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Abstract

The subject of this paper is variance reduction
and Nearest Neighbor Residual estimates for
IDDQ and other continuous-valued test measure-
ments. The key, new concept introduced is data-
driven neighborhood identification about a die to
reduce the variance of good and faulty IDDQ dis-
tributions. Using LSI Logic production data,
neighborhood selection techniques are demon-
strated. The main contribution of the paper is
variance reduction by the systematic use of the
die location and wafer- or lot-level patterns and
improved identification of die outliers of contin-
uous-valued test data such as IDDQ.

1. Introduction

The key contribution of this paper is the intro-
duction of new methods for identifying wafer
patterns in continuous-valued test data. In the
paper the methods will be demonstrated with
IDDQ data. The methods are however, applicable
to any continuous-valued measurement. This
contribution generalizes the idea of nearest
neighbors and is robust to wafers with low
yields, optimal in the sense of minimizing the
residual and its variance and, can be applied to
lots with as few as one measurement per die.
The methods are data-driven and non-paramet-
ric, that is, they make no assumptions about
wafer data pattern or the form of the original
IDDQ distribution.

The paper is organized into four main sec-
tions. The next section Background is a brief
review of recent efforts in variance reduction
techniques. This section also defines the terms
used in the paper. The section Neighbor Selec-
tion introduces new techniques for identifying
the data patterns in the intrinsic leakage and
optimizing the final NNR formulation used in
post-processing. It is worth repeating that the
technique can be used to estimate any continu-
ous-valued die measurement taken on the wafer.
The fourth section Results demonstrates the
techniques using production IDDQ data for a
0. 18µm process and a 0. 25µm process. A short
Conclusion ends the paper.

2. Background

In [1] it was shown that estimates of the IDDQ

residual can be made based on observed patterns
at the wafer and lot level. Figures 1a and 1b are
the familiar conceptual plots of the probability
distribution functions (PDF) for non-faulty
devices and faulty devices. A die defect is
assumed to add a defect current to the current
from intrinsic leakage and other normal pro-
cesses. Die with the total current above some
threshold are called outliers to the intrinsic leak-
age distribution. Traditionally a single threshold
divides outliers from normal die and is a trade-
off between the regions labeled returns and yield
loss.
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IddQ
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Returns Yield Loss
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Figure 1: Idealized PDF (a) original IDDQ

(b) Residual ≡ ĨDDQ

2.1. Statistical Post-Processing

Statistical Post-Processing (SPP) methods
like Nearest Neighbor Residual (NNR) take a
wider view of the test results. The goal of SPP
techniques is to leverage the test measurement
sample statistics to bin the die. A key step in
Statistical Post-Processing is to reduce the vari-
ance of a distribution that will be used to iden-
tify outliers. In [1] it was shown that the vari-
ance of a well-defined residual is less than the
variance of the original IDDQ distribution. Math-
ematically, the IDDQ residual, labeled ĨDDQ, is
defined in Equation (1)

ĨDDQ(x, y, p) = IDDQ(x, y, p) − ÎDDQ(x, y, p), (1)

where ÎDDQ(x, y, p) is an estimate of the original
IDDQ(x, y, p). Each term is indexed by the x,y
location and possibly other key parameters p.
For NNR, the location of the die and the identifi-
cation of its neighborhood is the core of the sta-
tistical post-processing. The central idea of
NNR is the location x,y not parameters p. For
readability the (x, y, p) is dropped from the
notation for the rest of the paper. The residual in
Equation (1) produces a distribution with
reduced overlap of good and faulty die distribu-
tions. The benefit of this approach is that the
variance of the residual is potentially much
smaller while the difference between the ĨDDQ of
a healthy device and that of a faulty device will
remain the same.

To separate the desired information about
defects from normal leakage other researchers

have correlated IDDQ to process parameters [2].
Intra-die comparisons such as ∆IDDQ [3] and
current ratios [4] compare one IDDQ vector to
another. Ideally, any technique should be with-
out significant tooling, increased test time or
what has proven a difficult challenge without a
dependence on test vector selection or sequence.

2.2. Nearest Neighbor Residual

For a giv en test measurement, NNR post-
processing estimates the test measurement of
each die based on a robust selection of a wafer
or wafer-lot pattern around the die of interest.
The relationship between die location and yield
has been observed many times [5,6]. Outliers
(NNR fails) are detected by large residuals (dif-
ferences) between the estimate and the measure-
ment. In the case of IDDQ, the Nearest Neighbor
Residual replaces the original IDDQ measure-
ment in Equation (1) with

IDDQ → IDDQ =
1

Nv

Nv

i=1
Σ IDDQ.i

ĨDDQ = IDDQ − ÎDDQ, (2)

where IDDQ is the average of Nv test vectors
used in the IDDQ test. The ÎDDQ is the estimate of
a die’s average value based on its neighbors’
IDDQ. The die IDDQ av erage will be used
throughout the paper to demonstrate the tech-
nique. In practice this has been very successful
parameter to bin the die. However, NNR is not
limited to this choice. NNR could equally be
applied to data from a single IDDQ vector or any
continuous-parameter measured at each die.

Identifying a neighborhood is one of the
key contributions of this paper. In [1] the NNR
ÎDDQ(x, y) was defined to be the median of at
least eight die closest to the (x, y) location. This
paper extends the idea of neighborhood selection
to include data-driven techniques. The new,
data-driven, selection highlights the relationship
between the neighborhood, the robustness of the
estimate, manufacturing variability and, the final
variance reduction that can be obtained.
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3. Neighbor Selection, Location Averaging

A fixed neighborhood selection such as the eight
die closest to the position x, y works well in
practice when the data pattern is smoothly vary-
ing. Smooth contours have been observed many
times. However, stepper patterns have also been
observed and they are not smooth but system-
atic. They impose a checkerboard effect across
the wafer. In particular, IDDQ data show a mix-
ture of the two patterns, smooth combined with
systematic or vice versa [1]. As shown in this
paper, a mixture is further complicated by the
fact that it varies from lot to lot. The lot to lot
variation is difficult to specify in advance with a
neighborhood pattern and any fixed pattern is
difficult to use when yield is low.

A key attribute of NNR is its use of data-
driven techniques to define the neighborhood.
Within some general limitations the NNR neigh-
borhood used for a lot is determined from the
data for the lot. By defining the neighborhood
from the data itself NNR can easily respond to a
changing mixture of systematic and smooth pat-
terns from one lot to the next. As NNR is imple-
mented off-tester the required computation of
identifying the neighborhood adds very little if
any, to test time.

The neighborhood selection scheme called
Location Averaging is demonstrated with a sim-
ple example shown in Figure 2. The demonstra-
tion wafer consists of a single row of twenty die
and a lot is one wafer. The upper wafer shows a
smooth transition from left to right. The lower
wafer shows a systematic pattern representative
of a stepper effect.

A location average neighborhood is based
on a candidate template denoted by T ={}. In
the example, the candidate template is the set of
die within ±2 of a location,

T = {X − 2, X − 1, X + 1, X + 2}.

The X denotes the location of the die to be sub-
stituted into the template and is called the target
location or target die. If location 6 was the

Wafer/Lot 1 Die location
2 4 6 8 10 12 14 16 18 20

60

100

Wafer/Lot 2 Die location

60

100

2 4 6 8 10 12 14 16 18 20

Figure 2: Simple example of Neighborhood
Selection

current target location, the candidate die loca-
tions are positions 4, 5, 7 and 8.

Using the algorithm in Figure 3, Location
Av eraging loops over the template entries one by
one. In the example, the first iteration template
entry TE = X − 2 would be used, X − 1 next and
so on. The die estimates ( Î ) are assigned using
the current template entry. For TE = X − 2 and
location D = 6, the die in position 4 is used to
estimate the value of location 6. For all die in
the lot (D = 1. . 20) a nearest neighbor residual
( ĨTE,D) is calculated using the estimates from the
current template entry. In the example, NNR
returns Ĩ X−2,D as a set of 20 values, one for each
die location. In line 4, the median of this resid-
ual set is saved for template entry TE = X − 2.
The algorithm loop then repeats for the next
template entry, i.e. TE = X − 1.

Line 1: Loop over Template Entry (TE)
Line 2: Assign ÎD = ITE

Line 3: Run NNR for ÎD

Line 4: Assign RTE = 


Median( ĨTE,D)


Line 7: End Template Loop
Line 8: Sort (RTE)

Figure 3: Location Averaging Algorithm

The algorithm processes each template
entry and assigns each entry a single index
value, the median of the die residuals for the lot.
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Sorting these values ranks the template entries
by their estimate of the expected value of the
parameter of interest, in this case I . The tem-
plate entry with the smallest median residual for
the lot identifies the location for the best single
die estimate of a target die measurement. In the
example, the location X − 1 has the smallest
residual. The template ranking for the first lot is

T1 = X − 1, X + 1, X − 2, X + 2

The second lot template is dominated by the
stepper and the template ranking is

T2 = X + 2, X − 2, X + 1, X − 1.

The example highlights the robust nature
of location averaging and its ability to use data-
driven techniques to address the difficulty of
predicting neighborhoods in advance. As will
be shown in the next section, location averaging
can readily identify a template ranking for data
with a mixture of smooth and systematic effects.

4. Results

Several NNR results are reported in this paper in
an effort to understand the ability of NNR to
reduce variance and identify outliers. The meth-
ods for neighborhood selection and NNR depen-
dence on yield were tested using LSI Logic pro-
duction data. The data reported has been renor-
malized to avoid releasing any proprietary infor-
mation. The data is for a 0. 18µm process and
includes approximately 75 wafers from three
different lots. A of total 25,000 die are used in
the experiments.

Results for neighborhood selection, die
yield and single vector IDDQ are presented in this
section. These studies demonstrate the stability
of the NNR Ĩ residual and NNR’s utility at iden-
tifying outliers.

4.1. Neighbor Selection

The first study examined data-driven
neighborhood selection schemes. For neighbor-
hood selection two lots of twenty-five wafers are

analyzed. Each wafer has about 300 die per
wafer. A lot has approximately 7,500 die. The
candidate template is the 120 die set radiating
out from the target. Each 120 die template is a
die borough from which a smaller neighbor-
hoods can be selected. The Location Averaging
algorithm described earlier ranked the template
entries. All IDDQ data collected for the two lots
was used. Twenty IDDQ vectors were measured
on the die that passed functional and gross IDD

tests. The NNR neighborhood used for the esti-
mate was the twelve, lowest template entries.

Figure 3: Forty best die based on Location
Av eraging Neighborhood Selection

Tw o views of this result are shown in the
Figures 3 and 4. Figure 3 shows the rank and
position relative to a target die of the top forty
candidate die based on the | Ĩ |median. The lightest
areas are near the target location but not imme-
diately adjacent to it. The die in the same row
provide the best six estimates. The other six die
in the eight die annulus around the target die are
ranked well below other die in the borough.
This is rather different from the annulus about a
die that was used in [1]. The second view
shown in Figure 4a is a top-down and Figure 4b
is a 3D perspective of a die template. The rows
and stepper pattern are clearly evident as well as
the rapid drop off of estimates greater than 40.

The pattern of best candidate die varies
from lot to lot. The computation to identify the
pattern is simple to complete off-tester without
increased test time or assembly time. To
demonstrate the variation in neighborhood pat-
terns the experiment was repeated using a
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Figure 4a: Location Averaging Template
(First lot). Target Location is white, light
regions are best neighbors and dark
regions are poor neighbors

Figure 4b: Location Averaging Template
(First lot). Target Location is white, light
regions are best neighbors and dark
regions are poor neighbors

different lot. In Figure 5, the strong row and
3X3 stepper pattern in Figure 4 has been
replaced by a conical shape (i.e. concentric con-
tour rings) very similar to the eight nearest
neighbors described in [1].

Location averaging is an efficient and
robust technique to meet the key challenge of
neighborhood selection for NNR and other sta-
tistical post-processing techniques. To track
manufacturing variations the method requires lot
by lot updates of the template ranking. This cal-
culation is easy to implement off-tester. In a

manufacturing setting the main requirement is
that the template ranking and subsequent die
binning be completed prior to assembly.

Figure 5: Location Averaging Template
(Second lot) Target Location is white, light
regions are best neighbors and dark
regions are poor neighbors

4.2. Yield Dependence

The second study looks into the relation-
ship between yield and the estimate Î and the
residual Ĩ . Using high yielding wafers, the NNR
method is implemented on single wafer IDDQ

data and the point estimate for the residual dis-
tribution is calculated. The neighborhood is
defined as the twenty best die from the location
av eraging neighborhood selection algorithm.

To simulate reduced yield on the wafer,
ten die are randomly eliminated from the IDDQ

data-set and the process is repeated. As a simu-
lation the possible increased variability of the
IDDQ data itself is not modeled. As data is found
in the database the connection between yield,
increased data variance and NNR will be stud-
ied. As the yield for the wafer approaches zero,
a series of point estimates | Ĩ |median are obtained.
Large changes in | Ĩ |median indicate instability in
the estimate and the decreasing ability of NNR
to consistently detect the outliers.

Figure 6 plots the point estimate versus
yield for four typical wafers. The estimate is
relatively constant even at substantially reduced
yields. At very low yields, few of the twenty
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Figure 6: NNR stability as a function of
wafer yield

neighbors are present and the stability of the
estimate suffers. At the very lowest simulated
yields, estimates vary by 100% or more and
many die would be erroneously binned. The
preliminary conclusion from this study is that
NNR data-driven neighborhood selection is
robust to diminished wafer yield.

4.3. Variance Reduction

An example of variance improvement is shown
in Figure 7. The left-hand histogram is a plot of
the mean IDDQ for a lot containing IDDQ mea-
surements on 5,300 die. Twenty IDDQ vectors
were tested and averaged. Location av eraging
was completed on the lot and ranked 120 neigh-
bors. The twelve best neighbors were used to
compute the nearest neighbor estimate. The
right-hand histogram is a plot of the residual
ĨDDQ following the NNR statistical post-process-
ing. As can be readily seen the variance is
reduced by about a factor of two. Histogram bin
sizes and scales are identical for the two graphs.

4.4. Outlier Detection

This study highlights the improved outlier
detection that the reduced variance of the

IDDQ
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Figure 7: Improved Variance from nearest
neighbor estimation

residual can provide. The data used in this study
was a LSI test chip. The die area was much
larger than the other experiments with about 100
die per wafer. There are approximately 2,500 die
represented in this study with IDDQ measure-
ments for die that passed functional and gross
IDD tests. There are twenty IDDQ measurements
for each die. Location averaging was completed
in the usual way to define a template of 40 die.
The twelve die lowest ranked die with IDDQ data
were used to compute estimates and residuals.

Tw o key graphs summarize this portion of
the study. Plotted in Figure 8 is the die estimate
from its nearest neighbors versus the average of
the IDDQ for the die. Several features are evident.
First, note that the majority of the estimates lie
in a large mass in the lower left. The widening
at approximately 100 units is evidence that the
estimate variance increases slightly with the
value of IDDQ. Secondly note the clear outliers to
the right. These large IDDQ are not at all
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predicted by the nearest neighbors in the ranked,
forty die template. LSI’s ∆IDDQ post-processing
binned approximately 95% of the outliers in the
data set. All of the ∆IDDQ escapes, primarily in
the right-hand part of the plot above 150, are
detected as outliers by NNR.
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Figure 8: Scatter plot of ÎDDQ vs IDDQ

In Figure 9 the die residual is plotted ver-
sus the mean of die. As a reminder the residual
is of the difference of an estimate and observed
value

ĨDDQ = IDDQ − ÎDDQ.

In effect this plot is the difference of the x-axis
and y-axis in Figure 8. Note again the mass of
residuals is evident in the lower left of the plot.
The smaller residual values represent die where
the estimate predicted the mean value. Second,
there are negative values. Negative residuals
were also shown in the NNR histograms in Fig-
ure 7. The negative values are an over predic-
tion of the estimate compared to the mean. Die
with the negative residuals were examined with
respect to other test measurements (such as
device speed) and have not shown any evidence
of being outliers in the sense of test escapes.
Third, note the much improved linear correlation

of residual versus mean compared to the esti-
mate versus mean. The die represented by the
large residuals, away from the mass, are the ones
that would be binned as outliers.
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Figure 9: Scatter plot of ĨDDQ vs IDDQ

As a final example of outlier detection are
the die represented by the histogram in Figure
10 are field fails, i.e. test escapes. The die passed
all tests at production and final test. A single
IDDQ measurement was available for the escape
die. From the histogram, approximately 40% of
the die are above a IDDQ = 15µ A threshold. The
original test limit was IDDQ = 100µ A.

Tw o possible alternatives to catch the
IDDQ escapes are to reduce the IDDQ test limit to
a much lower level (e.g. 15µ A) or add test vec-
tors to increase functional coverage. The first
alternative is an example of the classic trade-off
of yield for improved early failure rate and
reduced infant mortality. For second alternative
of improved test coverage, the longer test time
has to be weighed against reduced EFR. A third
alternative is look for the outliers of the existing
test suite using NNR.

The NNR study of this product used a sin-
gle lot and a single IDDQ vector from the wafer
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Figure 10: Histogram of single vector IDDQ

for field fails

test data, that is in Equation (2) the average is
replaced with the one IDDQ measurement for
each die.

IDDQ → IDDQ.single.

The neighborhood was selected in the usual way
using a lot of 25 wafers. Using a single test vec-
tor models the available field fail data. In this
case, the nearest neighbor residual is the differ-
ence of the estimate from the template and the
original measurement.

The results are summarized in the scatter
plot in Figure 11. The vertical axis is the single
vector IDDQ and the horizontal is a die speed
measurement denoted KP. The legend summa-
rizes three test results. The open circle is an
NNR fail, functional pass and IDDQ pass. The
solid dot is an NNR fail and functional fail.
Recall that the IDDQ limit is 100µ A. Finally a
triangle is a functional or IDDQ hard fail and the
cross is all pass. From the histogram, the die of
interest are 10µ A < IDDQ < 100µ A because they
are the source of 40% of the escapes. In this
range 33 of the 39 die are NNR fails. Eleven die
(open circles) in this region (28%) were

identified only by NNR.

Tw o key ideas are demonstrated by this
experiment. First, NNR is flexible and can be
used with any parametric data such as a single
IDDQ vector. Second, NNR demonstrates a data-
driven selectivity for outliers that could provide
a dramatic improvement of Early Failure Rates.

5. Conclusion

This paper expands the understanding of the
technique called Nearest Neighbor Residual.
This paper presented new, data-driven alterna-
tives for neighborhood selection. By expanding
the selection process to include the best die esti-
mates NNR was shown to be robust to yield
fluctuations.

The location averaging has been applied
to each lot of data analyzed to capture the key
patterns in that specific lot. Location averaging
was shown to identify pattern variation in a sin-
gle product on a lot to lot basis.

After statistical post-processing variance
reduction was observed in all cases and shown
to improve the ability of IDDQ testing to identify
outliers.

Finally, NNR was shown to work with a
single IDDQ measurement and predict outliers
that previously were test escapes. The final
example shows how NNR could be applied to
detect outliers of other continuous-valued test
results.
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