e(t) and f g(t) don’t act on the piston andX0 denoting the
equilibrium position of the piston varies with the piston amplitu
and load~suction and discharge pressure!.

The gas force is given by the following equation:

f g~ t !5Ap~Pc~ t !2Ps! (3)

whereAp , Pc(t), and Ps denote the cross sectional area of t
piston, compression chamber pressure and suction pressur
spectively. It is assumed that the gas behaves as an ideal gas
compression cycle, that is, compression and expansion proce
are described by polytropic processes as follows:

Pc~ t !5PSS X1

x~ t ! D
n

for compression process (4

Pc~ t !5PSS X4

x~ t ! D
n

for expansion process (5

ion
;

Fig. 1 A two-DOF model of mechanical subsystem
2002 by ASME Transactions of the ASME
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wheren denotes the polytropic coefficient of the working gas a
X1 andX4 are respectively final and initial positions of the pisto
relative to the discharge valve seat for suction process. The pi
displacementx(t) is given by

x~ t !5X01u~ t ! (6)

whereu(t) is the dynamic component of piston displacement
fined byu(t)5u1(t)2u2(t) and its amplitude isU.

Applying the describing function method@8# to the gas force
and introducing a non-dimensional piston amplitude defined
r u5U/X0 yields the following expressions:

X05XS1
f S~r u!

k
(7)

U5S XS1
f S~r u!

k D r u (8)

Fe5~k1keq~r u!2v2Meq1 j vc1 jheq~r u!!S XS1
f S~r u!

k D r u

(9)

where Fe represents complex amplitude of the electromagn
excitation forcef e(t) and

f S~r u!5
APPS

2p S E
0

u2S 11r u

11r u cosu D n

du1r P~p2u2!

1E
p

u4S 11r u cosu4

11r u cosu D n

du2u4D (10)

keq~r u!5
nAPPS

pX0
S E

0

u2 ~11r u!n sin2 u

~11r u cosu!n11 du

1E
p

u4 ~11r u cosu4!n sin2 u

~11r u cosu!n11 du D (11)

heq~r u!5
nAPPS

~n21!pr uX0
~r p~cosu211!1cosu421! (12)

Meq5S kI2v2mc1 j vcI

kI2v2~mc1m!1 j vcI
Dm (13)

In the above equations,r p5Pd /Ps is the nondimensional dis
charge pressure,u denotes the coordinate of the piston in angu
scale, andu2 andu4 represent the starting positions of dischar
and suction respectively.

The electromagnetic exciting force in frequency domainFe can
be described as follows@9#:

Fe5aI (14)

where I is the complex amplitude of the current in the field co
and the proportional constanta is defined as the spatial derivativ
of the flux in the direction of the piston movement. Substituti
Eq. ~14! into ~9! yields the current amplitude also as a function
the nondimensional piston amplituder u :

I 5
1

a
~k1keq~r u!2v2Meq1 j vc1 jheq~r u!!S XS1

f S~r u!

k D r u

(15)

The governing equation for the electro-mechanical circuit o
linear motor can be expressed in the time domain as follows@9#:

a
du~ t !

dt
1LE

di~ t !

dt
1REi ~ t !5v~ t ! (16)

where v(t) is the input voltage, andLE and RE are effective
inductance and resistance, respectively. The first term in Eq.~16!
represents the electromotive force induced by the motion of
moving magnet. Transforming Eq.~16! into the frequency domain
Journal of Vibration and Acoustics
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and substituting Eqs.~8! and ~15! into this equation gives the
relation between the voltage and the current in the frequency
main as follows:

V5S RE1 j vLE1
j va2

k1keq~r u!2v2Meq1 j vc1 jheq~r u! D I

(17)

In summary, the equilibrium position of the piston, its amplitud
the current in the electric circuit, and required input voltage can
calculated without any difficulty for given values of the sing
dimensionless parameterr u as shown in Eqs.~7!, ~8!, ~15! and
~17! respectively, which makes a parametric study very easy
though static and dynamic components are still coupled.

Theoretical and Experimental Analysis

Natural Frequency. Since the gas force behaves as a ha
ening spring at low amplitudes of the piston and a soften
spring at high amplitudes, the natural frequency of the piston m
tion relative to the cylinder was expected to have such patte
Figure 2 shows variations of the natural frequency with the n
dimensional piston amplitude for three cases of nondimensio
discharge pressure and a given piston mass (m50.534 kg). Not-
ing that the current in the coil is minimized when the drivin
frequency coincides with the natural frequency, consumption
the electric energy can be minimized by adjusting the driv
frequency so that it may match well with the load and the requi
stroke.

Jump Phenomena. Jump phenomenon may arise due to t
nonlinear spring characteristics of the gas force depending on
combination of mechanical, thermodynamic, and electromagn
parameters~Choe and Kim@7#!. Steady state responses for thr
piston masses are shown in Fig. 3. Theoretical results represe
by solid lines in the figure show typical tangent bifurcation~Nay-
feh and Balachandran@10#! for the two piston massesm
50.534 kg and 0.433 kg. The tangent bifurcation points deno
by solid circles in the figures are defined bydru /dV50. Experi-
mental results are represented in the figure by stars for increa
the input voltage and solid squares for decrease. The input v
ages, at which the bifurcation was observed in Figs. 3~a! and~c!,
are about 30 percent greater than the predictions. This discrep
might have been caused by many assumptions, examples of w
would be the harmonic motion of the piston and the ideal beha
of the gas compression cycle. When the piston massm was 0.467
kg, a value between two values, i.e., 0.534 kg and 0.433 kg, ju
phenomenon was not observed in the experiment as well as in
prediction as shown in Fig. 3~b!. This means that the jump phe
nomenon can be avoided just by selecting the piston mass i
optimum manner.

Influence of the Cylinder Motion. A real part of the effec-
tive mass of the moving pistonMeq calculated by Eq.~13! which
takes into consideration the cylinder mass of 5.637 kg and cy
der mounting stiffness of 2.9 kN/m in this study is 0.431 kg wh
the piston mass by itself is 0.467 kg. Theoretical results for

Fig. 2 Variations of piston natural frequency with amplitude
JANUARY 2002, Vol. 124 Õ 153
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piston mass of 0.433 kg without considering the cylinder mot
were close to Fig. 3~b! where no jump phenomenon is expect
while jump arises in reality as shown in Fig. 3~c!, meaning that
inclusion of dynamics of the cylinder is crucial for the accura
stability analysis of the compressor system.

Concluding Remarks
A dynamic model of a linear compressor including motions

not only piston but also cylinder has been developed for anal
of its dynamic characteristics at the initial design stage. One
portant result is that variations of the natural frequency of
piston motion due to design parameter changes can be pred
by introducing the nondimensional piston stroke, which will al
be useful to decide the driving frequency for enhancement of
system performance. Another important result is that the propo
model is capable of characterizing the nonlinear system beha
relatively well so that input voltage can be controlled in
optimum manner although the difference between the predi
input voltage for the tangent bifurcation and the measured is
negligible.
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A SISO control system is built by using a volume displacem
sensor and a set of actuators driven in parallel with a sing
amplifier. The actuators location is optimized to achieve an op
loop transfer function which exhibits alternating poles and zer
as for systems with collocated actuators and sensors; the se
procedure uses a genetic algorithm. The ability of a sim
lead compensator to control this SISO system is numeric
demonstrated.@DOI: 10.1115/1.1421610#

1 Introduction
According to the modern control theory@1#, an arbitrary control

problem is mathematically formulated as the minimization
some norm of the closed-loop transfer function between the
turbancew and the performance metricz ~Fig. 1!:

Tzw5Gzw1GzuH~ I 2GyuH !21Gyw (1)

whereGzw is the open-loop transfer function between the dist
bancew and the performance metricz, Gzu between the control
input u and the performance metricz, andGyw between the dis-
turbancew and the output measurementy, andGyu between the
control inputu and the system outputy.

This abstract formulation, although mathematically attracti
does not explicitly take into account the particular features of
problem considered; in particular, for structural acoustics,
small stability margin of the plant, or its large modal density a
large ~in fact infinite! dimensionality.

For the problem considered in this study, the performance
jective is to minimize the far field radiated noise power, whi
cannot be used directly for feedback and requires the applica
of radiation filters which reconstruct the radiated noise pow
from the modal information of the vibrating structure@2#. Radia-
tion filters were first used in control design by Baumann et al.@3#;
they were used in a LQG framework@4,5#, and usingH` and

Contributed by the Technical Committee on Vibration and Sound for publica
in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received Aug. 2000
Revised Aug. 2001; Associate Editor: R. L. Clark.
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m-synthesis @6#. Snyder et al.@7# used optimally shaped pi
ezopolymer~PVDF! films to measure transformed modes in ord
to reconstruct structural radiation. At low frequency, the asymm
ric modes with zero net volume velocity radiate poorly in the
field and the odd-odd modes are the dominant radiators; there
strong correlation between the radiated sound power and the
ume velocity~in fact, asymptotically, asv→0, the first radiation
mode as defined by Cunefare@2# or by Elliott and Johnson@8# is
proportional to the volume velocity!. This brought the idea of
developing volume velocity~or volume displacement! sensors
which would allow to identify the single output measurement
the scalar performance metric. Identifyingy and z in Eq. ~1!
brings substantial simplifications:Gzu5Gyu ,Gzw5Gyw , and

Tzw5Tyw5~ I 2GyuH !21Gyw (2)

with the additional benefit of dealing with a single output~SO!
system. Various volume velocity or displacement sensors h
been proposed@9–12#. The volume displacement is assumed to
available in this study.

For lightly damped vibrating structures, the open-loop syst
plays a role far more important than Eq.~2! suggests and the
structure ofGyu depends critically on the type and location of th
actuators and sensors.

The Hankel singular values are often used as optimization
terion for actuator and sensor placement@13#; the method has
been adapted to disturbance rejection@14#, to spillover alleviation
@15# and mode targeting@16#, with various numerical application
@17–19# and experiment@20#. These methods optimize the cou
pling of certain modes with candidate actuator/sensor locatio
without paying attention to the pole/zero pattern of the open-lo
system.

On the other hand, it is widely known that collocated actuat
sensor pairs are highly advisable whenever possible, because
guarantee alternating poles and zeros; this key property is res
sible for the robustness of the control system with respect to
parametric uncertainty@21# ~such as, for example, a shift in th
natural frequency of the plate!.

In this paper, alternating poles and zeros, control authority
spillover are considered simultaneously in the optimization p
cess. We consider the SISO transfer functionGyu between a set of
actuators driven in parallel and a volume displacement sensor
actuator location is optimized to provide the open-loop freque
response function~FRF! with the following desirable features il
lustrated in Fig. 2:

• Alternating poles and zeros are sought within the con
bandwidth to enhance the immunity with respect to the pa
metric uncertainty and to allow low order controllers.

• The magnitude of the resonance peaks is maximized wi
the control bandwidth to increase the control authority.

• The magnitude of the resonance peaks is minimized near
right after the cross-over frequency to improve the gain m
gin and reduce spillover.

Fig. 1 Block diagram of the control structure
Journal of Vibration and Acoustics
er
et-
ar
is a
vol-

to

ave
be

m

e

cri-

-
ns,
op

or/
they

pon-
the

nd
ro-

the
cy

rol
ra-

hin

and
ar-

2 Optimization
The actuator placement optimization uses a genetic algori

~our implementation of the genetic algorithm uses the MATLA
toolbox GAOT@22#!. The challenge is to formulate a fitness~cost!
function which is easy to calculate and, at the same time, refl
the physical requirements of the open-loop FRF~Fig. 2!. The
modal expansion of the FRF between a single actuator and
volume displacement sensor takes the classical form

G~v!5(
i 51

`
f i~a!Vi

m i~v i
22v212 j j ivv i !

(3)

wherem i , v i and j i are the modal mass, the natural frequen
and the modal damping of modei, Vi is the modal volume dis-
placement andf i(a) is the modal amplitude~displacement! at the
actuator location. In case of several actuators acting in para
with a single power source,f i(a) is simply the sum of modal
amplitudes at the actuators location.

The alternating poles/zeros requirement can be expresse
using an interesting property of undamped SISO structural s
tems:if two neighboring modes are such that their residues ha
the same sign in the modal expansion of the open-loop FRF, t
is always an imaginary zero between them@23#. We thus define
the following fitness function to be maximized:

F15(
i

sign@f i~a!Vi # (4)

where sign(.)51,0,21 according to the sign of the argument. Th
sum overi extends to all the modes belonging to the frequen
band where alternating poles and zeros are sought. Clearly, m
mizing F1 is equivalent to enforcing positive residues in th
modal expansion~Eq. 3!.

Next, the good controllability of the modes within the ban
width calls for a large modal amplitude at the actuator for all t
modes within the controller bandwidth. This can be enforced
defining the second contribution to the fitness function:

F25(
i

a i uf i~a!u (5)

Fig. 2 Desired features of the open-loop FRF
JANUARY 2002, Vol. 124 Õ 155



h

t

d

the

lass
to

e 3
rbi-
za-
sed

so

re
th a
d to

FRF
the

of 4
n in
wherea i are weighting factors. Finally, in order to minimize th
controllability in the cross-over region and slightly beyond, t
following contribution can be added:

F352(
j

b j uf j~a!u (6)

this term is negative because the fitness function is maximizedb i
are also weighting factors. The global fitness function is

F5F11F21F3 (7)

Notice that the above fitness function is straightforward to co
pute from the knowledge of the mode shapes only; this proper
essential to speed up the optimization process. Note also tha
limit between the modes contributing to the various contributio
of the fitness function is flexible; some of the modes near cro

Fig. 3 Open-loop FRF with arbitrary actuator location

Fig. 4 Open-loop FRF and optimum actuator locations for 1, 2
and 4 point force actuators
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over may be included inF1 to guarantee alternating poles an
zeros~in order to achieve phase stabilization!, but also inF3 , to
minimize their impact on the open-loop FRF. The coefficientsa i
and b i are free parameters which can be used for shaping
open-loop transfer function.

3 Application
The proposed strategy has been applied numerically to a g

plate @24#. The bandwidth has been chosen close to 250 Hz
include three modes contributing to the volume velocity. Figur
shows the open-loop FRF for a single point force actuator a
trarily located. Figure 4 shows the open-loop FRF after optimi
tion and the optimal actuator locations. The results are discus
more extensively in@24# where piezoceramic actuators are al
considered.

Open-loop control systems with FRF like those of Fig. 4 a
easy to control. To illustrate this, the loop has been closed wi
lead compensator, the parameters of which have been tune
achieve a 10 dB gain margin and 65 deg phase margin. The
between the disturbance and the volume displacement, and
radiated sound power are compared in Fig. 5 for the case
point force actuators. Figure 6 shows the 1/3 octave attenuatio
dB.

Fig. 5 Effect of a lead compensator „4 point force actuators …

Fig. 6 1 Õ3-octave reduction „in dB …. 4 point force actuators.
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ffled

er
the

ed
he
the

n
the

f

tive
’ J.

tate-
and

,

ve
,’’ J.

ri-
r.

lly
ruc-

ive

ral

a-
ent

g
ibr.

ns-

le

sor

e-

gh

ce-
.,

tic

d-
on-

r

On the Proper Orthogonal Modes
and Normal Modes of Continuous
Vibration Systems

B. F. Feeny
Department of Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824

1 Introduction
Proper orthogonal decomposition~POD! is a useful experimen-

tal tool in dynamics and vibration. A common application of
POD to structures involves sensed displacements,x1(t),
x2(t), . . . ,xM(t), at M locations on the structure. When the dis-
placements are sampledN times at a fixed sampling rate, we
can form displacement-history arrays, such thatxi5(xi(t1),
xi(t2), . . . ,xi(tN))T, for i 51, . . . ,M . The mean values are often
subtracted from the displacement histories. These displacement
histories are used to form anN3M ensemble matrix,

X5@x1 ,x2 , . . . ,xM#.

TheM3M correlation matrix isR51/NXTX. SinceR is real and
symmetric, its eigenvectors form an orthogonal basis. The eigen-
vectors and eigenvalues ofR are the proper orthogonal modes
~POMs! and values~POVs!.

The POMs in certain nonlinear structures have resembled the
normal modes of the linearized system@1–3#. The POMs may
indeed converge to linear normal modes in multimodal free re-
sponses of symmetric lightly damped lumped-mass linear sys-
tems, butonly if the mass matrix has the formmI , which can be
achieved by a coordinate transformation if the mass distribution is
known @4#. This provides a fundamental tie between the statisti-
cally derived POMs and the geometrically based linear normal
modes in certain discrete systems. In this note, this relationship is
extended to discretized continuous systems.

2 Distributed-Parameter Linear Systems
The following analysis relates the POMs to the normal modes

in continuous systems with discrete measurements and known
mass.

2.1 Analysis of POD for Modal Responses. We consider a
one-dimensional self-adjoint distributed-parameter system of
length l:

m~x!
]2y

]t2 1L1y50, (1)

with boundary conditions, wherey(x,t) is a displacement. Letting
u5m1/2(x)y, the system can be rewritten as

]2u

]t2 1L2u50. (2)

L25m21/2(x)L1m21/2(x) is self-adjoint. Separation of variables
leads to normalized eigenvalues and eigenfunctionsf i(x) that
satisfy

EL

f i~x!f j~x!dx5d i j .

tion
;

4 Conclusions
This paper has addressed the actuator placement for a ba

plate with three simultaneous objectives:~i! enhance the immunity
with respect to parametric uncertainty and allowing low ord
controllers by enforcing alternating poles and zeros within
bandwidth, ~ii ! maximize the control authority and~iii ! reduce
spillover. A very simple fitness function has been formulat
which makes the genetic algorithm very effective. Finally, t
interest of this control architecture is confirmed by closing
feedback loop with a lead compensator.
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Sampling the displacementu(x,t) at coordinatesx1 , . . . ,xM ,
leads to a set of measurementsu5@u(x1 ,t) . . . u(xM ,t)#T. The
displacement is approximated as a truncated series of linear

mal modes, such thatu(x,t)'( i 51
M̂ qi(t)f i(x)5fTq, where f

5@f1(x) . . . f M̂(x)#T is a vector of modal functions, andq(t)
5@q1(t) . . . qM̂(t)#T is the vector of modal coordinates. W
will take M̂5M . We define a matrix F5@v1 . . . vM#
5@f(x1) . . . f(xM)#T. Thus, the vectors vi

5@f i(x1) . . . f i(xM)#T are spatial discretizations of the mod
shapesf i(x). Then

u5Fq~ t !

relates the discrete displacements of the beam to the discre
tions of the mode shapes.

The displacements are sampled at timest i5 iDt, i 51, . . . ,N,
whereDt is the sampling rate. We construct anN3M ensemble
matrix U5@u(t1) . . . u(tN)#T5@Fq(t1) . . . Fq(tN)#T, or

U5~FQ!T,

whereQ5@q(t1) . . . q(tN)# is an M3N matrix. The correlation
matrix is thusR51/NUTU51/NFQQTFT.

We check whethervj is an eigenvector ofR by examining
Rvj51/NFQQTFTvj . The quantityFTvj has elementsvi

Tvj . If
the spatial discretization isevenly spaced, then, vi

Tvj

5(k51
M f i(xk)f j (xk)'(1/h)*0

Lf i(x)f j (x)dx by the rectangular
rule, whereh is the spacing of the spatial discretization. Thus
approximatevi

Tvj'(1/h)d i j . If this approximation is reasonable
then the quantityFTvj'@0 . . . 0,1/h,0 . . . 0#T5hj has elements
of approximately zero, except thejth element which is approxi-
mately 1/h. The error associated with the rectangular integrat
representation of the underlying orthogonality integral is on
order ofkh2, wherek is proportional to a characteristic curvatu
in the integrand@5#. ThenRvj'1/NFQQThj . The i j th elements
of QQT are(k51

N qi(tk)qj (tk). If the frequencies of oscillation o
qi(t) andqj (t) are distinct, the sampling rate isDt is fixed, and
the time record gets arbitrarily large, then

lim
N→`

1

N (
k51

N

qi~ tk!qj~ tk!50, iÞ j .

Thus,

lim
N→`

1

N
QQT5D

which is diagonal with elementsdii 5(k51
N qi(tk)

2/N, which are
the mean squared values ofqi(t).

In such case,Rvj→1/NFDFTvj'FDhj5Fhjdj j 5vjdj j /h.
So, for increasingN, with a fixed sampling rate, evenly space
sensors and distinct modal frequencies, the POMs converge
proximately tovj , which are the discretized linear modes.~The
POMs converge tovj1ej where ej is an error vector.! Further-
more, the POVs converge todj j /h, which is proportional to the
mean squared modal coordinate.

Thus, we have an analysis which ties the statistically form
lated POMs to the discretization of the nonlinear normal mo
for multi-modal free responses of undamped systems with kno
mass distributions.

The role of the mass distribution is critical. The modes of E
~1! are orthogonal with respect to the mass distribution~and the
linear operator!, and are not otherwise perpendicular to each oth
Discretized modes are therefore not perpendicular. The PO
however, are orthogonal~i.e. perpendicular!, sinceRT5R. Thus,
for general mass distributions, the POMs cannot represent
discretized linear normal modes. Formulating with respect to
mass, as in Eq.~2!, allows us to make a connection betwe
158 Õ Vol. 124, JANUARY 2002
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POMs and normal modes in multi-modal responses. The lim
tion is that the mass distribution must be uniform or known.

2.2 Numerical Examples. We apply these ideas to
hinged-hinged beam, for which theoretical modes are rea
available for comparison. For each numerical simulation,
choose a uniform mass per unit length ofm(x)51, a stiffness of
EI51, and a length ofL51. The clamp is atx50.

In putting ten ‘‘sensors’’ on the beam away from the endpoin
the spacing wash51/11. Here, the modal functions aref i(x)
5sin(ipx). The inner product between the discretized modal v
tors was, to at least four decimal points,vi

Tvj5d i j /h. The modal
frequencies,v i5 i 2p2, are distinct and widely spaced.

Vibrations were induced through the modal variables;q(0)
5@2,1,0.5,0.25,0.12,0.1,0.05,0.05,0.05,0.05#T and q̇~0!50 were
the initial conditions. The vibrations were sampled through fo
fundamental periods at an interval ofDt50.0179~400 samples!.
Figure 1 shows the comparison between the first two sets
modes. The higher modes visually compared as well as th
shown. The norms of the errors between the first four sets
modes are 0.0037, 0.0049, 0.0052 and 0.0055. The mean nor
the error between the ten computed modes is 0.0863.

A cantilevered beam model was similarly tested. This case
more sensitive to the spatial discretization effects@6#. The dis-
cretized modes are not orthogonal, with errors of about 20 per
among the first three modes. Figure 2 compares the first two
of modes.

3 Synchronous Nonlinear Modes
Since the principal axes optimize the distribution of data fro

the axes, the dominant POM can be considered as an optimal
a ‘‘synchronous’’ nonlinear normal mode during a single-mo
response@4# ~‘‘synchronous’’ meaning that the displacement coo
dinates reach their extrema simultaneously!. As the amplitude of
the response changes, the path of the synchronous normal m
changes, as does its best fit.

Fig. 1 The first two discretized linear normal modes of a
hinged-hinged beam are plotted with a solid line. The corre-
sponding POMs are plotted with circles.
Transactions of the ASME
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This interpretation may extend to multi-modal nonlinear mo
responses in some cases@7#. However, the relationship betwee
the POMs and the ‘‘best fit’’ of the nonlinear normal modes
generally obscured if more than one mode is active.

3.1 Nonlinear Example. The equation of motion of a
hinged beam with a discrete cubic spring at its midpoint@8# is

mü1EIu991u3d~x2 l !50, (3)

with u(x,t)5u9(x,t)50 at x50 andx5L52l , whereu(x,t) is
the deflection of the beam andd is the Dirac delta function. The
parameters arem5EI5L51. Equation~3! can be discretized
using the assumed-modes method@9#. If u is expanded in a trun-
cated modal series asm(x,t)5( i 51

M qi(t)f i(x), where f i(x)
5sin(ipx/L), the resulting discretized equations of motion areq̈
1Lq1f(q)50, whereL is a diagonal matrix of natural frequen
cies squared, andf~q! has elementsf i5u( l )3 sin(ip/2).

The numerical solution~fifth-order Runge-Kutta! was based at
initial conditions q(0)5@4.0000,0,0.2244,0,20.2291,0,0.1023,0

Fig. 3 An animation of vibration in the first nonlinear normal
mode of a nonlinear beam

Fig. 2 The first two discretized linear normal modes of a can-
tilevered beam are plotted with a solid line. The corresponding
POMs are plotted with circles.
Journal of Vibration and Acoustics
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20.0561,0#T andq̇~0!50, very nearly exciting only the first non
linear normal mode. Three periods of motion in this nonline
mode were sampled at a step size ofDt50.0255 (N5180). Fig-
ure 3 shows the animated modal vibration and its shape varia
with phase.

The displacements along the beam were obtained from the t
cated modal expansion, and evaluated atM11 evenly spaced
locations along the beam. The redundant ‘‘sensor’’ was added
that the evenly spaced discretization included the midpoint of
beam. The three largest POVs were 46.9601, 0.1227, and 0.0
Thus the dominant POM comprised about 99.8 percent of
mean signal power. The two dominant POMs are plotted in Fig
The dominant POM of the discrete measurements qualitively
the animated synchronous motion. Figure 5 plots the displacem
of the midpoint of the beam against the displacement at loca
x5 l /6. Superposed on this plot is a projection of the domin
POM onto this coordinate space. The POM is aligned with
principal axis of minimum moment of inertia of the data.

Fig. 4 The two most dominant POMs for a nonlinear beam
vibrating in the first nonlinear normal mode. The dominant
POM corresponds to 99.8 percent of the signal power.

Fig. 5 The deflection u 1„t … at xÄ0.0825 versus the deflection
u 6„t … at xÄ0.5 during vibration in the first nonlinear normal
mode. The straight line is the projection of the dominant POM.
JANUARY 2002, Vol. 124 Õ 159
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Figure 6 plots two modal coordinates against each other. T
plot shows how the relative participation of each linear mo
changed during the first nonlinear modal vibration. Superpose
the plot is the projection of the first POM computed from
ensemble of modal displacements. The dominant POM is a be
of the synchronous normal mode, and not its linearization.

4 Conclusion
The POMs approximate the discretized linear normal modes

free multi-modal motions of distributed systems. The approxim
tion depends on the sensors’ spatial resolution. The problem m
be formulated in displacement coordinates defined such tha
associated mass distribution is uniform.

Fig. 6 The deflections of linear modal coordinate q 3 , versus
the first linear modal coordinate, q 1 , of a nonlinear beam dur-
ing vibration in the first nonlinear normal mode. The straight
line is the projection of the dominant POM.
160 Õ Vol. 124, JANUARY 2002
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The dominant POM produces a best fit of a single active ‘‘sy
chronous’’ discretized nonlinear normal mode.

The results relate the statistically derived POMs and the ge
etry of normal modes, for multi-modal responses of a class
linear continuous systems, and also for single mode nonlin
responses.
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