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Abstract. Local models have emerged as one of the leading methods
of chaotic time series prediction. However, the accuracy of local models
is sensitive to the choice of user-specified parameters, not unlike neural
networks and other methods. This paper describes a method of optimiz-
ing these parameters so as to minimize the leave-one-out cross-validation
error. This approach reduces the burden on the user to pick appropriate
values and improves the prediction accuracy.

1. Introduction

Unlike global models, local models postpone the computation required for con-
struction until the input vector is available. The nearest neighbors in the data
set are then located, a simple model is constructed using only the neighboring
points, and the model is evaluated using the input vector to produce the local
model output.

One of the most vexing problems facing users who wish to use a local model
is how to choose appropriate values for the model parameters. Since the best
parameter values depend on the properties of the data set, there is little to
guide users in making this decision.

This paper introduces a method for optimizing the traditionally user-specified
parameter values to maximize the model performance. The advantages of this
method are that it relieves the user of the burden of specifying critical param-
eter values, it gives the user control of the computation used for optimization,
and it improves the model accuracy as compared to the initial values provided
by the user.

1.1. Local versus Global Modeling

Local models have performed very well in comparative studies on time series
prediction problems and in most cases have generated more accurate predictions

∗Published In Proceedings of the 8th European Symposium on Artificial Neural Networks,
Bruges, Belgium, 305-310, April 26-28, 2000.



than global methods [5, 4, 3]. However, each of these studies is subject to
the problem of expert bias in which the researcher may unintentionally bias a
comparative study because they are more skilled at applying the methods that
they favor. This problem is largely circumvented by competitions that bring
together a large group of researchers to compare their preferred prediction
methods on a common set of problems.

Two of these competitions are of special significance. A time series pre-
diction competition was held by the Santa Fe institute in 1991 [9]. Although
several types of time series analysis were included in the competition, the pre-
diction of a chaotic time series produced by a laser received the most attention
and entries. The winner of the competition used a novel neural network archi-
tecture. The second place entry, generated by a local linear model, was nearly
as good. A further comparison of these two methods was performed after the
competition. On other segments of the time series the local model performed
better than the neural network in three out of four trials.

A second competition was held in Leuven, Belgium in 1998 to assess the
changes and improvements that had occurred in the field of time series predic-
tion since the Santa Fe competition [8, 7]. Entrants were given a time series
consisting of 2, 000 points and were asked to predict the following 200 points.
Both the winning entry and the second place entry were generated by a local
model and only local models were able to forecast the first 80 steps accurately.

The scope of these competitions was too narrow to conclusively determine
that any specific type of nonlinear modeling is best because they both used
only a single prediction sequence from a single time series. However, the strong
showing of local models in both competitions strongly supports the claim that
local models are among the best techniques for time series prediction.

2. Cross Validation Error (CVE)

Almost all nonlinear models optimize model parameters to minimize some mea-
sure of performance. In most cases the measure of performance is an average
error, such as mean squared error, taken over the entire data set. This ap-
proach often causes the model to be accurate at the points in the data set but
to vary substantially at other points, a problem known as overfitting.

To solve this problem, users often divide the data set into two parts: a
training data set and a test data set. The nonlinear model is then iteratively
optimized to minimize the average error on the training data set and the opti-
mization is stopped once the average error on the test set increases. A disad-
vantage of this approach is that only half of the data is used to directly build
the model.

Local models can use a much more accurate technique of estimating the
model performance. This technique consists of taking a single point out of the
data set, building a nonlinear model using the remaining points in the data
set, and using the nonlinear model to estimate the prediction performance for
the removed point. The process is repeated for many points in the data set



and the average error is calculated. This error is called the leave-one-out cross-
validation error (CVE).

The computational cost of calculating the average CVE is prohibitive for
most global models because it requires the model to be constructed many times.
Calculating the average CVE multiple times, as would be necessary to use the
CVE in an iterative optimization of model parameters, is even more daunting.

Local models can calculate the CVE almost as efficiently as they can cal-
culate the local model outputs1. To estimate the error for an input vector
taken from the data set, the k +2 nearest neighbors are found and the nearest
neighbor, which is identical to the input vector, is discarded. The model error
is then evaluated using the vector’s k + 1 neighbors.

The ability to calculate the cross-validation error efficiently is a very im-
portant advantage of local models and it plays a vital role in the optimization
algorithm described in the next section.

3. Cyclic Coordinate Optimization

Gradient-based optimization algorithms can greatly improve the initial param-
eter values provided by the user. However, this approach cannot be used to
optimize integer-valued parameters, such as the number of neighbors, or pa-
rameters for which the gradient cannot be calculated. To optimize these pa-
rameters, an algorithm that does not require the gradient must be used. One of
the simplest of these algorithms is the cyclic coordinate method. This method
optimizes each parameter one at a time, and then repeats until convergence [1,
pp. 283–5]. For example, if the parameters to be optimized are stored in a
vector γ ∈ R

�, the cyclic coordinate method is as follows.
Cyclic Coordinate Method

1. For i = 1 to n,

1.1 γi := argmin
α

CVE([γ1, . . . , γi−1, α, γi+1, . . . , γn]
T).

1.2 Next i.

2. If not converged, then goto 1.

Since each step in the loop can only decrease the cross-validation error,
this method can only improve the model performance; and under very general
conditions the algorithm is guaranteed to converge [1, p. 285].

Since the algorithm optimizes each parameter individually, this method is
not computationally efficient for models that have a large number of parame-
ters. However, it is an efficient approach for models that have relatively few
parameters (less than a dozen), such as local models. Several new parameteri-
zations of local models are described in [6].

1An efficient method of calculating the CVE using iterative prediction is described in [2].



3.1. Semi-global Line Search

Each step in the inner loop of the cyclic coordinate method tries to find the
value of a single parameter that minimizes the cross-validation error. Since only
one parameter is optimized at each step, this is essentially a one-dimensional
minimization problem, also known as the line search problem.

If the parameter to be optimized is an integer, a user-specified range of
values can be searched for the best value. For example, the number of neigh-
bors, k, could be optimized by calculating the cross-validation error (CVE) for
a range of values, {kmin, kmin + 1, . . . , kmax}, and retaining the value with the
smallest CVE.

If the parameter is a real number, any of a number of line search algorithms
could be used to find a local minimum [1]. However, a semi-global line search
algorithm is preferable if the CVE contains many shallow local minima, as is
the case with most of the local model parameters.

The semi-global line search algorithm used in the results reported here
tries increasing and decreasing the parameter value by a range of amplification
factors, a set of scalar multipliers. For example, if γi is the parameter being
minimized and Φ is a set of possible amplification factors, the minimization in
step 1.1 would consist of evaluating the CVE with α = φγi for each φ ∈ Φ.
The parameter γi would then be replaced with the value that minimized the
CVE.

To ensure that a wide range of parameter values is examined, the ampli-
fication factors can be evenly spaced on a logarithmic scale. For example, if
the user wished to evaluate the CVE at only eleven points and wanted to try
amplification factors ranging from 1

10 to 10, the amplification factors would be
{0.100, 0.158, 0.251, 0.398, 0.631, 1.00, 1.58, 2.51, 3.98, 6.31, 10.0}.

After the cyclic coordinate method converges, the parameter values can be
found with greater precision by reducing the range of the amplification factors.
For example, after initial convergence, the range could be reduced to φmin = 0.2
and φmax = 5.

Cyclic coordinate optimization is better for local models than gradient-
based optimization because it can avoid shallow local minima and does not
require computation of the gradient. However, the cyclic coordinate method’s
rate of convergence is much slower than gradient-based optimization methods.
If the gradient can be calculated for only some of the model parameters, the
rate of convergence can be increased by combining the cyclic coordinate method
with a gradient-based algorithm. This type of hybrid approach, called the
generalized cyclic coordinate method, converges substantially faster than the
cyclic method and is described in detail in [6].

4. Overfitting

An accurate method of estimating the model accuracy is an essential compo-
nent of model optimization algorithms such as the cyclic coordinate method
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(a) Lorenz
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(b) Santa Fe

Figure 1: Prediction horizons for (a) the Lorenz time series and (b) the Santa
Fe competition time series. The horizons show the square root of the mean
squared error divided by the sample variance of the time series (normalized)
versus the number of steps predicted ahead. The two lines show the mean CVE
and the test error. The gray region shows the estimated standard deviation of
the mean CVE.

described in the previous section. Although the leave-one-out cross-validation
error (CVE) is intuitively more accurate than a partitioning of the data into
a training set and test set, it is not obvious how much overfitting occurs and
how biased the CVE estimate of model performance is.

To investigate this question a local linear model2 was optimized using two
chaotic time series benchmarks, the Lorenz time series and the Santa Fe com-
petition time series3. In both cases the CVE was estimated using 1,000 equally
spaced points taken from the first 3,000 points in the time series and the av-
erage test error was calculated from 4,000 evenly spaced points taken after the
segment used to build the model.

Figure 1 shows the prediction horizons. In each plot the gray region shows
three standard deviations of the average CVE. Since the test error is well
within this region, these plots4 give empirical support that the CVE is not
significantly biased by the model optimization and overfitting does not occur.

5. Conclusion

This paper introduced a new method of local model optimization based on a
generalization of the cyclic coordinate method. This method is especially well
suited to local models because the number of parameters is typically small (less
than a dozen) and it does not require the error gradient. This method has the
additional benefit of converging to better local minima than gradient-based
optimization algorithms because each line search is performed semi-globally.

2The details of the local model parameterization and optimization are given in [6], which
is available online at http://www.ee.pdx.edu/∼mcnames.

3Both of these are available online at http://www.ee.pdx.edu/∼mcnames/DataSets.
4These results are typical of those observed for many chaotic time series and local models.



Although optimization of model parameters is not new, there has been
little work to apply these methods to local models. This approach replaces
the burden on non-expert users of choosing sensitive model parameters with
the responsibility of choosing a range of parameter values. This is preferable
because the user will typically have a much better idea of the range, such as
the number of neighbors, than the best value. This also lets the user make the
tradeoff of model accuracy for the amount of computation used to optimize the
model.

An accurate estimate of the model performance is an essential component
of model optimization. Local models have a distinct advantage over global
models in this respect because they can efficiently calculate the leave-one-out
cross-validation error (CVE). Empirical evidence was given to demonstrate
that this measure of model accuracy is not significantly biased by the model
optimization and is not susceptible to overfitting.
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