
INNOVATIONS IN LOCAL MODELING

FOR TIME SERIES PREDICTION

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

James McNames

May 1999

c© Copyright 1999 by James McNames

All Rights Reserved

ii

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Bernard Widrow
(Principal Adviser)

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Jerome H. Friedman
Department of Statistics

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Jonathan P. How
Department of Aeronautics and Astronautics

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

iii

iv

Abstract

Previous studies have shown that local models are among the most accurate methods for

predicting chaotic time series. This work discusses a number of improvements to local

models that reduce computation, improve the model accuracy, or both.

Local models are often criticized because they require much more computation than

most global models to calculate the model outputs. Usually, most of this time is taken to

find the nearest neighbors in the data set. This work introduces two new nearest neighbor

algorithms that drastically reduce this time and enable local models to be evaluated very

quickly. The two new algorithms are compared with fifteen other algorithms on a variety

of benchmark problems.

Local linear models are the most popular, and often the most accurate, type of local

model. However, using an appropriate means of regularization to eliminate the effects of

an ill-conditioned matrix inverse is crucial to producing accurate predictions. This work

describes the two most popular types of regularization, ridge regression and principal com-

ponents regression, and two new generalizations of each of these methods that enable more

accurate models to be constructed.

The accuracy of local models is sensitive to the values chosen for the model parame-

ters. Most researchers pick the values for these parameters based on their experience and

intuition. In this work, new optimization algorithms are introduced that improve the model

accuracy by adjusting the initial parameter values provided by the user. These iterative

algorithms take advantage of local models’ ability to efficiently calculate the leave-one-out

cross-validation error, an excellent measure of model accuracy that does not cause overfit-

ting.

When local models are used to predict chaotic time series, there are several improve-

ments that can be made that use the properties of chaotic systems to generate more accurate

v

predictions. This work describes several new modifications of this type and demonstrates

their effectiveness on a variety of chaotic time series.

vi

Acknowledgements

I am grateful to all of the friends and acquaintances that have helped me along the lengthy

journey through graduate school. I would especially like to thank the following people who

have influenced my thinking and values along the way.

Mahmood Nahvi and Ali Shaban of California Polytechnic State University served as

initial role models and inspired me to pursue graduate school and, eventually, teaching.

Gregory Plett provided invaluable assistance with LATEX and the mechanics of reaching

graduation. The reliable Dr. Mike spent many hours repairing my damage to Simoon and

has never hesitated to provide precise and helpful answers to my many questions on UNIX

and neural networks. I would also like to thank other former members of the Zoo including

Eric Wan, Edward Plummer, Raymond Shen, Françoise Beaufays, and Jeff Wilkins and

current member Max Kamenetsky.

Michael Godfrey spent many hours discussing my research and career goals. He has

also helped to guide me along a more direct path to graduation. Jerry Friedman profoundly

influenced my understanding and thought on the problems addressed in this work and

continues to serve as a role model for my career. Jonathan How has helped shape my

thinking on dynamic systems and has opened my eyes to the interesting problems of control.

Bernard Widrow has ingrained in me the importance of improving the world and

helping people through my research and career; for this I am deeply indebted. I also wish

to thank him for introducing me to the world of adaptive signal processing, for providing a

strong emphasis on solving practical problems, and for his thorough and thoughtful review

of this work.

I would not have made it to graduation without the support and assistance of Joice

DeBolt. I am especially grateful for the countless times she assisted me in times of crisis.

vii

Marianne Marx enabled me to support myself as a teaching assistant during my time

at Stanford. I am grateful for the many opportunities to instruct students and all that I

have learned from them.

Although I have never met Tim Sauer, his thoughtful and successful work with local

models for time series prediction provided the initial inspiration for this work. Other re-

searchers who significantly influenced my thought during this work include Edward Lorenz,

Martin Casdagli, J. Doyne Farmer, John Sidorowich, and Dimitris Kugiumtzis.

Although the internet has made it easy for researchers to publicly distribute data,

most researchers in chaotic systems have chosen not to. I would like to thank those who

have, including Andreas Weigend, Nick Tufillaro, Eric Weeks, Scott D. Bartholoma, and

Rob Hyndman. I would especially like to thank Tom Carroll for personally giving me some

of his chaotic circuit data.

Johan Suykens hosted the Lueven time series prediction competition, which proved to

be a useful forum for comparing my ideas with other researchers. I benefited greatly from

discussions with him and the participants at the workshop, most notably Patrick McSharry

and Gianluca Bontempi.

Bill Staib, a friend and former employer, provided the opportunity to implement many

statistical models that gave me a solid understanding of nonlinear modeling methods and

their shortcomings. Mark Dzwonczyk, my current employer and friend, gave me the means

to support my family and the flexibility to complete this work.

I am grateful to Tad Shannon, Donna McNames, and Hope Del Carlo for reviewing

Chapter 3.

My parents, Donna and Robert McNames, provided constant support and encourage-

ment throughout this work. Finally, I wish to thank my beloved friend and wife, Hope

Del Carlo, for her persistent support, warm meals, and enduring love through many rainy

nights in front of the computer.

viii

This dissertation is dedicated to the memory of Etta

Duran, Jess McNames, Jerry Morrison, and those de-

voted to the pursuit of peace on Earth.

ix

x

Contents

Abstract v

Acknowledgements vii

Notation xxv

1 Introduction 1

1.1 Problem Definitions . 1

1.1.1 Nonlinear Modeling . 1

1.1.2 Nearest Neighbor Algorithms . 3

1.1.3 Chaotic Time Series Prediction . 4

1.2 Applications . 5

1.2.1 Nonlinear Modeling . 5

1.2.2 Fast Nearest Neighbor Algorithms 5

1.2.3 Chaotic Time Series Prediction . 5

1.3 Motivation for Local Modeling . 6

1.3.1 Expert Bias . 6

1.3.2 Local versus Global Modeling . 7

1.4 Contributions . 8

1.5 Thesis Overview . 9

2 Introduction to Local Modeling 11

2.1 An Example of Local Modeling . 11

2.2 Selection of a Distance Metric . 13

2.3 Local Model Types . 14

2.3.1 Local Linear Models . 14

xi

2.3.2 Local Averaging Models . 16

2.3.3 Local Quadratic Models . 16

2.3.4 Local Averaging versus Local Linear 17

2.4 Local Weighting for Smoother Models . 18

2.4.1 Weighted Local Averaging . 19

2.4.2 Weighted Local Linear Models . 21

2.5 The RampHill Data Set . 23

2.5.1 Local Averaging Models . 24

2.5.2 Local Linear Models . 24

2.6 The Curse of Dimensionality . 27

2.6.1 The Curse and Local Modeling . 28

2.7 Global Modeling versus Local Modeling . 29

2.7.1 Control of Nonlinearity . 29

2.7.2 Adaptive Complexity . 29

2.7.3 Preprocessing . 30

2.7.4 Computational Cost to Calculate Outputs 30

2.7.5 Limited Selection of Error Measures 30

2.7.6 Efficient Calculation of Cross-Validation Error 31

2.8 Summary . 32

3 Fast Nearest Neighbor Algorithms 33

3.1 Introduction . 34

3.2 Review of Elimination Criteria . 34

3.2.1 Full-Search Improvements . 35

3.2.2 Search Trees . 35

3.2.3 Growing Search Regions . 35

3.2.4 Axis-Partitioning Algorithms . 36

3.2.5 Triangle Inequality . 36

3.2.6 Projection Methods . 37

3.3 The Problem of Dimensionality . 37

3.4 Algorithms . 38

3.4.1 Brute Force (Brute) . 38

3.4.2 Partial Distance Search (PDS) . 39

3.4.3 Principal Axis Tree (PAT) . 39

3.4.4 Depth-Only Principal Axis Tree (DOPAT) 46

xii

3.5 Performance . 48

3.5.1 Algorithms . 48

3.5.2 User-Specified Parameters . 49

3.5.3 Measures of Performance . 50

3.6 Empirical Performance . 51

3.6.1 Uniform Distribution . 51

3.6.2 Normal Distribution . 54

3.6.3 Chaotic Time Series . 56

3.6.4 Vector Quantization . 59

3.7 Discussion . 62

3.8 Summary . 63

4 Local Linear Regularization 65

4.1 Introduction . 66

4.2 Ridge Regression . 67

4.2.1 Weighted Vectored Ridge Regression (WVRR) 67

4.2.2 Discussion . 68

4.2.3 Example . 69

4.3 Principal Components Regression . 71

4.3.1 Truncated Principal Components Regression 71

4.3.2 Centering . 72

4.3.3 Weighted Centering . 75

4.3.4 Example of Weighted TPCR . 77

4.3.5 Soft Thresholding . 78

4.4 Tradeoffs . 81

4.4.1 Influence of Input Variables . 81

4.4.2 Direct Control of Model Subspace 83

4.4.3 Adaptive Regularization . 83

4.4.4 Number of Parameters . 83

4.4.5 Gradient Calculation . 83

4.4.6 Computational Efficiency . 84

4.5 Summary . 84

5 Local Model Optimization 87

5.1 Iterative Optimization Algorithms . 88

xiii

5.2 Local Averaging Metric Optimization . 89

5.2.1 Metric Gradient . 90

5.2.2 Weighted Averaging Example . 91

5.2.3 Local Minima . 93

5.3 Vectored Ridge Regression . 94

5.3.1 Example . 94

5.4 Principal Components Regression . 94

5.5 Cyclic Coordinate Optimization . 97

5.5.1 Semi-global Line Search . 97

5.5.2 Generalized Cyclic Coordinate Method 98

5.6 Vectored Ridge Regression Optimization . 101

5.7 Principal Components Regression Optimization 102

5.8 Discussion . 103

5.9 Summary . 104

6 Chaotic Time Series Prediction 105

6.1 Process Model and Assumptions . 105

6.1.1 Chaotic Time Series . 106

6.1.2 Noise . 107

6.2 Example of Local Modeling for Prediction 108

6.3 Takens’ Theorem . 108

6.3.1 Intrinsic Manifold Dimension . 110

6.3.2 Upsampling . 110

6.3.3 Window Length . 111

6.3.4 Choosing the Embedding Parameters 112

6.4 Local Model Parameterization . 113

6.4.1 Number of Local Inputs . 113

6.4.2 Exponential Metrics . 114

6.5 Multi-Step Predictions . 116

6.5.1 Iterated versus Direct Prediction . 116

6.5.2 Multi-Step Error Estimation . 117

6.6 Model Optimization . 118

6.6.1 Vectored Ridge Regression Optimization 118

6.6.2 Principal Components Regression Optimization 121

6.7 Summary . 123

xiv

7 Case Studies 125

7.1 Introduction . 125

7.1.1 Normalized Mean Squared Error . 126

7.1.2 Parameter Values . 126

7.2 Exponential Metrics . 127

7.3 Local Minima . 128

7.4 Multi-Step Cross Validation . 130

7.5 Time Series Prediction Examples . 132

7.5.1 Lorenz . 132

7.5.2 Mackey Glass . 134

7.5.3 The Santa Fe Competition . 135

7.5.4 Carroll’s Circuit . 139

7.5.5 Weeks’ Rotating Annulus . 139

7.6 Summary . 141

8 Conclusion 145

8.1 Summary . 145

8.2 Future Research . 146

8.2.1 Non-Chaotic Time Series . 146

8.2.2 Local Minima . 146

8.2.3 Local Optimization . 147

8.2.4 Multiple Iterative Models . 147

8.3 Concluding Remarks . 148

A Vectored Ridge Regression Gradients 149

A.1 Model Description . 150

A.2 Weighted Vectored Ridge Regression Solution 150

A.3 Metric Gradient . 151

A.3.1 Penalty Weight Gradient . 152

A.3.2 Metric Jacobian . 154

A.3.3 Metric Gradient Algorithm . 155

A.4 Input Gradient . 157

A.4.1 Input Jacobian . 158

A.4.2 Input Gradient Algorithm . 159

A.5 Ridge Gradient . 160

xv

Bibliography 161

xvi

List of Tables

3.1 List of nearest neighbor algorithms included in comparative study. 48

3.2 Nearest neighbor algorithms’ user-specified parameter values. 49

3.3 Average query times for uniform distribution. 51

3.4 Average query times versus data set size for uniform distribution. 53

3.5 Average query times for normal distribution. 54

3.6 Average query times versus data set size for normal distribution. 55

3.7 Average query times for Lorenz time series. 57

3.8 Average query times for Santa Fe time series. 58

3.9 Average query times for speech signal. 60

3.10 Average query times for Lena image. 61

3.11 Average query times for Boat image. 61

3.12 Average query times for Baboon image. 62

5.1 Default values for the generalized cyclic optimization method. 100

7.1 Default values for case studies. 126

7.2 Santa Fe competition performance comparison. 137

xvii

xviii

List of Figures

1.1 Function diagram of process and nonlinear model. 2

2.1 Illustration of local averaging. 12

2.2 Local models applied to the Ethanol data set. 17

2.3 The biweight function. 19

2.4 Illustration of local averaging applied to the Ethanol data set. 20

2.5 Weighted local linear modeling applied to the Ethanol data set. 22

2.6 The RampHill data set. 23

2.7 Local averaging model applied to the RampHill data set. 25

2.8 Local linear model applied to the RampHill data set. 26

2.9 Illustration of overfitting. 31

3.1 Example of a principal axis tree partition. 40

3.2 Bounding criteria of PAT. 44

3.3 Average query time of PAT for a normal distribution. 50

3.4 Average query time for uniform distribution. 52

3.5 Average query time versus data set size for uniform distribution. 53

3.6 Average query time for normal distribution. 55

3.7 Average query time versus data set size for normal distribution. 56

3.8 Average query time for Lorenz time series. 58

3.9 Average query time for Santa Fe time series. 59

4.1 The RampHill1D data set. 69

4.2 Illustration of vector ridge regression. 70

4.3 Illustration of the effect of centering. 73

4.4 The sparse RampHill data set. 78

xix

4.5 Weighted TPCR applied to the sparse RampHill data set. 79

4.6 Illustration of soft thresholding for PCR. 80

4.7 Weighted PCTR applied to the sparse RampHill data set. 82

5.1 Scatter plot of the RampHill20 data set and the optimized metric. 91

5.2 Optimized local averaging output. 92

5.3 Local minima of local averaging. 93

5.4 Metric and ridge parameters after optimization. 95

5.5 RampHill20 Outputs after ridge regression optimization. 96

6.1 Process model for time series prediction. 106

6.2 Example of local modeling for time series prediction. 108

6.3 Equivalent process model for time series prediction. 109

6.4 Example of upsampling. 111

6.5 Illustration of the generalized exponential metric. 115

6.6 Diagram illustrating the problem of accumulated errors. 117

7.1 Local averaging metric weights after optimization. 127

7.2 Ridge regression metric weights after optimization. 128

7.3 Ridge parameters after optimization. 129

7.4 Example of local minimum for VRR. 130

7.5 Lorenz error horizon for various values of na. 131

7.6 The Lorenz time series. 132

7.7 Prediction examples for Lorenz time series. 133

7.8 Mackey Glass time series. 134

7.9 Prediction examples for Mackey Glass time series. 135

7.10 Mackey Glass error horizon for various values of na. 136

7.11 The Santa Fe laser time series. 137

7.12 Prediction examples for Santa Fe laser time series. 138

7.13 Carroll’s time series. 139

7.14 Carroll’s error horizon for various values of na. 140

7.15 Prediction examples for Carroll time series. 141

7.16 Weeks’ time series. 142

7.17 Weeks’ error horizon for various values of na. 143

7.18 Prediction examples for Weeks’ time series. 144

xx

8.1 Multiple iterative models. 147

xxi

xxii

List of Algorithms

3.1 Brute Force Search . 38

3.2 Partial Distance Search . 39

3.3 Principal Axis Tree Construction . 40

3.4 Power Method for Principal Axis Tree . 41

3.5 Principal Axis Tree Search . 42

3.6 Depth-only Principal Axis Tree Search . 46

5.1 Cyclic Coordinate Method . 97

5.2 Generalized Cyclic Coordinate Method . 99

5.3 Weighted Vectored Ridge Regression Optimization 101

5.4 Principal Components Regression Optimization 102

6.1 Time Series Vectored Ridge Regression Optimization 120

6.2 Time Series Principal Components Regression Optimization 122

A.1 Calculation of ∇λŷ . 156

A.2 Calculation of ∇qŷ . 159

xxiii

xxiv

Notational Conventions

In this work, the size of the vectors and matrices is denoted by the superscripts of R. For

example, if a matrix A contained i rows and j columns, this would be denoted as A ∈ R
i×j .

Similarly, if a vector q contained i elements, this would be denoted as q ∈ R
i. The transpose

of vectors and matrices is denoted as qT. The product of a symmetric matrix with itself is

denoted as W 2 =WTW .

Vectors are indexed by subscripts; for example, qi represents the ith element of the

vector q. Occasionally, a vector will already have a subscript and a second subscript is used

to represent the elements of the vector. For example, xi,j represents the jth element of the

vector xi.

An i× j matrix containing ones is denoted as 1i,j . If the second subscript is omitted,
it is assumed to be one so that 1k is a column vector with k elements.

The notation O(n), pronounced “order N”, describes the relative order of computation

required to perform an operatation. More formally, if C(n) is a measure of the amount of

computation required to perform an operation where n is a parameter of the operation,

the computation is said to scale as O(n) if there are positive constants c and n0 such that

C(n)≤ cn when n≥ n0. A more detailed discussion of this notation is given in Weiss [1].

Variables
δ Embedding delay.
γ A vector that includes all of the model parameters.
φmax The maximum value of the amplification factors in a semi-global line

search.
ω Time series window length.
ν Vector of the linear model coefficients.
A The data matrix that contains the k neighboring points and a column of

ones. A ∈ R
k×nd+1.

b Vector of the target values for each of the k neighboring points.

xxv

d Vector that contains the sorted distances to the nearest neighbors such
that di is the distance to the ith nearest neighbor.

I The identity matrix.
k The number of neighbors.
na Number of steps ahead (for time series prediction).
nc Number of points used to calculate the cross-validation error.
nd Dimension of the observed vectors, x,q ∈ R

nd .
ni,max The maximum number of iterations allowed for the generalized cyclic

coordinate method to converge.
n� Number of local model inputs.
np Number of points in the data set.
nφ Number of amplification factors used in a semi-global line search.
nr,max The maximum number of times the range of the semi-global line search

may be reduced in the generalized cyclic coordinate method.
nσ The number of principal directions. Used with principal components

regression.
nu The number of gradient-based parameter updates per a cycle of the gen-

eralized cyclic coordinate method.
ny Number of points in a time series, {y1, . . . ,yny}.
q Query vector of observed variables. This vector is not included in the

data set, q 	= xi ∀i.
sc The center of the threshold transition region for principal components

regression with soft thresholds.
sw The relative width of the threshold transition region for principal com-

ponents regression with soft thresholds.
xi A vector of observed variables that is part of the data set.
y The process output. Sometimes this is written as a function, yi = y(xi),

to show explicit dependence on the process observed variables.

Functions
BW(di,dk+1) The biweight function.
CVE(γ) The cross-validation error as a function of the model parameters.
D(q,xi) The distance between the vectors q and xi. Sometimes a subscript will

be used to distinguish different measures of distance.
g(xt) Takens’ equivalent function.
ĝγ(xt) Approximation of Takens’ function. The model parameters are stored in

the vector γ.
P(γ) The total penalty as a function of the model parameters.

Operators
argmax

α
g(α) Returns the argument that maximizes the function g(α).

xxvi

argmin
α

g(α) Returns the argument that minimizes the function g(α).

diag(γ) Converts the vector γ into a diagonal matrix where the diagonal is equal
to the argument vector.

E[·] Expected value.
∇γf(γ) The gradient of the scalar function f(γ) with respect to the parameters

in the vector γ.
∇2

γf(γ) The hessian of the scalar function f(γ) with respect to the parameters in
the vector γ.

�−1 A unit delay. For example, �−1yt = yt−1.

Abbreviations
CVE Cross-validation error.
DOPAT Depth-only principal axis tree, a nearest neighbor algorithm.
MSE Mean squared error.
NMSE Normalized mean squared error.
OLS Ordinary least squares, an equation for the linear model coefficients.
OSCVE One-step cross-validation error.
MSCVE Multi-step cross-validation error.
PARTAN Parallel tangents, a conjugate gradient optimization algorithm.
PAT Principal axis tree, a nearest neighbor algorithm.
PCA Principal components analysis.
PCR Principal components regression.
PCTR Principal components threshold regression.
PDS Partial distortion search, a nearest neighbor algorithm.
RNMSE The square root of the normalized mean squared error.
SVD Singular value decomposition.
TPCR Truncated principal components regression.
. VRR Vectored ridge regression.
WVRR Weighted vectored ridge regression.

xxvii

xxviii

Chapter 1

Introduction

But what . . . is it good for?
—Engineer at the Advanced

Computing Systems Division of IBM,
1968, commenting on the microchip.

This chapter introduces the problems addressed in this dissertation and gives an

overview of subsequent chapters. Section 1.1 defines the three problems: the nonlinear

modeling problem, the nearest neighbors problem, and the time series prediction problem.

Each of these problems occurs in a variety of applications, some of which are described in

Section 1.2.

This work focuses on local modeling as a solution to the nonlinear modeling problem

and the time series prediction problem. Section 1.3 describes the motivation for choosing

local models over other methods and the practical difficulty of attempting a comparative

study.

Section 1.4 summarizes a selection of the significant contributions made by the author.

Section 1.5 concludes this chapter with an overview of the subjects addressed in each of the

subsequent chapters.

1.1 Problem Definitions

This section defines the three problems addressed in this work. Each of the problems is

discussed in more detail in subsequent chapters.

1.1.1 Nonlinear Modeling

The nonlinear modeling problem is defined as follows:

1

2 Chapter 1. Introduction

z1,...,zn

x1,...,xn y
Process

Observed
Variables

Unobserved
Variables

Output

xn ,...,xn

Observed
Variables

c

dc+1z

(a) Process

x1,...,xn y

Model
Observed
Variables Output

d

(b) Model

Figure 1.1: (a) Illustration of the process from which the data set is collected. (b) The
structure of the process model.

Definition 1.1

Consider a data set of np pairs of points, Ω = {(x1, y1), (x2, y2), · · · , (xnp , ynp)}, where xi ∈
R

nd is a vector of observed variables and yi is a scalar target variable. The nonlinear

modeling problem is to estimate the corresponding target variable given an input vector, or

query1 , of observed variables that is not part of the data set, q 		= xi ∀i.

This problem is sometimes called the nonparametric regression problem because the

goal is to find the regression function of y on x. The term nonparametric means there is

no known mathematical model that describes the relationship of y to x. This problem is

also called the function approximation problem because the goal is to create a function that

best describes the relationship of the variable y to the observed variables contained in the

vector x, that is ŷ = f(x).

The variable being estimated, y, is called the process output, the dependent variable,

or the target variable. The vector of other variables, x, are called the observed variables, the

independent variables, or the (model) input variables. A functional diagram of the source of

the data set is shown in Figure 1.1a. The observed variables were split into two sets, one set

at the input-end and the other at the output-end, to illustrate that the observed variables

may not have a causal relationship with the process output. For example, if a model was

to be constructed that estimated the concentration of nitric oxide in engine exhaust, the

set of observed variables may be causal, such as fuel-air ratio, or non-causal, such as the

1The term query is used throughout this work to mean an input vector that is not part of the data set.
Sometimes the phrase “the model is queried” is used to mean an input vector is given to the model so that
the model output can be calculated.

1.1. Problem Definitions 3

exhaust manifold temperature. The model of the process, shown in Figure 1.1b uses both

types of variables to estimate of the process output.

Here xi is used to refer to input vectors in the data set. After the model is constructed,

the target variable can be estimated by evaluating the model for input vectors that are not

part of the data set. This is called querying the model and the vector q, a mnemonic for

query, is used to represent the input vectors in this case2.

The scalar y is used to refer to the process output for both points in the data set and

points not in the data set. Occasionally, the model output is written in functional form,

ŷ(q), to explicitly show the dependence of the process output on the observed variables in

contained in the vector q.

1.1.2 Nearest Neighbor Algorithms

The nearest neighbors problem is defined as follows:

Definition 1.2

Given a data set of np points, {x1,x2, · · · ,xnp}, find the k points that are closest to a point,

q, where q,xi ∈ R
nd for all i. Here k is a user-specified parameter.

The obvious approach to solve this problem is to calculate the distance from the query

point to each point in the data set. This approach, called the brute force method, may

be acceptable for small data sets, but for large data sets the required computation can

be excessive. Chapter 3 describes a number of fast nearest neighbor algorithms that can

solve the problem much more quickly and two new algorithms are compared with leading

algorithms on a variety of benchmark problems.

The nearest neighbor problem requires that a measure of closeness, or distance, be

defined. Many distance measures have been used for local modeling and the nearest neighbor

problem. This work focuses on the diagonally weighted Euclidean distance,

DWE(q,xi)2 =
nd∑
j=1

λ2j (qj −xi,j)2,

= (q−xi)TΛ2(q−xi),

2In machine learning the data set is called the training data and a collection of query vectors is called
the test data.

4 Chapter 1. Introduction

where λ ∈ R
nd is a vector of the metric weights and Λ is a diagonal matrix,

Λ � diag(λ),

=



λ1 0 · · · 0

0 λ2 · · · 0
...
...
. . .

...

0 0 · · · λnd


 .

By a transformation of variables, q́ � Λq and x́i � Λxi, the weighted Euclidean distance
can be reduced to the unweighted Euclidean distance,

DWE(q,xi)2 = (q−xi)TΛ2(q−xi),
= (q́− x́i)T(q́− x́i),
= DE (q́, x́i)2.

This is useful because most nearest neighbor algorithms only work with the Euclidean

distance (see Chapter 3); this technique enables these algorithms to work with the more

general weighted distance. The unweighted Euclidean metric is also known as the L2 norm

and as the Minkowski metric.

1.1.3 Chaotic Time Series Prediction

The time series prediction problem is defined as follows:

Definition 1.3

Given a univariate time series of np points, {y1, y2, · · · , yny}, where yi is a scalar, predict

the next na points in the time series, {ynp+1,ynp+2, · · · ,ynp+na}.

The scope of this work is limited to time series prediction of deterministic nonlinear

dynamic systems. If a few general assumptions are made about the system, the time series is

chaotic and has several special properties. One of the most important of these properties is

that a nonlinear autoregressive function exists that can predict the time series perfectly. The

theorem that proves this, Taken’s theorem, provides a theoretical foundation for framing

the time series prediction problem as a nonlinear modeling problem.

The innovations in local modeling that are described in this work can be directly

applied to the time series prediction problem. Further improvements are also described

1.2. Applications 5

that exploit the properties of chaotic time series to reduce computation and increase the

accuracy of the predictions; these improvements are discussed in Chapter 6.

1.2 Applications

Each of the three problems addressed in this work occur in many different disciplines and

there are many applications for the algorithms and techniques described in this work. This

section describes a selection of these applications.

1.2.1 Nonlinear Modeling

Many different types of problems can be reduced to the nonlinear modeling problem includ-

ing the time series prediction problem, pattern recognition, density estimation, and system

identification.

There are many industrial, research, and commercial applications that use nonlinear

models. These applications include image processing, speech recognition, time-series anal-

ysis, adaptive equalization, medical diagnosis, economic forecasting, and steelmaking [2–4].

1.2.2 Fast Nearest Neighbor Algorithms

The nearest neighbors problem is encountered in a wide range of applications including

density estimation, pattern recognition [5], clustering [6], function approximation [7], time

series prediction [8, 9], document retrieval [10, 11], optical character recognition [12], and

vector quantization [6, 13]. In most of these applications the large computational cost of

finding the nearest neighbors imposes practical limits on the data set size and the rate

at which the application can operate. This has motivated the development of many fast

nearest neighbor algorithms.

1.2.3 Chaotic Time Series Prediction

Applications that use prediction methods developed for chaotic time series include weather

prediction [14–18], epidemiological forecasts [19, 20], population biology [19], astronomical

analysis [18, 21–25], electrical circuit analysis [18, 26], fluid turbulence [18, 22, 27], flame

dynamics [18], laser intensity prediction [28,29], speech prediction and compression [18,30],

electroencephalogram (EEG) prediction [18,27], heart beat (EKG) monitoring [20,26], ocean

wave forecasting [18], noise cancellation [30], mechanical vibration analysis [18,31], climate

prediction [18], and analysis of chemical reactions [32].

6 Chapter 1. Introduction

1.3 Motivation for Local Modeling

Local models postpone the computation required to construct the model until the model is

queried. Once the input vector is available, the nearest neighbors in the data set are located

and a simple model is constructed using only the neighboring points. After the model is

constructed, it is evaluated using the input vector to produce the local model output.

These models are called local because the model is constructed using only a small

neighborhood of points. In contrast, the construction of global models requires, or utilizes,

the entire data set.

This section describes the problem of expert bias and discusses previous comparative

studies between local models and global models. The strong performance of local models

in these studies motivated this work.

1.3.1 Expert Bias

All of the leading nonlinear modeling methods require the user to make some decisions about

the model architecture and to assign values to one or more parameters. Local models require

the user to choose the size of the neighborhood, the type of distance metric, the weighting

function, and the local model type3. Global models also require the user to make many

decisions. For example, perceptron neural networks require the user to pick the network

architecture, the method of weight initialization, the measure of model performance, and

the optimization, or training, algorithm.

The accuracy of nonlinear models is usually sensitive to these user-specified parameter

values and, therefore, the skill and knowledge of the user4. This is sometimes referred to as

expert bias, though it could be just as aptly called novice bias.

The dependence of model accuracy on the skill of the user makes it difficult to conduct

a convincing comparative study. This problem is exacerbated by the numerous variations

on each type of model that have been described in the literature; all of which reportedly

improve the model performance. The credibility of comparative studies is also called into

question when the author favors a particular method.

For these reasons, this work does not include a comparative empirical study that

compares the performance of the new methods to other types of nonlinear models.

3These concepts are introduced in Chapter 2.
4See Friedman [33] for a thorough discussion of this issue.

1.3. Motivation for Local Modeling 7

1.3.2 Local versus Global Modeling

Local models have performed very well in comparative studies on time series prediction

problems and in most cases have generated more accurate predictions than global methods

[18, 34–37]. However, since each of these studies was performed by no more than a few

researchers, these results are subject to the problem expert bias. This problem is largely

circumvented by competitions that bring together a large group of researchers to compare

their expertise and best modeling methods on a common set of problems.

Two of these competitions are of special significance to this work. A time series

prediction competition was held by the Santa Fe institute in 1991 [28]. Although several

types of time series analysis were included in the competition, the prediction of a chaotic

time series produced by a laser received the most attention and entries. The winner of the

time series used a novel neural network architecture [38]. The second place entry, generated

by a local linear model, was nearly as good [37]. A further comparison of these two methods

was performed after the competition. On other segments of the time series the local model

performed better than the neural network in three out of four trials5. Although the scope of

the competition was too narrow to conclusively determine that any specific type of nonlinear

modeling is best, the results suggest that local models are capable of performing at least as

well as other leading nonlinear models.

A second competition was held in Leuven, Belgium in 1998 to assess the changes and

improvements that had occurred in the field of time series prediction since the Santa Fe

competition. Entrants were given a time series consisting of 2,000 points and were asked

to predict the following 200 points. The competition was won by the author using a local

model. The second place entry was also generated by a local model. In fact, only local

models were able to forecast the first 80 steps accurately. Although the scope of this

competition was also narrow in that only a single time series was used, the strong showing

of local models strongly supports the claim that local models are among the best techniques

for time series prediction [39,40].

There are several distinct advantages that local models have over global models. These

are discussed in Chapter 2 after a more thorough description of local models.

5This competition is discussed further in Chapter 7.

8 Chapter 1. Introduction

1.4 Contributions

The significant contributions of the author include the following.

1. Two Fast Nearest Neighbor Algorithms: This work describes two new nearest

neighbor algorithms that incorporate a novel search tree based on principal compo-

nents analysis. These algorithms use new bounding criteria to eliminate points during

the search and reduce computation.

2. Comparative Study of Fast Nearest Neighbor Algorithms: A thorough com-

parative study of leading nearest neighbor algorithms is given in Chapter 3. The two

new algorithms are compared to fifteen other nearest neighbor algorithms on common

benchmark problems including synthetic data, image vector quantization data, speech

data, and chaotic time series. This is the most thorough comparative study to date.

3. New Method of Principal Components Regression: Principal components re-

gression (PCR) is a popular method of regularization for local linear models. This

work describes several important generalizations of this method. First, the method

of centering is generalized for use with weighted least squares. Second, a new method

of using soft thresholds to decrease the influence of small singular values is described

that ensures the model output remains smooth. Third, the method of using a trun-

cated summation of singular values is combined with the soft threshold technique to

form a new composite form of PCR.

4. Cyclic Coordinate Optimization for Local Modeling: Most researchers consider

critical local model parameters, such as the neighborhood size (k), to be user-specified

variables. This makes the accuracy of the model sensitive to the expertise of the user.

In this work an attractive alternative is described that iteratively optimizes the critical

model parameters so as to minimize the cross-validation error.

Most iterative optimization algorithms require the gradient of the error function with

respect to the model parameters. However, the gradient with respect to some of the

local model parameters can not be calculated. As an alternative, the cyclic coordinate

method is generalized so that some parameters can be optimized without the gradient

and the others can be efficiently optimized using a partial gradient. Since the cross-

validation error is used to measure the model accuracy, the problem of overfitting is

avoided.

1.5. Thesis Overview 9

5. Gradient-Based Optimization for Vectored Ridge Regression: This work

describes two generalizations of ridge regression. First, ridge regression is generalized

for use with weighted least squares. Second, the ridge coefficient is replaced with a

vector that applies a different penalty to each model input.

For efficient parameter optimization, the gradient of the cross-validation error with

respect to the metric parameters, model inputs, and ridge coefficients is derived. This

enables many of the model parameters to be optimized by efficient gradient-based

optimization algorithms.

6. Multi-Step Cross-Validation Optimization for Iterative Models: It is gener-

ally accepted that iterative models produce the most accurate multi-step predictions.

However, when models are optimized to predict one-step ahead they often produce

poor predictions because the one-step predictions do not take into account the errors

in the input variables that occur with iteration. Two new algorithms are described

that optimize the multi-step cross-validation error to account for this effect. The

improved performance is demonstrated on chaotic time series from a wide variety of

sources.

1.5 Thesis Overview

This chapter defined the three problems addressed in subsequent chapters: the nonlinear

modeling problem, the nearest neighbors problem, and the time series prediction problem.

This chapter also described some applications that involve each of these problems and

provide the motivation for investigating local modeling.

Chapter 2 introduces local models and gives some examples to illustrate the conse-

quences of choosing different local model types, distance metrics, and weighting. After the

reader has gained a mathematical and intuitive understanding of local modeling, some of

the qualitative tradeoffs between local modeling and global modeling are discussed.

Chapter 3 reviews some of the common techniques used in fast nearest neighbor algo-

rithms to reduce computation. Two new algorithms are described and compared to a large

selection of other leading methods on several types of benchmark problems. The use of fast

nearest neighbor algorithms greatly reduces the computation necessary to use local models

on large data sets.

Local linear models require the calculation of a matrix inverse during model construc-

tion. Because the neighborhood of points is often small, the matrix is often nearly singular

10 Chapter 1. Introduction

and the model output amplitude can be unreasonably large. This problem can be alleviated

by using an appropriate method of regularization. Chapter 4 describes the two most popu-

lar methods of regularization and generalizes each of them in several important ways. The

two new methods of regularization allow local linear models to be used with local weighting

and provide the user with more control than previous methods.

Chapter 5 describes a new method of choosing values for critical model parameters

based on an iterative minimization of the cross-validation error. Complete optimizaiton

algorithms are given for the two new methods of regularization.

Chapter 6 describes several modifications to the methods of local modeling described

in previous chapters. These modifications are specifically designed for the time series pre-

diction problem and increase the model accuracy by exploiting the properties of chaotic

time series. Several case studies of applying the new method of local modeling to chaotic

time series is given in Chapter 7.

Chapter 8 summarizes this work and describes several ideas for further research.

Chapter 2

Introduction to Local Modeling

Computers in the future may weigh
no more than 1.5 tons.

—Popular Mechanics, forecasting the
relentless march of science, 1949

This chapter introduces local modeling and provides the mathematical foundation and

motivation for the innovations described in the subsequent chapters.

This chapter begins with a simple example that describes the process of building a

local model. This is followed by a discussion of various measures of distance in Section 2.2

and of the two most popular types of local models in Section 2.3. This is followed by a

description of local weighting in Section 2.4, a method for smoothing the outputs of local

models. Section 2.5 illustrates some of the properties of local models using a data set with

two input variables. Section 2.6 describes some of the problems that occur when local

models are applied to problems that have more than two input variables and Section 2.7

lists some of the tradeoffs between local modeling and global modeling.

2.1 An Example of Local Modeling

Local models require a data set with many examples of both the observed variables and

the process output. The model can then be constructed and used to estimate the process

output for a new model input vector q, called a query, that is not part of the data set.

Local models usually defer most of the processing until the model is queried1. At that

time the local model output is calculated using three consecutive stages. The first stage

1Because the model construction is delayed until the query vector is made available, local modeling is
also referred to as lazy learning in the literature.

11

12 Chapter 2. Introduction to Local Modeling

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(b)

Figure 2.1: (a) Illustration of how the local average is calculated. The query at 0.96 is
shown by the dashed vertical line and the five nearest neighbors of the input are shown by
the gray region. The horizontal line in the gray region shows the average of the five nearest
neighbors. (b) Illustration of local averaging applied over the entire input domain.

finds the k closest vectors, or nearest neighbors, of observed variables in the data set. The

second stage constructs a simple model using only the k nearest neighbors. The third stage

evaluates the model using the query vector as the input to estimate the process output, ŷ.

For the sake of simplicity, two nonlinear modeling problems are used to introduce

local modeling in this chapter. The first problem is to build a model that estimates the

concentration of nitric oxides in exhaust from an automobile engine burning ethanol. The

only observed variable, or model input, is the equivalence ratio. The corresponding data

set, henceforth referred to as the Ethanol data set2, consists of 88 points and is shown in

Figure 2.1a. The second nonlinear modeling problem is described in Section 2.5.

To introduce local modeling, a simple example using the Ethanol data set is given.

Suppose we wish to use a local model to estimate the output of the process for an input

value of 0.96. If we choose to use five neighbors to build our local model, then the local model

includes the points shown in the shaded region of Figure 2.1a. The location of the input is

shown by the dashed vertical line. If we calculate the average of the five nearest neighbors

and use this as our estimate, the model output is 3.80, as shown by the intersection of the

horizontal and vertical lines in the shaded region. Note that none of the data set points

outside of the shaded region affect the model output.

2This data set is briefly described in [41] and is available at http://www.stern.nyu.edu/∼jsimonof/-
SmoothMeth.

2.2. Selection of a Distance Metric 13

Figure 2.1b shows the result of repeating this process for inputs taken over the entire

domain of the data set. This shows what the function would look like if the inputs were

continuous. Note that the local model output is not a continuous function of the model

input; rather, it is only piece-wise constant. This is a common criticism of local modeling

and will be addressed in Section 2.4.

2.2 Selection of a Distance Metric

Most researches choose the Euclidean metric, introduced in Chapter 1 as the measure of

distance between two points,

DE (q,xi) =


 nd∑

j=1

(qj −xi,j)2

1/2

, (2.1)

where q is the query vector and xi is a point in the data set.

Many other measures could be used. For example, any p-norm could have been used,

as defined by

Lp(q,xi)�


 nd∑

j=1

|qj −xi,j |p

1/p

,

where the norm parameter p is chosen by the user. Most researchers prefer the Euclidean

distance, though L∞(·, ·) and L1(·, ·) are also common choices.
Very little research has been done to determine which measures of distance make local

models most accurate, though many different distance functions have been proposed in the

literature [7].

In this work, the diagonally weighted Euclidean distance,

DWE(q,xi) =


 nd∑

j=1

λ2j (qj −xi,j)2

1/2

, (2.2)

is used. This metric is much more flexible than the Euclidean distance, but it requires

the user to specify the vector of metric weights, λ ∈ R
nd . Chapter 5 describes a new

method of optimizing these parameters to maximize model accuracy. The Euclidean metric

(Equation 2.1) was used for the examples in this introductory chapter.

14 Chapter 2. Introduction to Local Modeling

2.3 Local Model Types

In principle, any type of local model could be constructed once the k nearest neighbors

have been found. The problem, building a nonlinear model given k data points, is in the

same form as the larger problem of building a nonlinear model given all np data points,

where np � k. However, the local modeling problem is unusual for at least two reasons.

First, the number of data points is very small and may even be smaller than the number

of observed variables, nd. Most nonlinear modeling methods are not viable under these

conditions because they require that the number of data points be at least as large as the

dimension of the input vector and usually much larger.

Second, the process of building the model must be repeated for every query. Many

popular nonlinear models can not be used locally because too much time is required to

construct and evaluate the nonlinear model. For example, although perceptron neural

networks can be evaluated quickly they usually require a great deal of initial training data.

In the local modeling context this would have to be repeated for each query and would

exceed practical time limits for most applications.

2.3.1 Local Linear Models

For the reasons described in the previous section, users prefer models that can be constructed

and evaluated very quickly. The two most common types of local models are local averaging

models and local linear models; perhaps the two simplest types of models.

Local averaging and local linear models can be described using the same mathematical

framework. To see this first consider the local linear model output for an input vector q,

which is described by

ŷ(q) = [qT 1] ν,

= νnd+1+
nd∑
i=1

qiνi ,

where q is the query vector that contains the observed process variables and ν ∈ R
nd+1 is a

vector of the model coefficients.

2.3. Local Model Types 15

The value of the coefficients is found by minimizing the sum of squared errors,

P(ν) �
k∑

i=1

(yi− ŷi)2 ,

= (b−Aν)T(b−Aν),
= bTb− νTATb− bTAν+ νTATAν.

where A ∈ R
k×nd+1 is defined as a matrix that contains each of the k nearest neighboring

vectors, each appended with a constant value of one3, and b ∈ R
k is defined as a vector that

contains the target outputs for each of the k neighboring points,

A�



xT1 1

xT2 1
...

xTk 1


 , b�



y1

y2
...

yk


 ,

where xi is the ith nearest neighbor in the data set4 and yi is the target value for xi.

Since the sum of squared errors is quadratic in ν, there can only be one extremum and

it is found by solving for the value of ν that makes the gradient of P(ν) equal zero. The

gradient is given by

∇ν P(ν) =−2ATb+2ATAν.

Setting this equation equal to zero and solving for ν yields

ν = (ATA)−1ATb, (2.3)

= A†b,

where A† is the (Moore-Penrose) pseudoinverse of A given by

A† � (ATA)−1AT.

3The actual value of this constant is not important. Any constant will result in the same model, though
a judicious choice will minimize numeric problems. One is used here for ease of presentation.

4The notation is changed slightly from the preceding chapter to simplify notation. Here the subscript for
the vectors xi and the target values yi is used to denote the ith nearest neighbor instead of the ith point in
the data set.

16 Chapter 2. Introduction to Local Modeling

It is not difficult to show that the extremum found by solving ∇P(ν) = 0 is the global
minimum5, rather than the global maximum. Since the Hessian of P(ν),

∇2
ν P(ν) = 2A

TA,

is positive definite for any matrix A with independent columns [42, p. 333], P(ν) is a strictly

convex function [43, Theorem 3.3.8]. Therefore, the value for ν given in Equation 2.3 globally

minimizes P(ν) [43, Theorem 3.4.3, Corollary 1].

2.3.2 Local Averaging Models

The framework developed in the previous section can also be used to describe local averaging

models. This is done by eliminating the input vectors from the A matrix. In this case, ν is

given by

ν = (ATA)−1ATb,

= (1Tk1k)
−11Tkb,

=
1
k

k∑
i=1

bi,

=
1
k

k∑
i=1

yi,

= ŷ,

where 1k is a k-dimensional vector of ones. In this case, the estimated output, ŷ, is equal

to the sample average of the neighboring target variables.

2.3.3 Local Quadratic Models

Some researchers have also used local quadratic models, but there are many disadvantages

of this type of model so it is usually avoided. One disadvantage is that the number of

parameters increases quadratically with the number of observed variables, O(n2d). Since

there must be at least as many points to build the model, the neighborhood size must

also scale as O(n2d) [34, 35]. Another disadvantage is that quadratic models are very poor

at extrapolation and perform poorly in regions where there are few points. For example,

Figure 2.2b shows the result of using a local quadratic model for the ethanol data set using

5If the columns of A are collinear, the global minimum will not be unique.

2.3. Local Model Types 17

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(a) Local Linear

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(b) Local Quadratic

Figure 2.2: Local linear and local quadratic models applied to the Ethanol data set. The
number of neighbors was fixed at k = 5.

five nearest neighbors. Note that the performance is much worse than that of a local linear

model, as shown in Figure 2.2a, and that of a local averaging model, as shown in Figure 2.1b.

2.3.4 Local Averaging versus Local Linear

Local averaging models and local linear models each have their strengths and weaknesses;

neither is universally better. The following sections describe some of the tradeoffs between

these two popular types of local models.

Computational Complexity

The computational cost of local averaging scales as O(k) where k is the number of neighbors

used to construct the model. The cost of local linear models scales as O(kn2d)+O(n3d), which

is considerably greater than local averaging. However, since k is generally small and nd is no

greater than k, both types of models can be constructed efficiently. Often the computational

cost of finding the k nearest neighbors is much greater than the cost of constructing the

model, especially for large data sets.

Sensitivity to Regularization

Regularization is a means of compensating for ill-conditioning in the matrix product ATA.

This occurs when the columns of A are nearly collinear, as often happens when the number

of neighbors is nearly equal to the number of local inputs. In most circumstances the

estimate ŷ is very sensitive to the method of regularization [44].

18 Chapter 2. Introduction to Local Modeling

This problem does not occur with local averaging models, which have no local inputs

and do not require any form of regularization. This also gives local average models the

ability to use a single neighbor.

Regularization is discussed more fully in Chapter 4.

Stability

Since the average of a set of numbers can not be greater than the largest number in the set

and it can not be smaller than the smallest number in the set, the outputs of local averaging

models are guaranteed to be bounded by the range of the nearest neighbors’ target values.

Local linear models have no such assurance and can generate outputs that are far

outside the range of the data set. This usually occurs when the neighbors in the data set

are far away from the query point, which happens frequently in high dimensions, or when

the neighbors are collinear. These problems can be mostly alleviated by using an effective

method of regularization, but this does not eliminate the problem altogether.

Accuracy

Local linear models generally produce more accurate predictions, especially when an effec-

tive method of regularization is used and the data set contains little noise. If the data set is

sparsely distributed or contains a lot of noise, local averaging models are sometimes more

accurate.

Number of User-Selected Parameters

Local averaging models only require the user to select the number of neighbors, k, and the

distance metric. Local linear models require the user to make several additional choices in-

cluding the method of regularization, the regularization parameters, and which local inputs

to use.

2.4 Local Weighting for Smoother Models

Local models are often criticized because their outputs are not smooth functions of the input

vector q [18, 36,45]. Examples of this are illustrated by Figure 2.1b for local averaging and

by Figure 2.2a for local linear models. This problem is due to the fact that an arbitrarily

small change in the query vector can cause a change in the kth nearest neighbor.

This section describes how to make the output of local averaging models smooth func-

tions of their input variables. Here the term smooth means the partial derivative of the

2.4. Local Weighting for Smoother Models 19

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Biweight Function

di/dk+1

Figure 2.3: The biweight function.

model output with respect to each model input is a continuous function. Section 2.4.2

generalizes this technique to linear models.

2.4.1 Weighted Local Averaging

Local modeling, as described in the previous section, is discontinuous. This problem can

be remedied by using an appropriate weighting function that decreases the influence of the

furthest neighbor. For example, consider the weighted average

ŷ(q) =
∑k

i=1 yiw
2
i∑k

i=1w
2
i

,

where each weight w2
i is a function of the distance to the ith nearest neighbor

6,

w2
i =W(DE (q,xi)) .

The smoothness of ŷ(q) depends only on the smoothness of W(·) and DE (·, ·). Since
the Euclidean distance, DE (·, ·), is a smooth function, the smoothness of ŷ(q) depends only
on the weighting function, W(·).

6The reason for using squared weights, w2i , is for equivalence with local linear models. This is explained
further in the next section.

20 Chapter 2. Introduction to Local Modeling

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(a) k = 5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(b) k = 12

Figure 2.4: Illustration of local averaging applied to the Ethanol data set.

The accuracy of local models is insensitive to the type of weighting function so long

as it is a non-negative, monotonically decreasing, smooth function [7]. A good choice is the

biweight function,

BW(di,dk+1) �




(
1−

(
d2i

d2k+1

))2

di ≤ dk+1,
0 otherwise,

(2.4)

where di is the distance to the ith nearest neighbor,

di �DE (q,xi).

The biweight function is smooth in the sense that it has a continuous derivative, as illus-

trated in Figure 2.3.

The biweight function depends only on the ratio of the distance of the ith neighbor

to the distance of the (k+1)th neighbor. This makes the function invariant to the scale

of the metric, BW(di,dk+1) = BW(αdi,αdk+1) for all α > 0. This property will be used in

subsequent chapters.

A smooth weighting function guarantees that ŷ(q) is smooth except in the case where

all k+1 of the nearest neighbors are equidistant. This could happen if the k+1 neighbors

were located on a hypersphere and the query vector were located at the center of the sphere.

In this case the sum in the numerator of Equation 2.4.1 would be equal to zero and the

value for ŷ(q) at this point would depend on the implementation. This is a pathological

case, however, and does not occur in practice.

2.4. Local Weighting for Smoother Models 21

Figure 2.4 shows the result of using weighted local averaging (Equation 2.4.1) on

the Ethanol data set for k = 5 and k = 12 for w2
i = BW(di, dk+1). Both figures should

be compared to Figure 2.1b which shows local averaging applied to the same data set

with k = 5. Although the weighted average results in a continuous model output, it also

overfits the data set more than the unweighted average. This is because the closest of the

k neighbors have more influence in a weighted average and it is necessary to use a larger

number of neighbors to obtain the same degree of accuracy, as shown by Figure 2.4b.

2.4.2 Weighted Local Linear Models

The method of local weighting discussed in the previous section can be generalized to the

framework of linear modeling described in Section 2.3.1. Consider the linear model that

minimizes the weighted sum of squared errors,

PW(ν) �
k∑

i=1

w2
i (yi− ŷi)2 ,

= (b−Aν)TWTW (b−Aν),
= bTWTWb− νTATWTWb− bTWTWAν+ νTATWTWAν, (2.5)

where w ∈ R
k,1, and W ∈ R

k×k is the diagonal matrix of w,

W = diag(w),

=



w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wk


 .

Since W is symmetric, that is WT =W , the product WTW is subsequently denoted byW 2.

The vector of linear model coefficients that minimizes the weighted sum of squares can

be found by using a weighted version of the A matrix and b vector,

AW � WA,

bW � Wb.

After rewriting Equation 2.5 using these new variables,

PW(v) = bTW bW − vTATW bW − bTWAWv+ vTATWAWv,

22 Chapter 2. Introduction to Local Modeling

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(a) k = 5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

(b) k = 15

Figure 2.5: Weighted local linear modeling applied to the Ethanol data set.

it becomes apparent that the weighted sum of squares problem is equivalent to the un-

weighted problem solved in Section 2.3.1. The solution for the minimizing linear coefficients

immediately follows from Equation 2.3,

v = (ATWAW)
−1ATW bW ,

=
(
ATW 2A

)−1
ATW 2b. (2.6)

Following the same reasoning as in Section 2.3.1, if the query vectors are removed from

the A matrix, or equivalently A= 1k, then Equation 2.6 is given by

v =
(
1TkW

21k
)−11TkW 2b,

= (wTw)−1wTWb,

=
∑k

i=1w
2
i bi∑k

i=1w
2
i

,

=
∑k

i=1w
2
i yi∑k

i=1w
2
i

.

This is equivalent to the weighted local average described in the previous section (Equa-

tion 2.4.1).

Figure 2.5 shows the output of a weighted local linear model applied to the Ethanol

data set for k = 5 and k = 15. As occurs with local averaging, weighting decreases the

influence of distant neighbors and causes the model to fit the data set more closely than an

unweighted model with the same value for k. Although the output of the weighted model

for k = 5 shown in Figure 2.5a is smooth in that it has a continuous first derivative, the

2.5. The RampHill Data Set 23

unweighted model output shown in Figure 2.2a is a better fit to the data. If the number of

neighbors is increased, the weighted local linear model fits the data more accurately without

sacrificing smoothness, as shown in Figure 2.5b.

2.5 The RampHill Data Set

This section illustrates the properties of local modeling applied to a data set with two

input variables. This process is a mathematical function that has been used elsewhere to

illustrate the advantages and disadvantages of various nonlinear modeling techniques [46, p.

150]. This function is defined as

db �
√
(q1+0.4)2+(q2+0.4)2,

yb �
{
cos(2πdb) if db ≤ 1,
0 otherwise,

y� � 2q1+2.5q2− 0.5,

y �



yb− 1 if y� < 0,

yb+ y�− 1 if 0≤ y� ≤ 2,
yb+1 otherwise,

where q1 and q2 are the function inputs that serve as the observed process variables and y

is the output. This function is shown in Figure 2.6. The data set contained 100 points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q1

q 2

Constant

Constant

Hill

Linear

(b)

Figure 2.6: (a) Surface plot of the RampHill function. (b) Bird’s-eye view of the RampHill
function including labels of the significant features and a scatter plot of the data set.

24 Chapter 2. Introduction to Local Modeling

This function was carefully chosen because it contains several features that occur

frequently in real processes. First, this function contains two regions in which the output

is constant: one at the base of the hill and one at the top of the ramp. In these regions a

nonlinear model should be locally insensitive to the input values.

A second feature of this function is the hill-shaped bump at the left side of the figure.

This feature is local in that it only occupies a portion of the input domain. Nonlinear models

that are composed of many local features, such as radial basis functions and kernel methods,

generally perform well at modeling this type of feature whereas models composed of global

features, such as perceptron neural networks and projection pursuit, perform worse.

A third feature of this function is the linear region, or ramp. This is a global feature

in that it cuts through the entire input domain. For this type of feature nonlinear models

composed of global features, such as perceptron neural networks, generally perform better

than nonlinear models composed of local features.

Finally, the RampHill function contains sharp edges at the base of the ramp and at

the top of the ramp. Many types of nonlinear models have difficulty with this type of sharp

transition because the models are constrained to produce functions that are smooth.

2.5.1 Local Averaging Models

Figure 2.7 shows the result of applying local averaging models to the RampHill data set.

In both cases, the local averaging model approximated the flat region and the hill very

well. The approximation of the linear region was smooth, but nonlinear. The model with

k = 5 had coarser features, but the flat regions were approximated better.

2.5.2 Local Linear Models

Figure 2.8 shows the result of applying local linear models to the RampHill data set.

In both cases the local linear model approximated the linear region much better than

the local averaging model. For k = 5 the local linear model was much coarser and contained

some unstable regions such as the spike to the left of the hill and the overshoot at the top

of the ramp. These problems could have been reduced by using an effective method of reg-

ularization (see Chapter 4). These problems could also have been reduced by increasing the

size of the neighborhood, as illustrated by Figure 2.8b. However, this has the disadvantage

of over-smoothing the peak of the hill.

2.5. The RampHill Data Set 25

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a) k = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(b) k = 10

Figure 2.7: The output of a local averaging model for two different values of k.

26 Chapter 2. Introduction to Local Modeling

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a) k = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(b) k = 10

Figure 2.8: The output of a local linear model for two different values of k.

2.6. The Curse of Dimensionality 27

2.6 The Curse of Dimensionality

The two example data sets used in this chapter do not illustrate how difficult the nonlinear

modeling problem is; real processes typically depend on many more than two variables. As

the number of dependent variables, called the dimension of the problem, is increased, the

process becomes increasingly difficult to model accurately.

The problem is difficult because it is hard to densely populate high dimensional spaces

with data; this is often referred to as the curse-of-dimensionality. For example, if a re-

searcher were to collect data in a controlled experiment and wished to have the data lie

on a hyper-grid with ten evenly spaced samples along each coordinate axis, 10nd points

would have to be collected, where nd denotes the number of dependent variables. In most

situations, this quickly becomes impractical for even a modest value of nd.

As a second example, suppose a data set had an input domain that was limited to a

unit hyper-sphere and that the points were arranged so that the distance to the nearest

neighbor of each point was equal to a constant, r. An upper bound on the number of points

that could exist in this arrangement is given by

np ≤ A(nd)
A(nd)rnd

,

= r−nd ,

where

A(nd) =
π

nd
2

nd
2 !
,

and the volume of an nd-dimensional hypersphere is given by A(nd)rnd . This means that

the number of points must grow as O(
(
1
r

)nd) in order to keep the distance to the nearest

neighbor constant7. As in the previous example, this quickly becomes impractical. Experi-

mental conditions can rarely be controlled to guarantee distributions as uniform as in these

two examples and, to compensate, even larger data sets must be collected.

The curse of dimensionality suggests that as the number of observed variables is in-

creased, it becomes more difficult to build an accurate model. This could lead one to falsely

conclude that a model that uses only a few of the observed variables will be more accurate

than a model that uses all of the observed variables. This conclusion is counterintuitive

7This is sometimes called the sphere packing problem.

28 Chapter 2. Introduction to Local Modeling

because a model that only uses a few of the observed variables neglects the information con-

tained in the other variables. This apparent paradox can be resolved by recognizing that

neglecting some of the observed variables increases the effective uncertainty in the process

output and thereby decreases the model accuracy.

Fortunately, the curse does not necessarily imply that all nonlinear modeling problems

with a lot of observed variables are difficult to model accurately; the input space does

not always have to be densely populated to construct an accurate model of the process8.

For example, if only a few of the observed variables are related to the process output, the

distribution of the other observed variables is irrelevant.

It is also possible to build accurate models if the domain of the observed variables is

limited to a small subspace or nonlinear manifold. This often happens with chaotic systems

and is discussed in more detail in Chapters 3 and 6.

2.6.1 The Curse and Local Modeling

For local models a large number of observed variables causes several practical problems.

If some of the observed variables are statistically unrelated to the process output, they

effectively add noise to the metric. Suppose the process output depends on the first three

observed variables and is independent of the remaining variables. The best (Euclidean)

distance metric to use in this case is

DoptE (q,xi)
2 =

3∑
j=1

(qj −xi,j)2 ,

where q is a query vector and xi is a point in the data set. However, if the Euclidean distance

is blindly applied using all of the observed variables, the additional variables xi,4, . . . ,xi,nd

effectively add noise to the optimal metric, as shown by the following:

DE (q,xi)2 =
nd∑
j=1

(qj −xi,j)2 ,

= DoptE (q,xi)
2+

nd∑
j=4

(qj −xi,j)2 ,

where the second term represents the noise.

8This is discussed thoroughly by Vapnik [47].

2.7. Global Modeling versus Local Modeling 29

Unrelated observed variables also decrease the accuracy of local linear models. This

is because the linear model coefficients of the unrelated observed variables will only be

approximately zero, since the coefficients are estimated from a very small sample. Extra

variables also increase the minimum neighborhood size since the neighborhood must contain

at least as many points as there are model coefficients.

In Chapter 5 a new technique is described that optimizes the metric weights and linear

model coefficients to diminish the effect of irrelevant model inputs.

2.7 Global Modeling versus Local Modeling

This section gives a brief list of the tradeoffs between local models and global models.

2.7.1 Control of Nonlinearity

One advantage of local models is that they provide direct control of the amount of nonlin-

earity through the parameter k, the number of neighbors used to construct the model. As

k is increased the local model becomes less local and more smooth. In the limit where k

becomes equal to the number of points in the data set the local model becomes a global

model.

This feature of local models has been used in some instances as a measure of nonlinear-

ity. Casdagli proposed evaluating the performance of local models for many values of k and

defined the value of k with the best performance as a measure the process nonlinearity [48].

Some global models also have a single parameter that controls the nonlinearity. For

example, radial basis functions have a single smoothing parameter that controls the width

of each basis function. However, most global models do not have this property and do not

provide information about the amount of process nonlinearity.

2.7.2 Adaptive Complexity

Another advantage of local models is that the degree of nonlinearity adapts to the data set

distribution. In regions where the points are spaced far apart the region covered by the

nearest neighbors is automatically increased. This efficient use of data is not possible with

most global models.

30 Chapter 2. Introduction to Local Modeling

2.7.3 Preprocessing

Since the local model is not constructed until the query vector is available, local models

have virtually no preprocessing requirements. However, more advanced local modeling

techniques, such as those discussed in subsequent chapters, require some preprocessing to

select the local model parameters. If a fast nearest neighbor algorithm is used, it will also

probably require some preprocessing.

2.7.4 Computational Cost to Calculate Outputs

Global models can usually generate outputs much more quickly than local models because

local models have to find the nearest neighbors and construct the local model for each query.

Fortunately, the time required to generate local model outputs is not impractical. This

is mostly because fast algorithms can drastically reduce the time required to find the nearest

neighbors, as described in Chapter 3.

The time required to construct the local model is typically less than the time required

to find the nearest neighbors. This is true even if a fast nearest neighbor algorithm is used

because the local models are built using only a small fraction of the data set and because

the local model construction is not iterative.

Since the data set must be searched to find the nearest neighbors, the time required

to generate local model outputs grows as the data set size increases. For most data sets

taken from real processes, the increase in query time grows as O(lognp) where np is the

number of points in the data set (see Chapter 3 for a detailed discussion). This substantially

reduces the cost of using local models on large data sets and makes them viable for most

applications.

2.7.5 Limited Selection of Error Measures

A disadvantage of local models is that the optimization of the neighboring points is con-

strained to minimizing the sum of squared errors, or equivalently, the mean squared error.

This is because there is no closed-form solution for the optimal linear model for other error

measures. There is some additional flexibility if the weighted sum of squared errors is used,

but the flexibility is limited.

Global models usually use an iterative optimization algorithm, sometimes called non-

linear programming, to adapt the model parameters. Most of these algorithms require the

gradient of the error with respect to the model parameters to be continuous, which in turn

2.7. Global Modeling versus Local Modeling 31

requires the measure of error to be continuous. This family of error functions includes the

weighted sum of squared errors used by local models and many other error functions.

The iterative optimization used by global models could also be used to minimize a

different error measure for local models, but iterative optimization is much slower than

calculating the optimal least squares solution. Since the optimization must be repeated for

each query, the additional cost is usually prohibitive.

2.7.6 Efficient Calculation of Cross-Validation Error

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Equivalence Ratio

N
it
ri
c
O
x
id
e

Figure 2.9: Illustration of overfitting. This shows the output of a cubic spline constructed
using the Ethanol data set.

Almost all nonlinear models optimize model parameters to minimize some measure

of performance. In most cases the measure of performance is a measure of average error,

such as mean squared error, taken over the entire data set. This approach often causes the

model to be accurate at the points in the data set but to vary substantially at other points;

this effect is called overfitting. For example, Figure 2.9 shows a cubic spline overfitting the

Ethanol data set.

To solve this problem, users will often divide the data set into two parts: a training

data set and a test data set. The nonlinear model is then iteratively optimized to minimize

the average error on the training data set and the optimization is stopped once the average

error on the test set increases.

Local models can use a much more accurate technique of estimating the model per-

formance. This technique consists of taking a single point out of the data set, building a

nonlinear model using the remaining np − 1 points, and using the nonlinear model to esti-
mate the output at the removed point. The process is repeated for all np points in the data

32 Chapter 2. Introduction to Local Modeling

set and the average error is calculated. This error is called the leave-one-out cross-validation

error (CVE).

The computational cost of calculating the CVE is prohibitive for most global models

because it requires the model to be constructed np times. Calculating the CVE multi-

ple times, as would be necessary to use the CVE in an iterative optimization of model

parameters, is even more daunting.

Local models can calculate the CVE almost as efficiently as they can calculate the local

model outputs. The number of nearest neighbors is increased by one and after the k+2

nearest neighbors have been found, the nearest neighbor, which is identical to the query

vector, is discarded and the model is constructed using the remaining k+1 neighbors.

The ability to calculate the cross-validation error efficiently is a very important ad-

vantage of local models and it plays a vital role in the optimization algorithms described in

Chapters 5 and 6.

2.8 Summary

This chapter laid the mathematical foundation for local modeling that is built upon in

subsequent chapters. Some of the disadvantages of local modeling were also described in this

chapter. One of these disadvantages, that local models are discontinuous, was circumvented

by the use of local weighting.

Other problems introduced in this chapter are addressed in the following chapters.

The next chapter addresses the large amount of computation required to find the nearest

neighbors for each query. This problem is solved by using fast nearest neighbor algorithms.

Another problem introduced in this chapter is the inherent instability of local linear

models. Chapter 4 describes two new methods of regularization that address this problem.

This chapter also described the curse of dimensionality and the problems caused by

building local models with input variables that are unrelated to the process output. These

problems are addressed in Chapter 5, which introduces a method for adapting the regular-

ization and distance metric to diminish the effect of irrelevant input variables.

Finally, this chapter briefly described some of the tradeoffs between local models and

global models. The most important advantage of local models is their ability to accurately

and efficiently measure model performance through the use of leave-one-out cross-validation.

This property enables the model parameters to be optimized without the danger of overfit-

ting.

Chapter 3

Fast Nearest Neighbor

Algorithms

640K ought to be enough for anybody.
—Bill Gates, 1981

One of the disadvantages of local modeling arises from the large amount of compu-

tation required to find the nearest neighbors—especially for large data sets. Fortunately,

fast nearest neighbor algorithms can drastically diminish the computation required to find

the nearest neighbors. This chapter introduces two new fast algorithms and describes a

thorough comparative study of these and other leading nearest neighbor algorithms.

The following section reviews the most frequent techniques that fast algorithms use

to reduce query time. Section 3.3 discusses how the dimension of the data set affects these

methods. Section 3.4 describes four nearest neighbor algorithms in detail, including the two

new algorithms. Section 3.5 specifies the other algorithms included in this study, discusses

different measures of query time, and describes how the user-specified parameters were

chosen. Section 3.6 reports the performance of the algorithms on a variety of benchmark

problems.

33

34 Chapter 3. Fast Nearest Neighbor Algorithms

3.1 Introduction

In this chapter two new algorithms are introduced and compared with other leading algo-

rithms. Only algorithms that use the Euclidean metric to measure the distance between

two points,

D(x,q) �
(

nd∑
i=1

(xi− qi)2
)1/2

,

are included in this chapter. However, these algorithms can also be used with a diagonally

weighted Euclidean distance as described in Chapter 1.

Fast algorithms have also been developed for several closely related problems that are

not addressed here. For example, fast nearest neighbor algorithms have been developed for

non-Euclidean metrics [49–51], for finding only the nearest neighbor [52], and for finding

only the approximate nearest neighbors [53]. Also, some algorithms are designed specifical-

ly for images [54–57] and some approximate algorithms have been developed that reduce

computation at the expense of accuracy [13,51–53,58–64].

The performance of nearest neighbor algorithms is usually specified by the preprocess-

ing time, memory required, and average query time. For most applications, a moderate

amount of preprocessing and memory allocation are acceptable if the reduction in query

time is large enough.

3.2 Review of Elimination Criteria

Many nearest neighbor algorithms have been proposed to overcome the large computational

cost of the brute force approach of calculating the distance from the query to each point

in the data set. Typically, these algorithms employ one or more of the elimination criteria

discussed in this section. Each estimates a lower bound on the distance between a query

point and a point, or set of points, in the data set. If the lower bound is greater than

the distance to the kth nearest neighbor found so far, the point can be eliminated without

explicitly calculating the distance to that point1.

1Nene and Nayar give a complementary review of nearest neighbor algorithms developed in computational
geometry [62].

3.2. Review of Elimination Criteria 35

3.2.1 Full-Search Improvements

Full-search improvements compute one or more lower bounds for each point in the data

set. A common improvement is to check whether the candidate is outside of the hypercube

that contains the k nearest neighbors found so far [13, 62, 65–67]. Other methods use each

vector’s mean [66,68–70] or a combination of the vector’s mean and variance [71,72].

Torres and Huguet proposed a method that reduces the cost of calculating the Eu-

clidean distance between two points [73]. Cheng et al. proposed a similar method that

stops the distance calculation if the partial distance exceeds a known threshold.

Several researchers have proposed methods to order the points so as to reduce compu-

tation [74–76] and others have proposed ordering the elements of the distance summation

for the same purpose [77].

Because full-search algorithms consider each point in the data set explicitly, the query

time scales as O(np). Although they may be several times faster than the brute force

algorithm, for large data sets they are generally slower than O(lognp) algorithms, especially

in low dimensions.

3.2.2 Search Trees

During preprocessing, search trees divide the data set into distinct subsets. Each subset

is recursively subdivided until the number of points in each terminal node is acceptably

small. The search for the nearest neighbors begins with the root node and works toward

the terminal nodes. At each step, a lower bound on the minimum distance to each subset

of points is calculated. If the lower bound is greater than the distance to the k nearest

neighbors found so far, the entire subset can be eliminated without calculating the distance

to each point explicitly [78–83].

Because search trees are capable of eliminating entire groups of points, query times of

O(lognp) are frequently achieved in low dimensions [79,80].

3.2.3 Growing Search Regions

In many cases the points in a specified region of the search space can be found very quickly.

Growing region methods start with a region of some user-specified size and check if the k

nearest neighbors are contained in this region. If too few points are found, the region size

is increased and the process repeated until at least k neighbors are found [12,13,58,62,84].

36 Chapter 3. Fast Nearest Neighbor Algorithms

A common type of growing region method begins by checking the points that are

contained in a small hypercube centered at the query point. If no points are contained in

the hypercube, then the side length is increased and the process is repeated.

Growing region methods have two significant disadvantages. First, for data sets with

unknown distributions, there is no efficient and accurate technique for estimating the initial

size of the region [62]. This problem is exacerbated in high dimensions for reasons discussed

in Section 3.3. Second, the difference between the volume of the bounding region and the

hypersphere that contains the k nearest neighbors grows exponentially as the dimension

increases [33]. For example, in high dimensions most of the points fit in the hypercube that

encloses the hypersphere containing only the k nearest neighbors [62].

3.2.4 Axis-Partitioning Algorithms

Axis-partitioning algorithms divide the nd-dimensional input space into hyperrectangles

and calculate a lower bound on the distance from the query point to all points contained

in each hyperrectangle. If the lower bound is greater than the distance to the kth nearest

neighbor found so far, all of the points contained by the hyperrectangle can be eliminated

without explicitly calculating the distance to each point contained therein [13,78–80,85–88].

Zakarauskas and Ozard compared four of the leading axis-partitioning algorithms and

concluded that they have very similar performance [89].

3.2.5 Triangle Inequality

Frequently the triangle inequality is used to cheaply calculate a lower bound on the distance

to a point or set of points [5, 12, 81, 82, 85, 90–103]. Many algorithms begin a search by

calculating the distance from the query point to an anchor point, a. During preprocessing,

the distance from the point a to each point in the data set is calculated, D(a,xi) for all

i. The triangle inequality can then be used to establish two lower bounds on the distance

from the query point to the point xi,

D(q,xi)≥D(a,q)−D(a,xi),

and

D(q,xi)≥D(a,xi)−D(a,q).

3.3. The Problem of Dimensionality 37

These lower bounds can be combined into a single equation:

D(q,xi)≥ |D(a,xi)−D(a,q)|. (3.1)

If the distance to the kth nearest neighbor found so far is less than |D(a,xi)−D(a,q)|, xi
can not be a nearest neighbor of q.

3.2.6 Projection Methods

Projection methods reduce the computation of other elimination criteria by projecting the

data set and the query point into a linear subspace, which is usually spanned by the first

few principal components [6, 11, 55, 104–107]. However, projections have also been used

for other purposes such as choosing the locations of the anchor points for the triangle

inequality [12,95] and ordering the search sequence [76].

In Section 3.4 two new algorithms are described that use the principal component

projection to construct efficient search trees.

3.3 The Problem of Dimensionality

Many of the elimination criteria described in the previous section require O(np lognp) pre-

processing time, O(np lognp) storage space, and achieve O(lognp) mean query time or better

in low dimensions, where np is the number of points in the data set [79, 80, 82]. However,

if the data set variables are independently distributed, the elimination criteria become less

effective as the dimension increases and the average query times of the fastest algorithms

scale exponentially with dimension. When the dimension becomes large enough, the elim-

ination criteria become mostly ineffective and the distances are calculated for nearly all of

the points in the data set. At this dimension, the average query time transitions from an

exponential growth to linear growth. This is illustrated for several algorithms in Figure 3.4.

If the dimension is large enough, the fastest algorithms can have a larger query time than

full-search algorithms due to the computational overhead of the elimination criteria.

Much better performance is typically observed in practice because real data sets are

rarely composed of independently distributed variables. The intrinsic dimension, defined

as the minimum number of parameters needed to account for the observed properties of a

data set, is often much less than the spatial dimension [108,109]. Conceptually, this occurs

when all of the points in a data set lie on a ni-dimensional nonlinear surface, or manifold,

in a nd-dimensional space, where ni � nd.

38 Chapter 3. Fast Nearest Neighbor Algorithms

The elimination criteria discussed in the previous section vary in effectiveness for data

sets with small intrinsic dimension. For example, the effectiveness of the triangle inequality

does not change as the spatial dimension is increased so long as the interpoint distances

remain the same. In this case the query time scales linearly with the spatial dimension,

nd, rather than exponentially. In contrast, axis-partitioning algorithms are generally more

sensitive to spatial dimension since the partitions always occur along the coordinate axes;

but this is mitigated by the ability of these algorithms to concentrate the partitions in the

highest density regions.

The two new algorithms described in the following section use principal component

analysis to adapt to the data set distribution and they perform well when the intrinsic

dimension is less than the spatial dimension.

3.4 Algorithms

The algorithms described below all find the exact nearest neighbors of a query point. Most of

these algorithms also calculate the distances to the nearest neighbors in the process, though

some of the algorithms calculate only the squared distances. For this study, the algorithms

were only required to find the indices of the neighboring points, not the distances.

All of the algorithms described here assume that the data set consists of np points,

{x1, x2, . . . , xnp}, where each point exists in a nd-dimensional space, xi ∈ R
nd for i =

1,2, . . . ,np. The vector d ∈ R
k is used to store the sorted distances to the nearest neighbors

found so far and d2 is used to represent a vector of the square of these distances.

3.4.1 Brute Force (Brute)

The most obvious implementation of a nearest neighbor algorithm is the brute force al-

gorithm, which requires no preprocessing or additional storage. The algorithm is given

below. Note that only the squared distances are used, D2(xi, q), to avoid the square root

calculations.

Algorithm 3.1: Brute Force Search

1. d2i :=∞ for i= 1,2, . . . ,k.

2. For i = 1 to np,

2.1 Calculate D2(xi, q).

2.2 If D2(xi, q)< d2k, then update the list of nearest neighbors and d
2.

2.3 Next i.

3.4. Algorithms 39

This algorithm calculates the distance to all points in the data set and in the process

maintains a list of the k nearest neighbors found so far.

The average query time of this algorithm provides a performance baseline against

which the other algorithms are compared.

3.4.2 Partial Distance Search (PDS)

Cheng et al. [13] originally proposed the partial distance search algorithm, but others have

also proposed it independently [74,77,110]. The algorithm consists of a simple modification

of the brute force search: during the calculation of the distance D2(xi, q), if the partial

distance, defined as
∑np

i=1(xi,j − qj)2 for np < nd, exceeds the distance to the kth nearest
neighbor found so far, the calculation is aborted. Like Brute, PDS does not require any

preprocessing or storage. The partial distance search algorithm is given below.

Algorithm 3.2: Partial Distance Search

1. Define s as a scalar variable that contains the partial distance.

2. d2i :=∞ for i= 1,2, . . . ,k.

3. For i = 1 to np,

3.1 s := 0.

3.2 For j = 1 to nd,

· s := s+(xi,j − qj)2.
· If s > d2k, then xi is not a nearest neighbor of q. Next i.

· Next j.
3.3 Update the list of nearest neighbors and d2.

3.4 Next i.

In almost all cases, aborting the distance calculation early improves the performance

of this algorithm as compared to Brute.

3.4.3 Principal Axis Tree (PAT)

This section describes a new method of using principal component analysis (PCA) to build

an efficient search tree. Although PCA has been incorporated into other nearest neighbor

algorithms, it has not been combined with the efficient structure of a search tree or the

elimination criteria described here.

The search tree construction begins by projecting the entire data set along the principal

axis, defined as the principal component with the largest eigenvalue. Next, the data set is

partitioned along the principal axis into nc distinct regions such that each region contains

40 Chapter 3. Fast Nearest Neighbor Algorithms

roughly the same number of points. The process is repeated for each subset of points

recursively until each subset contains fewer than nc points. A two-dimensional example of

this type of partition is shown in Figure 3.1. The algorithm for the search tree construction

is given below. This algorithm requires O(np lognp) preprocessing and storage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1: Partition of a two-dimensional data set using a principal axis tree. Each non-
terminal node in the tree subdivided its assigned set of points into four subsets.

Algorithm 3.3: Principal Axis Tree Construction

1. Define nz as the number of points assigned to a node N and define zi ∈ R
nd as the ith point.

Define nc as the number of child nodes assigned to each non-terminal node.

2. d2i :=∞ for i= 1,2, . . . ,k.

3. N := the root node.

4. Assign all of the points in the data set to N .

5. BuildTree(N).

Function BuildTree(N)

1. If nz < nc, then N is a terminal node. Exit function.

2. Calculate the principal axis, p, for the points assigned to N .

3. Calculate the projections of all of the points assigned to N onto the principal axis:

gi :=
∑nd

j=1 zi,jpj for i= 1,2, . . . ,nz.

4. Sort the projected values in increasing order.

5. Divide the principal axis into nc distinct regions such that the number of projected values in each

region is either �nz/nc� or �nz/nc�+1. Define Gi as the set of points contained in the ith region

for i= 1,2, . . . ,nc.

3.4. Algorithms 41

6. Calculate the smallest and largest projection for each subset of points, Gi:

gi,min := min
zj∈Gi

gj ,

gi,max :=max
zj∈Gi

gj .

7. Create a child node for each subset of points.

For i= 1 to nc,

7.1 Create a child node Ci and assign the points in the subset Gi to this node.

7.2 BuildTree(Ci).

7.3 Next i.

The principal axis in Step 2 of BuildTree(N) can be efficiently calculated by the power

method [111]. This technique has also been used for codebook generation in vector quanti-

zation and for clustering algorithms [112]. The implementation of the power method used

in PAT is described below. See Golub and Van Loan for a discussion of the convergence

properties of this method [111].

Algorithm 3.4: Power Method for Principal Axis Tree

1. Define nz as the number of points used to find the principal axis and define zi ∈ R
nd as the ith

point.

2. Calculate the sample mean:

z̄ := 1
nz

∑nz

i=1 zi.

3. Pick the diagonal axis as the initial value for p:

pi := 1√
nd
for i= 1,2, . . . ,nd.

4. Initialize the stopping-criteria variables:

σ2
prev := 0,
n� := 1.

5. Project the centered points onto p and store in a vector u ∈ R
nz .

For i= 1 to nz,

5.1 ui :=
∑nd

j=1(zi,j − z̄j)pj .

5.2 Next i.

6. Calculate the variance in the direction of the projection p:

σ2 := 1
nz

∑nz

i=1u
2
i .

7. Check convergence criteria:

If (σ2 −σ2
prev)/σ

2 < ε and n� > nmin, then p has converged to the principal axis. Exit function.

8. Calculate the product of the centered covariance matrix times p and store in a vector r ∈ R
nd .

For i= 1 to nd,

8.1 ri :=
∑nz

j=1(zj,i − z̄i)uj .

8.2 Next i.

9. Normalize the vector r and update p:

p := r/
√∑nd

i=1 r
2
i .

42 Chapter 3. Fast Nearest Neighbor Algorithms

10. Update the stopping criteria variables:

σ2
prev := σ

2 and

n� := n�+1.

11. Goto 5.

This algorithm has two user-specified parameters, ε and nmin. The accuracy of p is

fairly insensitive to the values of these parameters. For all of the results reported here these

parameters were fixed at ε= 0.001 and nmin = 20.

After the search tree is constructed, the k nearest neighbors can be found using a

depth-first search. The process begins with the root node and uses a binary search to

determine which region the query point is in. The child node that contains this region

is then searched, and the process is repeated recursively until a terminal node is reached.

Partial distortion search is used to calculate the distance to points in the terminal node.

The remaining children of each ancestor node are searched if an elimination criterion is not

satisfied. The process continues until the root node is reached and all of the child nodes have

been searched or eliminated. This search process is described in detail by the algorithm

given below.

Algorithm 3.5: Principal Axis Tree Search

1. Define N as a node in the tree. If N is a non-terminal node, define nc as the number of child

nodes contained in N , Ci as the ith child node, and Gi as the group of points assigned to Ci.

Define p as the projection vector of N and define gi,max and gi,min as the maximum and minimum

values of the points in Gi projected onto p. If N is a terminal node, define nz as the number of

points assigned to N and zi ∈ R
nd as the ith point.

2. d2i :=∞ for i= 1,2, . . . ,k.

3. N := the root node.

4. Search(N ,q,q,0).

Function Search(N ,q,b,d2LB)

1. If N is a terminal node, then

1.1 Perform a Partial Distance Search on the points assigned to this node.

For i = 1 to nz,

· s := 0.
· For j = 1 to nd,

· s := s+(zi,j − qj)2.
· If s > d2k, then zi is not a nearest neighbor of q. Next i.
· Next j.

· Update the list of nearest neighbors and d2.
· Next i.

3.4. Algorithms 43

1.2 Exit function.

2. Calculate the projection of the boundary point onto p:

σ :=
∑nd

i=1 bipi.

3. Initialize stopping-criteria variables:

LowerDone := false,
UpperDone := false.

4. Find the closest group of points using the upper boundaries. Begin by checking end conditions.

If σ < g1,max, then iu := 1 and LowerDone := true.
Else if σ > gnc−1,max, then iu := nc, i� := nc − 1, and UpperDone := true.
Else, perform a binary search:

4.1 i� := 1.

4.2 iu := nc.

4.3 While iu − i� > 1,
· i := �(iu+ i�)/2�.
· If σ < gi,max, then iu := i.
Else, i� := i.

5. Search the child node assigned the region that encloses b.

Search(Ciu
,q,b,d2LB) and

iu := iu+1.

6. Initalize variables for main loop:

If LowerDone = false, then d� := σ− gi�,max.

If UpperDone = false, then du := giu,min −σ.
7. Search the remaining child nodes starting with the closest until the bounding conditions apply.

While UpperDone = false or LowerDone = false,

7.1 If (UpperDone = true or d� < du) and LowerDone = false, then check Ci�
.

· Calculate lower bound on distance to points in Gi�
:

d2LB�
:= d2LB+ d

2
� .

· If d2k < d2LB�
, then none of the points in Gi for i = 1,2, . . . , i� is a nearest neighbor of

q. LowerDone := true. Goto 7.

· If Ci�
is not a terminal node, then calculate the boundary point:

b� := b− d�p.

· Search(Ci�
,q,b�,d

2
LB�

).

· i� := i� − 1.
· If i� = 0, then LowerDone := true.
Else, d� := σ− gi�,max.

· Goto 7.
7.2 Else, check node Ciu

· Calculate lower bound on distance to points in Giu
:

d2LBu
:= d2LB+ d

2
u.

44 Chapter 3. Fast Nearest Neighbor Algorithms

· If d2k < d2LBu
, then none of the points in Gi for i= iu, iu+1, . . . ,nc is a nearest neighbor

of q. UpperDone := true. Goto 7.

· If Ciu
is not a terminal node, then calculate the boundary point:

bu := b+ dup.

· Search(Ciu
,q,bu,d

2
LBu

).

· iu := iu+1.
· If iu = nc+1, then UpperDone := true.
Else, du := giu,min −σ.

· Goto 7.

This algorithm searches the tree depth-first until it locates the terminal node region

that encloses the query point. The algorithm then works its way back up to the root node,

either searching or eliminating sibling nodes along the way.

Before each sibling node is searched, a lower bound on the distance to the points

assigned to the node is calculated. If the lower bound is greater than the distance to the

kth nearest neighbor found so far, none of the points assigned to the node is a neighbor

and the node does not need to be searched. Other siblings can also be eliminated that have

larger lower bounds.

dq2

d23

d34

Region 3

Region 2

Region 1

Region 4

q

b2

b3

b4

x

dqx

d2x

Region 5

Figure 3.2: Illustration of the bounding criteria of principal axis trees.

3.4. Algorithms 45

The calculation of the lower bound is illustrated in Figure 3.2. During the construction

of the search tree, the points assigned to each node are subdivided by hyperplanes located

along the principal axis. The distance from the query point, q, to the boundary of a child

node, b2, is shown by the chord labeled dq2. This distance is a lower bound on the distance

to all of the points in the gray region. If this distance is greater than the distance to the

kth nearest neighbor found so far, then all of the points in this region can be eliminated.

Similarly, all of the regions that are further away along the principal axis can be eliminated

including, for example, Region 5.

If the lower bound does not apply, a different bound may be used to calculate the

minimum distance to a point within the region. For example, consider a point x in Region 2.

Since the chord qb2 is a normal of the hyperplane separating Region 1 from Region 2, the

angle �qb2x is no smaller than 90◦. A lower bound on the distance between q and x is given
by the law of cosines:

d2qx = d2q2+ d
2
2x− 2dq2d2x cos(∠qb2x) ,

≥ d2q2+ d
2
2x. (3.2)

This method can also be used to establish a lower bound for subregions of the gray

region. For example, if the boundary point between Region 2 and Region 3 is calculated

(shown as b3 in Figure 3.2), a lower bound on the distance from b2 to the points in Region 3

can be calculated by projecting b2 onto the principal axis of the gray region and calculating

the distance from b2 to b3. Since d223 is a lower bound on the distance from b2 to any point

in Region 3, Equation 3.2 can be used to find a lower bound on the distance from q to any

point in Region 3:

D2(q,x) ≥ d2q2+ d
2
2x ∀x ∈ Gray Region,

d22x ≥ d223 ∀x ∈ Region 3, and therefore
D2(q,x) ≥ d2q2+ d

2
23 ∀x ∈ Region 3.

The same reasoning can be extended to other subregions. For example, a lower bound

on the distance from q to any point in Region 4 is given by

D2(q,x)≥ d2q2+ d223+ d234 ∀x ∈ Region 4. (3.3)

The boundary points, b, and distance lower bounds, d2LB, are calculated recursively in

the search algorithm for PAT.

46 Chapter 3. Fast Nearest Neighbor Algorithms

3.4.4 Depth-Only Principal Axis Tree (DOPAT)

A depth-only search similar to that proposed by Katsavounidis et al. [83] can also be used

with the principal axis search tree. The construction algorithm is the same as for PAT,

except the projection of each point onto the principal axis of each non-terminal node, gi ∀i,
is saved instead of the region boundaries.

The search algorithm begins by finding the terminal node region that encloses the

query point, just like PAT. However, DOPAT does not explore any sibling nodes as it works

its way back to the root node. Instead, a lower bound is calculated for all of the points

assigned to each ancestor of the terminal node until the lower bound exceeds the distance

to the nearest neighbor found so far.

This approach could be used for an arbitrary number of partitions, but the query

time is almost always minimal when the number of partitions is two. In this case, a more

efficient algorithm exists that explicitly incorporates this property, as described below. The

generalization to more partitions is straightforward.

Algorithm 3.6: Depth-only Principal Axis Tree Search

1. Define N as a node in the tree. If N is a non-terminal node, define b as the index of the boundary

point of the partition,zb. Define C� as the child node that is assigned all of the points that have

projections less than the boundary point. Define Cr as the child node assigned all of the remaining

points and define p as the projection vector of N . Define nz as the number of points assigned to

N and zi ∈ R
nd as the ith point. Define gi as the value of zi projected onto p and let the points

zi be sorted in increasing order of their projections, gi.

2. d2i :=∞ for i= 1,2, . . . ,k.

3. N := the root node.

4. Search(N ,q).

Function Search(N ,q)

1. If N is a terminal node, then

1.1 Perform a Partial Distance Search on the points assigned to this node.

For i = 1 to nz,

· s := 0.
· For j = 1 to nd

· s := s+(zi,j − qj)2.
· If s > d2k, then zi is not a nearest neighbor of q. Next i.
· Next j.

· Update the list of nearest neighbors and d2.
· Next i.

1.2 Exit function.

3.4. Algorithms 47

2. Calculate the projection of the query point onto p:

σ :=
∑nd

i=1 qipi.

3. Calculate the distance to the kth nearest neighbor:

dk :=
√
d2k.

4. If σ < gb, then search the left node.

4.1 Search(C�,q).

4.2 Check the points on the right side of the boundary.

For i = b to nz,

· If dk < gi − σ, then all of the remaining points on the right side of the boundary are
not a nearest neighbor of q. Exit function.

· Calculate the partial distance to zi.
s := 0.

· For j = 1 to nd,

· s := s+(zi,j − qj)2.
· If s > d2k, then zi is not a nearest neighbor of q. Next i.
· Next j.

· Update the list of nearest neighbors, d2, and dk:

dk :=
√
d2k.

· Next i.
4.3 Exit function.

5. Else, search the right node.

5.1 Search(Cr,q).

5.2 Check the points on the left side of the boundary.

For i = b− 1 to 1 Step −1,
· If dk < σ− gi, then all of the remaining points on the left side of the boundary are not
a nearest neighbor of q. Exit function.

· Calculate the partial distance to zi.
s := 0.

· For j = 1 to nd,

· s := s+(zi,j − qj)2.
· If s > d2k, then zi is not a nearest neighbor of q. Next i.
· Next j.

· Update the list of nearest neighbors, d2, and dk:

dk :=
√
d2k.

· Next i.
5.3 Exit function.

Since PAT and DOPAT construct the same search tree, they both require the same

amount of preprocessing. However, DOPAT requires more memory because it stores the

nz projections, gi, in each non-terminal node while PAT only stores the nc − 1 region

48 Chapter 3. Fast Nearest Neighbor Algorithms

boundaries. PAT also requires less memory because it constructs shallower trees with

nc ≥ 2 subsets at each non-terminal node as opposed to the binary tree constructed by
DOPAT. Asymptotically the memory required for PAT scales as O(np) and as O(np lognp)

for DOPAT. The difference is usually insignificant for small data sets, but on large data

sets PAT will usually require much less memory than DOPAT2.

3.5 Performance

This section contains a brief summary of the other algorithms included in this study, a

description of how the user-specified parameters were chosen, and a description of how the

mean query time was estimated.

3.5.1 Algorithms

Algorithm Source
Bak Bakamidis [12]
BJS Baek et al. [72]
Cube Soleymani and Morgera [65]
DOSVQ Katsavounidis et al. [83]
DWCS Tai and Lin [104,105]
FN Fukunaga and Narendra [81]
FNM Fukunaga and Narendra Modified
K-D Tree Friedman et al. [79]
MiniMax Cheng et al. [13]
OPS Kim and Park [80]
Poggi Poggi [66]
TLAESA Micó et al. [82]
WL-AESA Wu and Lin [103]

Table 3.1: List of algorithms implemented for this study.

Section 3.4 described four of the algorithms implemented for this study. Table 3.1 lists

the other thirteen algorithms and the notation used to refer to each algorithm.

Two of the algorithms, K-D Tree and OPS, were modified to incorporate the partial

distance search in the terminal nodes, instead of the originally proposed full search. This

significantly improves performance. A modification to OPS proposed by Lubiarz and Lock-

wood [88] was also implemented to guarantee that the exact nearest neighbors are found.

2The memory required for DOSVQ, an algorithm proposed by Katsavounidis et al. [83], also scales as
O(np lognp).

3.5. Performance 49

FNM is a new algorithm that consists of four modifications to FN. First, squared

distances were used to avoid the calculation of square roots. Second, the partial distance

search was incorporated in the terminal nodes. Third, the elimination criterion used in the

terminal nodes was strengthened slightly as described by Equation 3.1. Fourth, a two-stage

clustering algorithm was used. The first stage picks initial estimates for the cluster centers

by an efficient principal axis splitting method [112]. The second stage is Forgy’s K-means

clustering algorithm with the stopping criteria proposed by Linde et al. [113–115].

3.5.2 User-Specified Parameters

Some of the nearest neighbor algorithms included in this study have a single user-specified

parameter. For example, PAT, FN, and FNM all require the user to specify the number of

partitions of each non-terminal node, K-D Trees require the user to specify the number of

points contained in each terminal node, and Bak and TLAESA require the user to specify

the number of anchor points for the triangle-inequality. In most situations, the optimal

parameter value depends on the data set distribution and size and it is impractical to

perform an exhaustive search to find the best value.

The user-specified parameters were fixed at a constant value for all the results reported

here. The parameter values were chosen by comparing the query times on simulated data

sets drawn from uniform and normal distributions. The average query times were measured

for a range of dimensions, one through twelve, and parameter values ranging from two to

fifty. Each data set contained 2,000 points.

Algorithm Value
PAT 7
FN 16
FNM 50
TLAESA 3
K-D Tree 40
Bak 2

Table 3.2: Values chosen for algorithms that have a user-specified parameter.

In most cases, the best parameter value varied only slightly with dimension and dis-

tribution. For example, Figure 3.3 shows the average query time for PAT for various

dimensions and parameter values. Values in the range of five to eight had the lowest query

times. In this case, the parameter value was fixed at seven. Table 3.2 lists the parameter

values chosen for each of the algorithms that had a user-specified parameter.

50 Chapter 3. Fast Nearest Neighbor Algorithms

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
PAT Average Query Time

Dimension

T
im
e
(m
s)

Figure 3.3: Average query time of PAT to find five nearest neighbors as a function of
dimension for various numbers of children per non-terminal node. The data set consisted of
2,000 points drawn from a normal distribution. The white circles show the average query
times for seven children per non-terminal node.

3.5.3 Measures of Performance

The purpose of this study is to compare the average query times of the leading algorithms,

which is the most critical consideration for many applications. Unfortunately, there is no

generally accepted measure of query time; in previous studies researchers have used a wide

variety of different measures.

Frequently, researchers report the average number floating-point multiplies, additions,

comparisons, and square roots (MACS) per query. This allows the user to determine roughly

how fast an algorithm will run on a given architecture, but it does not account for the

time required for other operations such as function calls and fixed-point operations. This

measure also makes it difficult to compare algorithms, since the performance is architecture-

dependent.

Some researchers have estimated or derived the asymptotic performance of their algo-

rithms to determine how the query time scales with dimension (nd) and number of points

(np). However, most of these analyses only apply when the nd-dimensional search space

is densely populated, which requires that the number of points scale exponentially with

dimension. In practical situations, the data sets are rarely large enough for the asymptotic

conditions to apply. These analyses also do not account for the data set distributions, which

can strongly affect performance, as discussed in Section 3.3.

3.6. Empirical Performance 51

For this study, the average query times were measured directly. This approach has

the disadvantage that it depends on the characteristics of the hardware and software3; but,

for lack of a better measure, it is assumed that similar results would be obtained on other

architectures.

3.6 Empirical Performance

This section reports the empirical performance of the algorithms on several types of data

sets selected from the literature. To verify the algorithms’ accuracy, the neighbors found

by each algorithm were compared to those found by Brute. Except in cases where different

data set points were equidistant to the query point, all of the algorithms found the same

neighbors as Brute.

3.6.1 Uniform Distribution

Algorithm Dimension Average
4 8 12 16 20 Rank

PAT 0.163 1.925 6.284 11.462 16.749 3.0
DOSVQ 0.240 2.188 6.630 10.515 14.183 3.0
DOPAT 0.288 2.621 6.519 10.355 14.145 3.4
K-D Tree 0.260 1.825 6.990 11.299 14.824 3.7
PDS 2.649 4.271 6.599 9.571 12.869 5.3
FNM 0.468 2.478 7.165 11.907 15.452 5.6
DWCS 0.841 4.522 9.463 13.930 17.838 7.6
OPS 0.226 3.017 15.114 19.408 22.370 7.7
FN 0.588 3.458 11.514 22.202 29.993 9.1
Poggi 3.220 5.911 8.943 12.203 15.735 9.1
Brute 4.930 9.200 13.252 17.555 21.804 11.1
Cube 2.972 5.946 13.377 24.906 32.524 11.7
BJS 4.003 10.368 16.323 21.396 25.968 12.4
TLAESA 4.807 18.730 27.640 33.639 38.623 13.9
Bak 14.070 20.330 26.078 28.769 31.846 14.7
MiniMax 8.725 15.838 23.865 34.064 43.124 15.0
WL-AESA 86.875 178.055 647.030 1381.135 1767.840 16.7

Table 3.3: Algorithms’ average query times (milliseconds) to find the five nearest neigh-
bors at selected dimensions. The data sets contained 5,000 points drawn from a uniform
distribution.

The average query times were calculated for data sets and query vectors drawn from a

uniform distribution and dimensions ranging from one to twenty. Each data set contained

5,000 points and the average query times were calculated using 4,000 queries. For each

3The results reported here were generated using a Pentium 200 MHz MMX processor with 512 KB Cache,
128 MB RAM, Windows NT 4.0 SP3, and Visual C++ 6.0 SP1.

52 Chapter 3. Fast Nearest Neighbor Algorithms

dimension, the algorithms were ranked in order of increasing average query times4. Table 3.3

shows the average query times at selected dimensions and the average ranks calculated using

all twenty dimensions.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16
PAT
DOSVQ
DOPAT
K−D Tree
PDS

Average Query Time

Dimension

T
im
e
(m
s)

Figure 3.4: Average query time to find five nearest neighbors as a function of dimension.
The data sets and query points were drawn from a uniform distribution. The data set
contained 5,000 points. Only the best five algorithms are shown.

Figure 3.4 shows a plot of the average query time versus dimension for the top five

algorithms. This figure shows the exponential growth in low dimensions and the linear

growth in high dimensions that was discussed in Section 3.3.

For this type of data set, PDS performed best in high dimensions because the elim-

ination criteria of the other algorithms are ineffective in high dimensions and have more

overhead than PDS. However, in low dimensions, the algorithms that used search trees

performed much better than PDS.

According to the average ranking shown in Table 3.3, PAT and DOSVQ were tied

for best performance. However, as shown in Figure 3.4, DOSVQ performed better in high

dimensions due to a smaller overhead and PAT performed better in low dimensions. DOPAT

and K-D Tree also performed very well overall.

The average query times were also measured for various data set sizes. Each data set

contained eight variables and the average query times were calculated using 5,000 queries.

For each data set size, the algorithms were ranked in order of increasing average query times

as shown in Table 3.4.

4The ranking was ordered from one to seventeen with a rank of one being the best.

3.6. Empirical Performance 53

Algorithm Points Average
2,000 5,000 10,000 20,000 50,000 100,000 Rank

K-D Tree 1.20 1.81 2.22 2.80 3.55 4.46 1.3
PAT 1.10 1.93 2.55 3.39 4.08 5.15 2.0
FNM 1.52 2.63 3.59 4.75 7.25 10.62 4.0
DOSVQ 1.04 2.08 3.64 5.51 11.09 20.78 4.2
OPS 2.10 2.99 3.90 4.85 6.08 7.25 4.8
DOPAT 1.21 2.60 4.57 7.97 16.28 28.85 5.8
FN 2.25 3.81 5.47 7.16 10.86 14.64 6.5
DWCS 2.08 4.39 8.20 16.06 36.07 65.73 8.0
PDS 1.96 4.39 8.25 15.81 37.36 71.56 8.3
Cube 2.85 6.01 10.82 19.91 45.12 84.37 10.3
Poggi 2.40 5.94 11.86 23.53 58.36 119.35 10.7
Brute 3.69 9.24 18.75 38.28 96.93 194.05 12.0
BJS 4.11 10.40 21.30 43.44 105.07 206.21 13.0
MiniMax 6.81 15.95 31.79 64.26 161.43 322.38 14.3
TLAESA 8.09 17.80 36.85 69.93 155.56 304.61 14.7
Bak 8.33 22.87 45.75 96.78 258.77 536.21 16.0
WL-AESA 51.03 188.71 495.47 1262.05 4112.76 10621.47 17.0

Table 3.4: Algorithms’ average query times (milliseconds) to find the five nearest neighbors
as a function of dimension. The data sets were drawn from a uniform distribution in eight
dimensions.

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20
K−D Tree
PAT
FNM
DOSVQ
OPS

Average Query Time

Points

T
im
e
(m
s)

Figure 3.5: Average query time to find five nearest neighbors as a function of the data set
size. The data sets and query points were uniformly distributed in eight dimensions. Since
the horizontal axis is on a log scale, a straight line indicates that the average query time
scales as O(lognp) and an exponentially increasing line scales as O(np), where np is the
number of points in the data set. Only the best five algorithms are shown.

54 Chapter 3. Fast Nearest Neighbor Algorithms

Figure 3.5 shows the average query time versus the data set size for the best five

algorithms. In this case the average query time of K-D Tree, PAT, and OPS scaled as

O(lognp) whereas DOSVQ, and FNM scaled as O(np). This is an important advantage

of PAT, K-D Tree, and OPS. Although the slower algorithms may also eventually scale as

O(lognp) for larger data sets or lower dimensions, it is significant that PAT, K-D Tree, and

OPS achieve logarithmic query time more readily.

3.6.2 Normal Distribution

Algorithm Dimension Average
4 8 12 16 20 Rank

PAT 0.190 2.366 6.800 11.967 16.939 3.0
DOSVQ 0.361 2.999 6.830 10.503 14.258 3.1
DOPAT 0.381 3.092 6.825 10.543 14.238 3.3
K-D Tree 0.326 2.583 7.283 11.457 15.067 3.8
PDS 2.769 4.587 6.990 9.787 13.019 5.2
FNM 1.034 3.418 7.639 11.905 15.553 5.9
DWCS 0.954 4.762 9.539 13.850 17.683 7.1
OPS 0.283 4.366 15.495 19.413 22.465 7.5
Poggi 3.315 6.159 9.158 12.335 15.818 8.8
FN 1.417 5.245 13.502 23.011 30.281 10.3
Brute 4.990 9.326 13.470 17.573 21.892 10.9
Cube 3.117 6.572 13.482 22.360 30.932 11.2
BJS 3.713 10.050 15.993 20.980 25.890 12.1
TLAESA 4.992 18.474 26.958 33.180 38.383 14.2
Bak 15.125 20.830 25.880 29.044 31.638 14.9
MiniMax 8.780 16.078 24.210 33.225 42.596 14.9
WL-AESA 59.785 272.340 683.280 1206.885 1541.315 17.0

Table 3.5: Algorithms’ average query times (milliseconds) to find the five nearest neigh-
bors at selected dimensions. The data sets contained 5,000 points drawn from a normal
distribution.

The analysis performed using a uniform distribution was repeated using a normal

distribution. Table 3.5 shows the average query times at selected dimensions and the average

ranks taken over all twenty dimensions. Figure 3.6 shows a plot of the average query time

versus dimension for the top five algorithms.

The results are very similar to those obtained using a uniform distribution, which

suggests that the relative performance of the algorithms is insensitive to the marginal dis-

tributions of data set variables when they are independently distributed.

As with the uniform distribution, PAT had the best overall performance in low and

moderate dimensional spaces; other search trees also performed well. PDS had the best

performance in high dimensions, though other methods with small overhead had comparable

performance.

3.6. Empirical Performance 55

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16 PAT
DOSVQ
DOPAT
K−D Tree
PDS

Average Query Time

Dimension

T
im
e
(m
s)

Figure 3.6: Average query time to find five nearest neighbors as a function of dimension.
The data sets and query points were drawn from a normal distribution. The data set
contained 5,000 points. Only the best five algorithms are shown.

Algorithm Points Average
2,000 5,000 10,000 20,000 50,000 100,000 Rank

PAT 1.26 2.37 3.18 4.61 5.83 7.54 1.0
K-D Tree 1.45 2.66 3.45 4.95 6.38 7.84 2.3
DOSVQ 1.34 3.07 5.36 9.88 21.49 37.30 4.2
DOPAT 1.36 3.14 5.40 10.21 21.31 36.94 4.5
FNM 1.65 3.73 5.67 9.03 16.04 26.01 4.5
OPS 2.69 4.41 5.89 7.71 10.41 12.75 5.0
PDS 2.04 4.60 8.69 16.71 39.58 75.56 7.8
DWCS 2.18 4.88 8.68 17.12 38.05 72.91 7.8
FN 2.71 5.94 9.44 14.58 25.00 41.04 8.2
Poggi 2.38 6.18 11.87 24.66 61.33 120.48 10.2
Cube 3.01 6.51 12.00 21.88 49.55 92.09 10.5
Brute 3.66 9.15 18.72 38.14 96.90 193.95 12.2
BJS 3.84 9.93 19.53 40.54 100.88 187.99 12.8
MiniMax 6.78 16.13 31.89 64.35 161.61 322.86 14.3
TLAESA 7.69 18.28 34.25 67.78 159.35 311.93 14.8
Bak 7.26 21.03 44.82 93.25 278.96 600.74 15.8
WL-AESA 61.05 240.78 686.95 1826.83 5948.47 14553.29 17.0

Table 3.6: Algorithms’ average query times (milliseconds) to find the five nearest neighbors
as a function of dimension. The data sets were drawn from a normal distribution in eight
dimensions.

56 Chapter 3. Fast Nearest Neighbor Algorithms

Table 3.6 shows the average query times for various data set sizes in eight dimensions.

The averages were calculated using 5,000 queries. As with the uniform distribution, PAT

and K-D Tree achieved logarithmic query time, O(lognp). The average query times of

DOPAT, DOSVQ, and FNM scaled roughly linearly with the data set size, O(np), as shown

in Figure 3.7.

10
3

10
4

10
5

0

5

10

15

20

25

30

35 PAT
K−D Tree
DOSVQ
DOPAT
FNM

Average Query Time

Points

T
im
e(
m
s)

Figure 3.7: Average query time to find five nearest neighbors as a function of the data
set size. The data sets and query points were drawn from a normal distribution in eight
dimensions. Only the best five algorithms are shown.

3.6.3 Chaotic Time Series

Local models are commonly used for time series prediction [28]. These methods construct

simple models using only the neighboring points of the input vector and generally incor-

porate a fast nearest neighbor algorithm. The models are often constructed to predict one

step ahead using a window of previous values as the input. For example, if the time series

is represented by [y1,y2, . . . ,yny], the input vectors are defined as

xt � [yt,yt−1,yt−2, . . . ,yt−(nd−1)]. (3.4)

Usually these models are applied to time series generated by nonlinear dynamic sys-

tems. If the systems have no external inputs and they meet other very general criteria,

the time series are chaotic and all of the points in the data set lie on a low dimensional

3.6. Empirical Performance 57

manifold5. Consequently, the intrinsic dimension of these data sets does not change as the

spatial dimension, nd, is increased.

Algorithm Dimension Average
4 10 16 22 30 40 Rank

DOSVQ 0.054 0.074 0.108 0.144 0.194 0.272 1.4
PAT 0.046 0.074 0.118 0.160 0.244 0.373 2.0
DOPAT 0.050 0.078 0.114 0.194 0.302 0.603 2.7
FNM 0.264 0.344 0.429 0.517 0.663 0.777 4.8
K-D Tree 0.100 0.202 0.354 0.523 0.859 1.520 5.0
FN 0.264 0.360 0.491 0.621 0.653 0.925 5.7
PDS 2.277 2.626 3.263 3.918 5.005 6.884 7.8
TLAESA 0.407 0.543 1.480 5.582 5.410 8.468 7.8
Cube 2.431 3.078 4.270 5.945 9.135 15.380 9.5
DWCS 2.726 7.697 8.102 8.759 9.948 11.681 10.1
OPS 0.144 3.179 13.095 13.614 14.306 14.893 10.4
Poggi 4.469 6.776 8.739 11.867 15.480 20.525 11.6
BJS 4.038 6.902 11.198 15.194 21.317 27.321 12.6
Brute 4.983 11.190 17.772 24.033 32.623 43.302 14.4
WL-AESA 8.759 13.520 18.186 22.633 27.858 36.601 14.6
Bak 9.498 20.620 27.902 35.225 42.697 53.651 16.1
MiniMax 8.861 18.561 28.924 39.060 52.750 70.015 16.6

Table 3.7: Algorithms’ average query times (milliseconds) to find the five nearest neighbors
at selected dimensions. The data sets contained 5,000 points created from the Lorenz time
series. The query points were created from a later section of the same time series.

The Lorenz time series is a common benchmark for measuring the accuracy of time

series prediction algorithms6. Using this time series, the average query times were calculated

for various dimensions using a data set containing 5,000 points and averaging over 5,000

queries. Table 3.7 shows the average query times at selected dimensions and Figure 3.8

shows the average query times of the top five algorithms.

In moderate to high dimensional spaces, DOSVQ had the best performance, though

PAT and DOPAT also performed very well. Elimination criteria that are insensitive to

the spatial dimension of the data set performed much better on this problem than on the

independently distributed data sets. For example, TLAESA and FN, both of which rely on

the triangle inequality, improved significantly in rank. Although K-D Tree was among the

top five algorithms, its query time grew much more quickly with dimension than the other

top algorithms because it less able to adapt to the data set distribution, especially when

the intrinsic dimension is much smaller than the spatial dimension (see Section 3.3).

5Nonlinear manifolds in chaotic time series is discussed in fuller detail in Chapter 6.
6The Lorenz time series is described in Chapter 7.

58 Chapter 3. Fast Nearest Neighbor Algorithms

5 10 15 20 25 30 35 40
0

0.5

1

1.5

DOSVQ
PAT
DOPAT
FNM
K−D Tree

Average Query Time

Dimension

T
im
e
(m
s)

Figure 3.8: Average query time to find five nearest neighbors as a function of dimension.
The data sets and query points were created from the Lorenz time series. The data set
contained 5,000 points. Only the best five algorithms are shown.

Algorithm Dimension Average
4 10 16 22 30 40 Rank

PAT 0.054 0.124 0.262 0.409 0.597 0.877 1.6
DOSVQ 0.058 0.126 0.238 0.388 0.603 0.961 1.6
DOPAT 0.062 0.146 0.256 0.405 0.661 1.096 2.9
FNM 0.309 0.479 0.611 0.735 0.881 1.136 4.7
K-D Tree 0.112 0.264 0.519 0.945 1.727 2.898 5.0
FN 0.475 0.907 1.218 1.408 1.588 2.019 5.9
TLAESA 0.250 1.316 2.125 3.643 5.041 18.517 7.6
PDS 2.402 2.856 3.441 4.092 5.139 6.668 8.1
DWCS 0.701 3.579 5.718 7.597 9.219 10.427 9.7
Cube 2.604 3.339 4.474 6.037 8.795 13.259 9.8
Poggi 3.391 5.055 5.626 6.798 8.879 11.797 10.8
OPS 0.182 3.485 12.859 13.495 14.475 14.998 11.1
BJS 3.253 5.916 7.729 9.860 14.291 20.129 12.4
Brute 4.981 11.258 17.425 23.874 32.573 43.188 13.9
Bak 14.020 20.229 24.423 31.003 39.545 50.208 15.7
MiniMax 8.722 18.605 28.571 38.994 53.110 70.355 16.1
WL-AESA 10.936 14.741 23.358 33.054 67.376 93.252 16.2

Table 3.8: Algorithms’ average query times (milliseconds) to find the five nearest neighbors
at selected dimensions. The data sets contained 5,000 points created from the Santa Fe
time series. The query points were created from a later section of the same time series.

3.6. Empirical Performance 59

This analysis was repeated using the Santa Fe laser time series, another common

time series prediction benchmark7. The average query times were measured for various

dimensions using a data set containing 5, 000 points and averaging over 5, 000 queries.

Table 3.8 shows the average query times at selected dimensions and Figure 3.9 shows the

average query times of the top five algorithms.

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

PAT
DOSVQ
DOPAT
FNM
K−D Tree

Average Query Time

Dimension

T
im
e
(m
s)

Figure 3.9: Average query time to find five nearest neighbors as a function of dimension.
The data sets and query points were created from the Santa Fe time series. The data set
contained 5,000 points. Only the best five algorithms are shown.

In this case, PAT and DOSVQ were tied for best performance. DOPAT and FNM also

performed very well.

3.6.4 Vector Quantization

Vector quantization is a popular and powerful method of compression. It begins with the

construction of a codebook, which is typically constructed by applying a clustering algorithm

to a large, representative data set of the signals to be compressed. Once the codebook is

created, the signal to be compressed is divided into blocks, or vectors, of a user-specified

length. The nearest neighbor in a codebook is found for each vector and the index of

the nearest neighbor is used to encode, or represent, the vector. In a communications

application, the sender and the receiver are both given a copy of the codebook. Only the

indices of the nearest neighbors are transmitted. Once the receiver receives an index, the

corresponding vector in the codebook is retrieved and used to represent the original vector.

7The Santa Fe time series is discussed in Chapter 7.

60 Chapter 3. Fast Nearest Neighbor Algorithms

This technique is commonly used to compress speech and images. One of the practical

limitations of this method is the large computational cost of finding the nearest neighbor

in the codebook.

To test the performance of the nearest neighbor algorithms in vector quantization

encoding applications, a range of different codebooks were constructed for a speech signal

and three gray-scale images that are commonly used as benchmarks for vector quantization

algorithms8. The codebooks were constructed using the clustering algorithm described by

Franti et al. [112].

Table 3.9 shows the average query times, calculated using 35,000 queries, to find the

nearest neighbor for the speech signal. Tables 3.10, 3.11, and 3.12 show the average query

times for the benchmark images Lena, Boat, and Baboon9, respectively. For the images,

the average query times were calculated using 20,000 queries for the 2×2 image blocks and
15,000 queries for the 4× 4 image blocks. In all cases, the query vectors were taken from
the original signals used to construct the codebook.

Algorithm 8 Dimensions 16 Dimensions Rank
1,024 2,048 4,096 8,192 1,024 2,048 4,096 8,192

PAT 0.058 0.075 0.097 0.119 0.207 0.278 0.380 0.441 1.4
DOSVQ 0.060 0.080 0.108 0.159 0.181 0.251 0.371 0.488 1.6
DOPAT 0.071 0.100 0.142 0.220 0.236 0.352 0.573 0.890 3.0
K-D Tree 0.196 0.231 0.280 0.355 0.634 0.875 1.211 1.500 4.1
FNM 0.335 0.520 0.848 1.307 0.571 0.944 1.621 2.637 4.9
FN 0.575 0.804 1.359 2.012 1.375 1.894 3.148 4.896 6.9
PDS 0.585 1.127 2.076 4.354 0.876 1.603 3.084 5.891 7.1
BJS 0.612 1.187 2.248 4.386 1.099 2.032 3.927 7.458 8.4
Cube 0.725 1.332 2.421 4.922 1.492 2.567 4.619 8.336 9.9
Poggi 0.829 1.570 3.121 7.187 1.147 2.158 4.487 9.359 10.1
OPS 0.931 1.064 1.354 1.901 2.522 5.074 10.647 22.442 10.8
TLAESA 1.199 2.567 2.751 3.946 1.958 4.161 7.699 11.584 11.8
DWCS 1.232 2.363 4.607 8.812 1.765 3.440 6.867 14.445 12.3
WL-AESA 1.080 2.283 4.651 9.532 2.061 3.973 8.199 15.894 12.9
Brute 1.885 3.772 7.337 15.408 3.528 7.018 14.418 29.327 15.3
Bak 1.938 4.132 8.482 18.849 3.383 6.880 14.826 29.724 15.8
MiniMax 3.091 6.209 12.360 25.546 5.817 11.568 23.667 47.801 17.0

Table 3.9: Algorithms’ average query times (milliseconds) to find the nearest neighbor for a
codebook constructed from a speech signal. The results are shown for four codebook sizes
and two vector sizes.

8At the time of writing, the speech signal was available at http://wavcentral.simplenet.com/sounds/-
televis/cbrown/wetsuck.wav and the images were available at http://meru.cecs.missouri.edu/SLCCA/-
slcca.html.

9This image is sometimes called Mandrill.

3.6. Empirical Performance 61

Algorithm 2 × 2 Pixels 4 × 4 Pixels Rank
1,024 2,048 4,096 8,192 1,024 2,048 4,096 8,192

DOSVQ 0.026 0.034 0.042 0.054 0.073 0.102 0.136 0.160 1.5
PAT 0.025 0.032 0.040 0.047 0.087 0.128 0.167 0.194 1.6
DOPAT 0.028 0.037 0.047 0.064 0.083 0.132 0.187 0.253 2.9
K-D Tree 0.052 0.067 0.080 0.107 0.232 0.340 0.465 0.564 4.0
FNM 0.130 0.251 0.386 0.548 0.268 0.547 0.839 1.341 5.5
FN 0.209 0.352 0.540 0.969 0.608 0.946 1.445 2.069 6.8
TLAESA 0.245 0.447 0.756 1.318 0.538 1.080 1.929 2.500 7.4
PDS 0.428 0.880 1.793 3.658 0.601 1.142 2.291 4.569 8.9
OPS 0.079 0.102 0.126 0.141 2.214 4.702 9.979 22.124 9.3
DWCS 0.363 0.607 0.977 1.602 1.311 2.911 5.482 10.320 10.1
Cube 0.477 0.971 1.955 3.918 0.874 1.596 3.048 5.697 10.3
WL-AESA 0.473 1.024 2.159 4.505 0.933 1.836 3.285 5.517 10.8
BJS 0.671 1.320 2.523 5.818 1.319 2.606 5.491 12.542 12.4
Poggi 0.868 1.732 3.394 7.273 2.326 4.732 10.048 21.120 14.0
Bak 0.997 2.337 4.993 10.580 3.178 6.776 12.194 19.773 15.3
Brute 0.973 1.990 4.073 8.201 3.499 6.949 14.325 29.312 15.5
MiniMax 1.660 3.409 6.933 13.945 5.733 11.360 23.320 47.280 17.0

Table 3.10: Algorithms’ average query times (milliseconds) to find the nearest neighbor for
a codebook constructed from the image Lena. The results are shown for four codebook sizes
and two vector sizes.

Algorithm 2 × 2 Pixels 4 × 4 Pixels Rank
1,024 2,048 4,096 8,192 1,024 2,048 4,096 8,192

PAT 0.024 0.030 0.038 0.043 0.092 0.136 0.175 0.182 1.5
DOSVQ 0.025 0.031 0.042 0.050 0.079 0.109 0.144 0.143 1.5
DOPAT 0.026 0.034 0.046 0.061 0.093 0.138 0.198 0.238 3.0
K-D Tree 0.052 0.063 0.077 0.106 0.268 0.391 0.529 0.504 4.0
FNM 0.138 0.244 0.383 0.591 0.301 0.545 0.920 1.276 5.5
FN 0.206 0.320 0.547 0.775 0.594 1.045 1.622 2.242 6.5
TLAESA 0.257 0.545 1.061 1.339 0.654 1.194 2.638 3.552 7.9
PDS 0.478 0.876 1.785 3.625 0.631 1.264 2.466 4.735 8.8
OPS 0.075 0.098 0.131 0.155 2.262 4.878 10.679 21.313 9.5
Cube 0.524 0.965 1.945 3.883 0.969 1.830 3.375 6.107 10.0
DWCS 0.362 0.548 0.930 1.398 1.377 3.098 5.985 8.379 10.3
WL-AESA 0.555 1.223 2.530 5.375 1.090 2.083 4.040 6.791 11.1
BJS 0.695 1.286 2.544 5.025 1.356 2.606 5.021 9.995 12.0
Poggi 0.951 1.770 3.530 7.826 2.341 4.780 9.721 18.666 13.8
Brute 1.035 1.983 4.033 8.173 3.392 7.035 14.312 29.211 15.4
Bak 0.962 2.168 4.783 10.371 3.478 7.252 13.633 17.061 15.4
MiniMax 1.716 3.393 6.945 13.976 5.568 11.486 23.226 47.267 17.0

Table 3.11: Algorithms’ average query times (milliseconds) to find the nearest neighbor for
a codebook constructed from the image Boat. The results are shown for four codebook sizes
and two vector sizes.

62 Chapter 3. Fast Nearest Neighbor Algorithms

Algorithm 2 × 2 Pixels 4 × 4 Pixels Rank
1,024 2,048 4,096 8,192 1,024 2,048 4,096 8,192

PAT 0.037 0.043 0.050 0.053 0.306 0.445 0.517 0.380 1.5
DOSVQ 0.034 0.048 0.058 0.069 0.273 0.435 0.557 0.445 1.6
DOPAT 0.037 0.050 0.062 0.077 0.282 0.449 0.582 0.484 2.9
K-D Tree 0.074 0.091 0.103 0.120 0.712 1.160 1.503 1.291 4.3
FNM 0.175 0.271 0.449 0.655 0.565 1.078 1.631 2.227 5.3
FN 0.248 0.402 0.654 0.810 1.152 1.955 3.199 4.583 7.1
PDS 0.529 0.991 1.896 3.693 1.020 1.901 3.487 6.244 8.3
DWCS 0.243 0.392 0.623 0.967 1.756 3.719 6.665 9.430 8.3
TLAESA 0.382 0.627 1.041 2.524 1.784 3.071 5.766 10.086 8.9
OPS 0.112 0.133 0.155 0.170 2.585 5.587 10.942 22.015 9.3
Cube 0.576 1.080 2.056 3.988 1.925 3.397 5.804 9.784 10.3
BJS 0.625 1.218 2.283 4.444 1.895 3.647 6.715 12.400 11.3
Poggi 0.761 1.527 2.934 6.244 2.083 4.165 8.197 15.953 12.6
WL-AESA 1.143 2.526 5.347 11.330 3.110 5.980 9.057 13.128 14.1
Brute 1.054 2.062 4.084 8.108 3.544 7.136 14.417 29.171 14.6
Bak 1.477 3.110 7.355 14.933 4.086 9.154 17.630 27.367 16.1
MiniMax 1.756 3.561 6.925 13.972 5.875 11.752 23.458 47.458 16.8

Table 3.12: Algorithms’ average query times (milliseconds) to find the nearest neighbor for
a codebook constructed from the image Baboon. The results are shown for four codebook
sizes and two vector sizes.

The results are similar to those obtained for chaotic time series: PAT and DOSVQ were

statistically tied for the best performance. DOPAT, K-D Tree, and FNM also performed

well.

3.7 Discussion

This chapter described two new fast nearest neighbor algorithms: the principal axis tree

(PAT) and the depth-only principal axis tree (DOPAT). The performance of these algo-

rithms was compared to fifteen other fast nearest neighbor algorithms on a variety of

benchmark problems, including independently-distributed simulated data sets, chaotic time

series, and vector quantization codebooks.

Some of the algorithms used in this study had a single user-specified parameter. These

parameters were fixed at the value that optimized the overall performance on independently-

distributed data sets ranging from one to twelve dimensions. Better performance may be

achievable on specific problem domains if different parameter values are used.

Better performance would also have been achieved if general purpose improvements

had been used. For example, in many applications nearest neighbor algorithms are applied

to a set of query points that are highly correlated. Many researchers have independently

proposed using the nearest neighbors of the previous query as initial candidates for the

3.8. Summary 63

nearest neighbors of the current query [5, 54, 66, 67, 74]. This type of improvement can be

applied to any nearest neighbor algorithm, but it was not used here.

The algorithms that performed best incorporated search trees and partial distance

search (PDS). For the independently-distributed data sets in high dimensions, PDS per-

formed best due to the small overhead of the elimination criteria.

Other algorithms also performed well. DOPAT frequently achieved the third best

performance, after PAT and DOSVQ, and was always among the top-ranked algorithms.

K-D Tree, modified to include PDS, also performed very well on all the problems. FNM,

performed nearly as well as K-D Tree, and in some cases much better.

Overall, PAT and DOSVQ [83] performed the best. The impressive performance of

DOSVQ is surprising since it has received scant attention in the literature.

In many cases, the average query times of PAT and DOSVQ were statistically in-

distinguishable. In other cases, the difference was significant. For example, DOSVQ had

better performance on independently-distributed data sets in high dimensions, mostly due

to the smaller overhead of its elimination criteria. PAT had superior performance on

large independently-distributed data sets and scaled as O(lognp) as opposed to O(np) for

DOSVQ, where np is the number of points in the data set. PAT also requires less memory,

O(np), than DOSVQ, O(np lognp). Consequently, PAT should have a significant advantage

on larger data sets than were used in this study.

3.8 Summary

The fast nearest neighbor algorithms described in this chapter remove a significant barrier

to using local models on large data sets—the large computational cost of finding the nearest

neighbors. The next chapter discusses local linear regularization, another important issue

for local modeling.

64 Chapter 3. Fast Nearest Neighbor Algorithms

Chapter 4

Local Linear Regularization

I have traveled the length and breadth
of this country and talked with the

best people, and I can assure you that
data processing is a fad that won’t

last out the year.
—The editor in charge of business

books for Prentice Hall, 1957

Accurate local linear models can be difficult to create because they must be constructed

with only a small neighborhood of points. Often, the number of points will be nearly equal

to the degrees of freedom, which makes it hard to estimate the linear coefficients accurately.

This is especially problematic when the points are collinear.

To alleviate this problem researchers have introduced different methods of regulariza-

tion, which bias the model coefficients to reduce the output variance and thereby increase

stability. This chapter describes two of the most popular and effective regularization meth-

ods: ridge regression and principal components regression1. The introduction to each of

these methods is followed by a discussion of how they can each be generalized to work

with local weighting, introduced in Chapter 2. Ridge regression is also generalized to use

a vector of ridge coefficients, which enables the user to assign a different penalty to each

model coefficient. Principal components regression is generalized further to use weighted

centering and smooth thresholds.

This chapter is organized as follows. Section 4.1 introduces the motivation for regu-

larization. Section 4.2 describes ridge regression and a generalization of this method called

weighted vectored ridge regression. Section 4.3 introduces principal components regression

1For a brief review of other regularization methods see Kugiumtzis et al. [44].

65

66 Chapter 4. Local Linear Regularization

and several generalizations of this method. Section 4.4 discusses the tradeoffs between the

two new methods of regularization.

4.1 Introduction

In Chapter 2 it was shown that the optimal linear model coefficients, in the least squares

sense, are given by

ν = (ATA)−1ATb, (4.1)

where A ∈ R
k×nd+1 is a matrix that contains the k neighboring points, each appended with

a constant value of one, and b ∈ R
k is a vector that contains the corresponding target values,

A�



xT1 1

xT2 1
...

xTk 1


 , b�



y1

y2
...

yk


 .

This is often called the ordinary least squares (OLS) solution.

If columns of the A matrix are nearly collinear, the the matrix product ATA will be

nearly singular and some of the model coefficients will be very large, which, in turn, causes

the model outputs to be very large. This may not occur if the model input vector, q,

happens to lie in the column space of A, but this rarely happens in practice.

The two methods of regularization described in this chapter replace the matrix product

ATA with a matrix that is better conditioned. Although this results in a biased solution2

it also reduces the output variance and the expected squared error is often decreased as a

result.

2The OLS solution given by Equation 4.1 minimizes the sample sum of squared errors, where the sum
is taken over the k neighboring points. If the sample is small, which is often the case, it may be a poor
approximation of the expected squared error. Biasing the solution will increase the sample sum of squared
errors, but it may decrease the expected squared error.

4.2. Ridge Regression 67

4.2 Ridge Regression

Ridge regression replaces the matrix product ATA with (ATA+ρI) where ρ is a scalar and

I ∈ R
(nd+1)×(nd+1) is the identity matrix. The least squares model coefficients are given by

ν = (ATA+ ρI)−1AT. (4.2)

These coefficients minimize the penalized sum of squared errors, which can be derived by

following the same steps as the derivation of the OLS solution given in Chapter 2. The

penalized sum of squared errors is given by

PRR(ν) �
k∑

i=1

(yci − ŷci)
2+ ρ

nd+1∑
i=1

ν2i ,

=
k∑

i=1

(
yci − x̃Tci

ν
)2+ ρnd+1∑

i=1

ν2i ,

= (b−Aν)T(b−Aν)+ ρ νTν,

where x̃i denotes the ith nearest vector appended with the constant 1, x̃Ti � [xTi 1].
The parameter ρ controls the weight that is given to minimizing the model coefficients

versus the sum of squared errors. In the limit as ρ→∞, the model coefficients’ magnitude
all approach zero, which reduces the second moment of the model output to zero, E[ŷ2]→ 0.
At the other extreme, as ρ→ 0, the model coefficients approach the OLS solution and the
bias is reduced to zero: E

[||νOLS− νRR||2]→ 0, where νOLS is given by Equation 4.1 and
νRR is given by Equation 4.2.

The value for ρ is usually specified by the user, though Golub et al. have suggested

a method of picking ρ so as to minimize the cross-validation weighted sum of squared

errors [116]3.

A more thorough discussion on ridge regression is available in most books on linear

regression, such as Neter et al. [117].

4.2.1 Weighted Vectored Ridge Regression (WVRR)

This section describes two generalizations of ridge regression. First, the sum of squared er-

rors are generalized to the weighted case. Second, the penalty term is generalized to a vector

3The results of this work are summarized in Golub and Van Loan [111, pp. 583–5], the source of this
citation.

68 Chapter 4. Local Linear Regularization

so that there is a separate penalty term for each local model input. This technique, termed

weighted vectored ridge regression (WVRR), minimizes the following penalty function:

PWVRR(ν,r) �
k∑

i=1

w2
i (yci − ŷci)

2+
nd+1∑
i=1

r2i ν
2
i ,

=
k∑

i=1

w2
i

(
yci − x̃Tci

ν
)2+ nd+1∑

i=1

r2i ν
2
i ,

= (b−Aν)TW 2(b−Aν)+ νTR2ν, (4.3)

where w ∈ R
k is a vector of the penalty weights and r ∈ R

nd+1 is a vector of the ridge

coefficients. The matrices W and R are given by,

W � diag(w), R� diag(r),

=



w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wk


 , =



r1 0 · · · 0

0 r2 · · · 0
...
...
. . .

...

0 0 · · · rnd+1


 .

The local linear model coefficients, ν, that minimize the weighted vectored ridge re-

gression penalty PWVRR(ν,r), are derived in Appendix A. The solution is repeated below:

ν =
(
ATW 2A+R2

)−1
ATW 2b. (4.4)

4.2.2 Discussion

Using a different penalty weight for each model input substantially increases the flexibility

of ridge regression. In many cases, one or more of the observed variables are not correlated

with the process output and should be ignored. Although the ordinary least squares solution

should assign small values to these coefficients, the use of small neighborhoods severely

limits the accuracy of the estimated coefficients and they may not be nearly as small as

they should be. If the user knows that some of the inputs should have less influence on

the model output, vectored ridge regression allows the solution to be biased to reflect this

knowledge explicitly.

For all of the results reported here, the last ridge parameter that corresponds to the

constant input was set equal to zero, rnd+1 = 0. This ensures that in the limit as all of

4.2. Ridge Regression 69

the other ridge parameters approach infinity, vi → ∞ for all i ≤ nd, the solution becomes
equivalent to the weighted average.

Like ordinary ridge regression, vectored ridge regression can also be understood as a

means of improving the conditioning of the matrix product ATA. Although it is possible

that its replacement, ATA+R2, is more ill-conditioned than the original matrix product,

this does not occur in practice. Generally the addition of R, a positive semidefinite diagonal

matrix, improves the conditioning of the matrix inversion.

4.2.3 Example

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q1

q 2

(b)

Figure 4.1: (a) Surface plot of the RampHill1D function. (b) Scatter plot of the input
variables for the RampHill1D data set.

To illustrate the potential of WVRR a modified version of the RampHill data set

introduced in Chapter 2 was used in which the input q1 was held fixed at q1 =−0.40. The
RampHill1D function and a scatter plot of the input variables are shown in Figure 4.1.

Figure 4.2a illustrates the weighted ordinary least squares solution for a local linear

model4. In Figure 4.2b, the influence of q1 on the local model was eliminated by setting the

corresponding ridge coefficient equal to four, r1 = 4, while the other ridge coefficient was

left as zero, r2 = 0. The resulting model output is much closer to the true function.

The model would have been more accurate if the distance metric had also been chosen

to ignore q1. The weighted Euclidean metric, introduced in Chapter 1, is capable of this

4This is equivalent to setting the ridge coefficients to zero.

70 Chapter 4. Local Linear Regularization

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(a) r = [0 0]T

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(b) r = [4 0]T

Figure 4.2: The output of a local averaging model for two different ridge vectors and
k = 4. Figure (a) shows the ordinary least squares solution. The ridge vector in Figure (b)
effectively eliminates the influence of x1 on the local linear model.

4.3. Principal Components Regression 71

and a method for optimizing the metric coefficients and ridge coefficients is discussed in

Chapter 5.

4.3 Principal Components Regression

Principal components regression is another method for coping with ill-conditioning in the

matrix product, ATA. This technique relies on the singular value decomposition (SVD) of

AW �WA, given by

AW = UΣV T,

where U ∈ R
k×k and V ∈ R

(nd+1)×(nd+1) are orthonormal, UTU = UUT = I and V TV =

V V T = I, and Σ is a diagonal positive semidefinite matrix, Σ = diag(σ) where σi ≥ σi+1 ≥ 0
for all i. The elements of the vector σ are called the singular values of the matrix AW .

Using this decomposition, the weighted ordinary least squares solution can be written

as

ν =
(
ATW 2A

)−1
ATW 2b,

= (ATWAW)
−1ATW bW ,

= V Σ−1UTbW ,

where bW �Wb. The output of the linear model for a query vector q is given by,

ŷ(q) = q̃Tν,

= q̃TV Σ−1UTbW ,

=
min(k,nd+1)∑

i=1

(q̃Tvi)
(
1
σi

)
(uTi bW) ,

where q̃T � [qT 1], vi denotes the ith column of V , and ui denotes the ith column of U .
The parentheses have been used to emphasize that each element in the sum is a product of

three scalars.

4.3.1 Truncated Principal Components Regression

If the columns of the AW matrix are nearly collinear, one or more of the singular values,

σi, will be nearly zero. Since each element of the summation is multiplied by 1
σi
, the

72 Chapter 4. Local Linear Regularization

elements with small singular values can cause the model output to be unreasonably large; or,

equivalently, the variance of the model output to increase. To counter this effect researchers

often truncate the summation,

ŷ(q) =
nσ∑
i=1

(qTvi)
(
1
σi

)
(uTi bW) , (4.5)

where nσ <min(k,nd+1). This technique, called truncated principal components regression

(TCPR), has the effect of smoothing the model output.

4.3.2 Centering

Researchers often use a slight variation on the method described in the previous section

called centering. To introduce the motivation for centering, it is useful to consider the

unweighted case more carefully. The generalization of centering to the weighted case is

discussed in the next section.

For unweighted ordinary least squares, the model coefficients are given as

ν = (ATA)−1ATb.

If singular value decomposition is used to decompose the matrix A = UΣV T, the solution

can be written as

ν =
(
V Σ2V T

)−1
ATb.

This is equivalent to performing an inversion of ATA by an eigenvalue decomposition, ATA=

V Σ2V T. Since the matrix product ATA is real and symmetric, the eigenvectors are real and

orthonormal and the eigenvalues are real and nonnegative. Without loss of generality, the

eigenvalues can be arranged such that σi ≥ σi+1. Using this convention, the eigenvectors
represent the directions of maximum amplification by the matrix A

vi = argmax
qTq=1,

qTvj=0 ∀j<i

qTATAq.

The eigenvectors are also called the principal components of the matrix A.

4.3. Principal Components Regression 73

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1

x
2

(a) Without Centering

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x1

x
2

(b) With Centering

Figure 4.3: The vectors point in the direction of the principal components. Each vector is
scaled so that the vector length is proportional to the corresponding singular value. (a) The
principal components without centering. (b) The principal components after centering.

Statistically, the principal components can be understood as the vectors that maximize

the sum of the estimated second joint moments of the elements of q and the neighboring

variables,

qTATAq =
nd∑
i=1

k∑
j=1

(qixj,i)
2+1,

≈
nd∑
i=1

kE
[
(qix·,i)2

]
+ k,

where E[·] denotes expectation and x·,i is a random variable that represents the ith model
input. If the k neighboring points have large sample means, the first few principal com-

ponents may not represent the directions of maximum variance. For example, Figure 4.3a

shows the two principal components for a synthetic data set generated from a normal dis-

tribution. Since the data set has a large mean, the largest principal component points in a

direction that is orthogonal to the direction of maximum variance.

74 Chapter 4. Local Linear Regularization

To correct this problem, it is common practice to subtract the sample mean from each

of the neighboring points prior to the singular value decomposition,

Ã�



xT1 − x̄T
xT2 − x̄T
...

xTk − x̄T


 ,

where x̄ is the sample mean of the k neighboring points,

x̄� 1
k

k∑
i=1

xi. (4.6)

The model output is then given by,

ŷ(q) = (q− x̄)TṼ Σ̃−1ŨTb+ b̄,

= b̄+
min(k,nd)∑

i=1

((q− x̄)Tṽi)
(
1
σ̃i

)
(ũTi b) , (4.7)

where the singular value decomposition of Ã is denoted as Ã= ŨΣ̃Ṽ T and b̄ is the sample

mean of b,

b̄=
1
k

k∑
i=1

bi.

This technique is called centering. Note that centering eliminates the need to append a one

to each of the input vectors.

Intuitively, the principal components of the matrix Ã maximize the sum of the esti-

mated covariances of the elements of q and the neighboring variables,

(q− x̄)TÃTÃ(q− x̄) =
nd∑
i=1

k∑
j=1

(qi− x̄i)(xj,i− x̄i),

≈
nd∑
i=1

kE[(qi−E[qi]) (x·,i−E[x·,i])] ,

=
nd∑
i=1

k cov(qi,x·,i),

where cov(·, ·) denotes covariance.

4.3. Principal Components Regression 75

Figure 4.3b shows the principal components of a two-dimensional data set drawn from

a normal distribution after centering. In this case, the largest principal component points

in the direction of greatest variance, as desired.

If truncated principal components regression is combined with centering, the model

output becomes

ŷ(q) = b̄+
nσ∑
i=1

((q− x̄)Tṽi)
(
1
σ̃i

)
(ũTi b) , (4.8)

where the number of components in the summation, nσ, is a user specified parameter. Note

that if the user specifies nσ = 0, the model output is equal to the sample average of the

target values for the k neighboring points stored in the vector b, given by Equation 4.3.2.

At the other extreme where nσ = min(k,nd), this is equivalent to the OLS solution given

by Equation 4.1.

4.3.3 Weighted Centering

In this section centering is generalized for the weighted least squares problem, WAν =Wb.

To simplify notation, the matrix product AW �WA is decomposed as

AW =



w1x

T
1 w1

w2x
T
2 w2
...

wkx
T
k wk


 ,

=
[

Aw w
]
,

and bW �Wb, as before. The weighted analog of centering is to perform the singular value
decomposition on the column space of Aw that is orthogonal to w,

Ǎw � Aw ⊥ w,
= Aw −ww

TAw

wTw
. (4.9)

The row vector wTAw

wTw
is the transpose of weighted sample average,

x̄w � ATww

wTw
,

=
∑k

i=1w
2
i xi∑k

i=1w
2
i

.

76 Chapter 4. Local Linear Regularization

If w = 1k, this reduces to the ordinary sample average, x̄w = x̄, where x̄ is defined by

Equation 4.6.

The matrix AW can then be decomposed as

AW =
[
Aw w

]
=

[
Ǎw w

][I 0

x̄Tw I

]
,

and the weighted least squares problem can be restated as

AWν = bW ,[
Ǎw w

][I 0

x̄Tw I

]
ν = bW ,

or, equivalently,

[
Ǎw w

]
ν̌ = bW , (4.10)

where

ν̌ �
[
I 0

x̄Tw I

]
ν. (4.11)

This is a convenient transformation because the matrix has a trivial inverse,

ν =

[
I 0

−x̄Tw I

]
ν̌. (4.12)

Thus, once Equation 4.10 is solved for ν̌, the model coefficients, ν, can be readily obtained

from Equation 4.12.

The solution to the modified least squares problem, Equation 4.10, is

ν̌ =

([
ǍTw

wT

][
Ǎw w

])−1[
ǍTw

wT

]
bW ,

4.3. Principal Components Regression 77

and since wTǍw = 0 (see Equation 4.9),

=

[
ǍTwǍ

T
w 0

0 wTw

]−1[
ǍTwbW

wTbW

]
,

=

[(
ǍTwǍ

T
w

)−1
ǍTwbW

(wTw)−1wTbW

]
.

The last element in this matrix, (wTw)−1wTbW , is the weighted average of the target values.

The first element in this matrix can be calculated by performing the singular value decom-

position on the matrix Ǎw = Ǔ Σ̌V̌ T . Then the model output using weighted truncated

principal components regression is given by,

ŷ(q) = b̄w+
nσ∑
i=1

((q− x̄w)Tv̌i)
(
1
σ̌i

)
(ǔTi bW) (4.13)

where nσ is a user-specified parameter and b̄w is the weighted sample average of bW ,

b̄w �
∑k

i=1w
2
i bi∑k

i=1w
2
i

. (4.14)

Parentheses are used in Equation 4.13 to emphasize that each element in the summation is

a product of three scalars.

This generalization reduces to the solutions introduced previously when the parameters

are adjusted appropriately. In the case where the user specifies nσ = 0, the output is

equal to the weighted local average, b̄w given by Equation 4.14. If all of the weights are

assigned a value of one, w = 1k, the solution is equivalent to unweighted TPCR described

by Equation 4.8. If nσ =min(k,nd) and w = 1k, the solution is equivalent to the ordinary

least squares solution described by Equation 4.1.

4.3.4 Example of Weighted TPCR

In this section weighted TPCR is applied to the RampHill function introduced in Chapter 2.

Figure 4.4a shows the shape of the two-input function and Figure 4.4b shows a scatter plot

of the seventy-five points used to build the local models. In this section, the data set is

smaller than that used in Chapter 2 to introduce regions that naturally contain points that

are nearly collinear.

78 Chapter 4. Local Linear Regularization

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

Constant

Constant

Hill

Linear

(b)

Figure 4.4: (a) Surface plot of the RampHill function. (b) Bird’s-eye view of the sparse
RampHill data set including labels of the significant features and a scatter plot of the data.

Figure 4.5 shows weighted TPCR applied to the sparse RampHill data set for nσ = 2

and nσ = 1. In the case of nσ = 2, the regions with collinear neighbors have small singular

values which causes the model output amplitude to be unreasonably large. For example,

the model output becomes excessively negative near the base of the hill in Figure 4.5a.

In the case of nσ = 1, the regions of collinearity do not cause excessive model outputs.

However, the linear part of this function, the ramp, is no longer well approximated. This

is because the subspace represented by the first principal component is rarely aligned with

the direction of the ramp gradient. This represents a compromise between using ordinary

least squares and a weighted average, which could be obtained by setting nσ = 0.

4.3.5 Soft Thresholding

Principal component threshold regression (PCTR) is another approach to regularization

that incorporates singular value decomposition. Instead of truncating the summation to

include only the nσ largest singular values, PCTR multiplies each element in the sum by a

threshold function [44]. The model output is given by,

ŷ(q) =
nσ∑
i=1

(qTvi)
(
f(σi)
σi

)
(uTi b) , (4.15)

4.3. Principal Components Regression 79

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(a) nσ = 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(b) nσ = 1

Figure 4.5: The output of a weighted TPCR for nσ = 2 (a) and nσ = 1 (b). The number of
neighbors was set to k = 5 for both models.

80 Chapter 4. Local Linear Regularization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

σ

f
(σ
)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

3.5

4

σ

σ−1
f(σ)σ−1

sig(σ)σ−1

(b)

Figure 4.6: (a) The soft threshold function for sc = 1 and sw = 0.2. (b) Illustration of the
soft threshold and sigmoidal functions multiplied by 1

σ .

where f(·) is the threshold function. If weighted centering is used, the output is given by,

ŷ(q) = b̄w+
nσ∑
i=1

((q− x̄w)Tv̌i)
(
f(σi)
σ̌i

)
(ǔTi bW) .

Kugiumtzis et al. has suggested using a sigmoidal threshold function normalized by

the residual variance for time series prediction [44]. Here a more general threshold function

is proposed that has several advantages over the sigmoidal function. The new soft threshold

is as follows:

f(σ) =



0 smin ≤ σ,(
1− (smax−σ)2

(smax−smin)2

)2
smin ≤ σ < smax,

1 smax ≤ σ,
(4.16)

where smin and smax are defined by

smin � sc(1− sw), (4.17)

smax � sc(1+ sw). (4.18)

The user-specified parameters sc and sw represent the center and the percent width of the

threshold function, respectively. This function is illustrated in Figure 4.6. The width of the

threshold function is shown by the gray region and the center of the threshold is shown by

the vertical dotted line.

4.4. Tradeoffs 81

The biweight function was used to generate a smooth transition from zero to one, hence

the name soft threshold. The use of a smooth transition ensures that the model produces

a smooth output. Since the threshold function is exactly equal to one for large values of

σ, it does not introduce any bias in these components of the summation (Equation 4.15).

Similarly, since the threshold function is exactly zero for small values of σ, these components

of the summation are eliminated altogether. In contrast the sigmoid function proposed by

Kugiumtzis et al. introduces bias for all values of σ and does not completely eliminate any

elements of the summation, as shown by Figure 4.6b.

Since the expected value of each singular value squared is proportional to the number

of rows in the A matrix, σ2i ∝ k for all i, it is good practice to normalize the singular

values before applying the threshold function. Thus, f(σi√
k
) was used for all of the results

reported here, instead of f(σi).

Example of Soft Thresholds for PCTR

Figure 4.7 shows the result of applying PCTR to the sparse RampHill data set for two

different values of sc. In both cases the large outputs caused by collinearity were eliminated.

For the smaller value, sc = 0.03, much of the linear region is accurately modeled because

both principal directions were used to construct the model. As sc is increased, the model

output becomes more similar to weighted averaging, as shown by Figure 4.7b.

4.4 Tradeoffs

As with most decisions, there are tradeoffs between each method of regularization that the

user has to choose from. This section lists some of the tradeoffs between the two new types

of regularization described in this chapter.

4.4.1 Influence of Input Variables

Vectored ridge regression (VRR) enables the user to explicitly specify the tradeoff between

minimizing the weighted sum of squared errors and decreasing the influence of each model

input variable. This is especially useful if the user knows some inputs are particularly

noisy or weakly related to the model output. The various forms of principal components

regression (PCR) do not have this property.

82 Chapter 4. Local Linear Regularization

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(a) sc = 0.03

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x1

x2

(b) sc = 0.10

Figure 4.7: The output of a weighted PCTR using the soft threshold for two values of sc.
The threshold width was fixed at sw = 0.20 and both elements of the sum were used, nσ = 2,
for both cases.

4.4. Tradeoffs 83

4.4.2 Direct Control of Model Subspace

If the user has reason to believe that the points lie in a subspace of the input domain, this

can specifically be embedded in the model with truncated PCR, which effectively limits the

model subspace. VRR does not have this feature.

4.4.3 Adaptive Regularization

The use of a threshold function in PCR allows the model to adapt to the degree of collinearity

in each neighborhood. If a neighborhood lies on a low dimensional plane, the corresponding

principal directions with near-zero singular values are automatically ignored. If the points

thoroughly span the input domain and the matrix product is well conditioned, the solution

is the same as the least squares solution.

VRR imposes the same penalty regardless of the distribution of the points or the

conditioning of the matrix product ATA.

4.4.4 Number of Parameters

VRR has nd+1 ridge parameters, but since rnd+1 = 0, the user only has to specify nd values.

The additional parameters, as compared to ordinary least squares, are an advantage if the

user knows which inputs are the most important, but this knowledge may be difficult to

quantify appropriately. If the user does not possess this type of knowledge, the task of

specifying nd ridge parameters may be overwhelming.

Truncated PCR with soft thresholding requires the user to specify three parameters:

the number of principal directions to use for the model output, the center of the threshold

function, and the relative width of the threshold transition region. Even if the user is

intimately familiar with the process from which the data was collected, the appropriate

values for these parameters will rarely be known. However, since there are only three

parameters that need to be specified, it may be reasonable to use the method of Futz5 to

find good values.

The task of choosing appropriate parameter values is discussed more fully in Chapter 5.

4.4.5 Gradient Calculation

A key advantage of ridge regression is that it enables efficient calculation of the model output

gradient with respect to the ridge parameters and with respect to the penalty weights.

5Also known as “trial and error,” or “futz around” with it.

84 Chapter 4. Local Linear Regularization

These gradients are derived in Appendix A and they play an important role in parameter

optimization discussed in Chapter 5.

The author is unaware of any method for efficiently calculating the gradient of the

model output with respect to the penalty weights or regularization parameters for PCR.

The gradient may be estimated by dithering, but this approach requires the model to be

reconstructed for each element of the gradient and is impractical for large values of k, the

dimension of the penalty weight vector. This is discussed more fully in Chapter 5.

4.4.6 Computational Efficiency

Cholesky decomposition can be used to efficiently solve the normal equations for VRR [118,

p. 96–8]. Singular value decomposition, employed by the various forms of PCR, requires

about an order of magnitude more computation [111, p. 263].

This does not necessarily mean that the total time required to calculate a model

output will be much less using VRR. Often the majority of computation is used to find

the k+1 nearest neighbors in the data set and the relative importance of efficient model

construction is minimal. This varies greatly depending on many factors including the data

set distribution, the data set size, and the number of neighboring points that must be found.

4.5 Summary

This chapter introduced two new methods of regularization for local linear models. Both

methods reduce the effects of collinearity, a problem that plagues local linear models due

to the small neighborhoods used to construct the models.

Both methods give the user greater control than their precedents. Vectored ridge

regression (VRR) enables the user to reduce the influence of each model input. Principal

components threshold regression (PCTR) allows the user to specify how ill-conditioned the

data matrix may become before corrective measures are taken.

This chapter also described a generalization of centering, a common method applied

to principal components analysis to ensure that the principal directions correspond to the

directions of greatest covariance in the input domain. Centering was generalized to the case

of weighted sum of squared errors.

Each of the methods introduced in this chapter requires that the user specify additional

parameter values. For vectored ridge regression the user must specify the ridge parameter

values and for the new method of principal components regression (PCR) the user must

4.5. Summary 85

specify the number of singular values, the threshold center, and the threshold transition

width. In practice, the user will rarely have an intuition for how to choose good values for

these parameters. The next chapter addresses this problem.

86 Chapter 4. Local Linear Regularization

Chapter 5

Local Model Optimization

Everything that can be invented has
been invented.

—Commissioner, U.S. Office of
Patents, 1899.

One of the most vexing problems facing users who wish to construct a local model

is how to choose appropriate values for the model parameters. Since the best parameter

values depend on the properties of the data set, there is little to guide users in making this

decision.

This chapter introduces a method for optimizing the parameter values to minimize

the average model error. The advantages of this method are that it relieves the user of the

burden of specifying critical parameter values, it gives the user control of the computation

used for optimization, and it improves the model accuracy starting with the initial values

provided by the user.

This chapter is organized as follows. Section 5.1 introduces iterative optimization

algorithms. Section 5.2 discusses how to apply these methods to optimize the metric for local

averaging. Sections 5.3 and 5.4 discussed optimization of vectored ridge regression (VRR)

and principal components regression (PCR), respectively. Section 5.5 introduces cyclic

coordinate optimization and a generalization of this technique. Sections 5.6 and 5.7 give

complete optimization algorithms for vectored ridge regression and principal components

regression, respectively. Section 5.8 discusses some of the issues encountered in practice

with these algorithms.

87

88 Chapter 5. Local Model Optimization

5.1 Iterative Optimization Algorithms

There are many optimization algorithms that can minimize a user-defined penalty func-

tion. For local models the natural choice for the penalty function is the leave-one-out cross

validation error (CVE)1.

If the gradient of the penalty function with respect to the model parameters can be

calculated, there are a number of iterative optimization algorithms to choose from [43,119].

Algorithms also exist for cases where the gradient is not available, but they are less efficient

[43].

Most of the gradient-based algorithms consist of two steps that are repeated until the

algorithm meets a user-specified convergence criteria. During the first step a direction of

descent is calculated, g. During the second step, a line search is used to determine how

much the model parameters should be adjusted in the direction g. Specifically, if the model

parameters are contained in a vector γ, the line search finds a value for the scalar α that

minimizes P(γ+αg), where P(·) is the user-specified penalty function.
For the results reported here, the parallel tangents algorithm (PARTAN) was used

to generate the directions of descent and the golden section method was used for each

line search [43, 119]. PARTAN was chosen because it is one of the most stable conjugate

gradient methods and it can theoretically find the minimum of a quadratic penalty function

in nγ steps, where nγ is the number of parameters [119, p. 240]. Since most continuous

penalty functions are accurately approximated by a quadratic function near local minima,

the convergence of PARTAN is typically much faster than gradient descent.

Although all conjugate gradient algorithms converge very quickly on quadratic prob-

lems, the performance of these algorithms varies on non-quadratic problems and the rate of

convergence can be substantially decreased when inexact line search algorithms are used.

PARTAN was also chosen because it is among the least sensitive algorithms to inexact line

searches. A detailed description of this algorithm and its properties is given by Luenberg-

er [119] and Bazaraa et al. [43].

During parameter optimization, the line search algorithm usually requires many more

evaluations of the penalty function than the optimization algorithm. If the computational

cost of evaluating the penalty gradient, ∇γP(γ), is significantly larger than evaluating the

penalty itself, P(γ), it may be more efficient to use a line search that does not require

1Friedman has noted that leave-one-out cross-validation is not always the best choice, but he did not
suggest a better alternative [33].

5.2. Local Averaging Metric Optimization 89

the gradient. Golden section was selected as the line search algorithm because it is among

the fastest2 line search algorithms that does not require the gradient. Golden section also

allows the line search to be stopped after the region of uncertainty has been reduced by a

user-specified amount, a technique that was used here.

The optimization algorithm and line search method were chosen carefully for their

fast convergence and suitability to the type of penalty function used. It is important to

note, however, that any of the other gradient-based optimization algorithms and line search

methods could have been used to solve the problems described in this chapter.

5.2 Local Averaging Metric Optimization

Choosing an appropriate measure of distance, or metric3, for local models is an important

decision that is often overlooked. The Euclidean distance,

DE (q,xi)2 =
nd∑
j=1

(qj −xi,j)2, (5.1)

= (q−xi)T(q−xi),

where q is the query vector and xi is the ith nearest neighbor, is the most common choice.

But, there is no reason to believe this is the best choice in general; researchers pick this

metric because of its simplicity and intuitive geometric appeal.

Choosing a more general measure with more parameters can drastically affect model

accuracy [26,120–122]. For example, a weighted Euclidean distance,

DWE(q,xi)2 = (q−xi)TΛ2(q−xi),

could be used where Λ ∈ R
m×m is any positive semidefinite matrix. However, data sets

are often too small to estimate n2d parameter values and an optimization over so many

2Fibonacci line search is slightly faster, but it requires that number of iterations per a line search be
fixed [43, p. 275].

3In this chapter metric means a measure of nearness between two points. It may not have the usual
metric properties.

90 Chapter 5. Local Model Optimization

parameters is computationally impractical for larger data sets. For this work the diagonally

weighted Euclidean metric,

DWE(q,xi)2 =
nd∑
j=1

λ2j (qj −xi,j)2, (5.2)

= (q−xi)TΛ2(q−xi),

where Λ = diag(λ) and λ ∈ R
nd , was chosen. This metric is much more flexible than the

Euclidean metric and yet it has few enough parameters that optimization is possible. This

metric also has the ability to ignore irrelevant input variables and increase the influence of

the most important input variables, much like vectored ridge regression (VRR). In Chapter 6

a more constrained form of this metric will be introduced that is tailored to the time series

prediction problem.

5.2.1 Metric Gradient

The gradient of the cross-validation error (CVE) with respect to the metric parameters λ

must be calculated in order to optimize them with an iterative optimization algorithm. The

average CVE is defined as,

CVE(λ) �
nc∑
i=1

p
(
yc(i)− ŷ−(xc(i))

)
, (5.3)

where nc controls the accuracy of the estimated error, c(i) is the data set index of the ith

cross-validation point and p(·) is a user-specified penalty function4. The local model output,
ŷ−(xc(i)), is from a model constructed with the c(i)th point omitted from the data set and

then used as the model input.

The gradient of the CVE is given by,

∇λCVE(λ) = −
nc∑
i=1

dp(ε)
dε

∇λŷ
−(xc(i)),

where

ε� yc(i)− ŷ−(xc(i)).

4The squared error penalty function, p(ε) = ε2, is the most common choice, but any smooth function
could be used.

5.2. Local Averaging Metric Optimization 91

The derivation of the model output gradient with respect to the metric parameters, ∇λŷ(·),
for VRR is given in Appendix A along with an algorithm that describes how to calculate

this gradient efficiently.

5.2.2 Weighted Averaging Example

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

RampHill20 Data Set

q1

q 2

Constant

Constant

Hill

Linear

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Optimized Local Averaging Metric

i

λ
2 i

(b)

Figure 5.1: (a) Scatter plot of the two relevant inputs for the RampHill20 data set. The
data set also contained 18 spurious inputs that are not shown. (b) The local averaging
metric parameters, λ2, after optimization. The number of neighbors was fixed at k = 5.
The metric has been normalized so that λTλ= 1.

Once the gradient is available, the metric parameters can be optimized using the

iterative optimization algorithm discussed in Section 5.1. To illustrate the benefit of metric

optimization, the metric parameters were optimized for the RampHill function described in

Chapter 2. In this section the data set, RampHill20, contains 250 points and has eighteen

additional model inputs with the same random distribution as the original two model inputs,

but they have no effect on the process output. A scatter plot of the relevant inputs is shown

in Figure 5.1a.

The optimization began with all of the metric weights equal to one, which is equivalent

to the Euclidean metric, and converged to the values shown in Figure 5.1b. Since the

process output only depends on the first two inputs, the metric parameters for the eighteen

spurious inputs became nearly zero after optimization, as shown by Figure 5.1b. Thus the

optimization was almost able to eliminate the influence of the spurious inputs and produce

a model that is equivalent to one constructed with just the first two model inputs.

92 Chapter 5. Local Model Optimization

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a) Euclidean Metric

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(b) Optimized Weighted Euclidean

Figure 5.2: These figures illustrate the potential benefit of metric optimization applied to
local averaging. Figure (a) shows the local averaging output using the Euclidean metric
and (b) shows the local averaging output after metric optimization. The data set contained
250 points with 18 spurious model inputs. Both models used k = 5 nearest neighbors to
calculate the local average.

5.2. Local Averaging Metric Optimization 93

Figure 5.2a shows the local averaging model output for the RampHill20 data set using

the Euclidean metric and Figure 5.2b shows the model output for the weighted Euclidean

metric after optimization5. Although the local averaging output is a smooth function of the

twenty model inputs in both cases, these figures appear noisy because of the effect of the

spurious inputs. If the optimization had made the spurious-inputs’ metric weights exactly

zero, the optimized output would have been a smooth function of the two relevant inputs.

5.2.3 Local Minima

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
6

6.5

7

7.5

8

8.5

9

9.5
x 10

−3 Mean Squared Cross-Validation Error

λ1

C
V
E

Figure 5.3: Illustration of multiple local minima as a function of the metric parameters.

A disadvantage of iterative optimization is that it only finds the nearest local minimum,

which is rarely the global minimum. As an example of this, consider the the RampHill20

data set. If only the two relevant variables are used to construct the model, there are only

two metric parameters, λ1 and λ2. Since the cross-validation error is invariant to the scale

of the metric parameters, CVE(λ) = CVE(αλ) for all α > 0, there is only one degree of

freedom. Figure 5.3 shows a plot of the cross-validation mean squared error as a function

of λ1 for λ2 = 1. In this case there are two local minima, one at approximately λ1 = 0.7 and

a global minimum at approximately λ1 = 1.02.

Although local minima prevent a global minimization, optimization of local averaging

models usually improves the model accuracy substantially.

5The optimized model output is considerably better than examples in previous chapters because the
RampHill20 data set contains more points.

94 Chapter 5. Local Model Optimization

5.3 Vectored Ridge Regression

If a local linear model is used with vectored ridge regression (VRR), the ridge parameters

can be optimized jointly with the metric parameters. Let γ be defined as the concatenation

of the metric parameters, λ, and the ridge parameters, r, so that γT � [λT rT]. The gradient
of the CVE with respect to γ is given by,

∇γCVE(γ) = −
nc∑
i=1

dp(ε)
dε

∇γ ŷ
−(xc(i)),

where p(·) is the penalty function, ε= yc(i)− ŷ−(xc(i)), and the gradient of the model output
is given by,

∇γ ŷ
−i(xc(i)) =

[
∇λŷ

−i(xc(i))

∇rŷ
−i(xc(i))

]
. (5.4)

Both of these gradients are derived in Appendix A and can be calculated efficiently once

the model has been constructed.

5.3.1 Example

Optimization of local linear models is much more sensitive to the choice of initial parameter

values than local averaging. To illustrate this the metric and ridge parameters were jointly

optimized for the RampHill20 data set. Figure 5.4 illustrates the parameter values after

optimization with two different values for the ridge parameters. Since the process output

is only a function of the first two variables, the optimized metric weights should be small

for the last eighteen input variables and the optimized ridge parameters should be large for

these variables. As shown by the figure, this was only achieved when the ridge parameters

were initialized with the relatively large value of r = 0.2.

Figure 5.5 shows the model output after optimization for each case and confirms that

the larger initial ridge parameters produced a better model after optimization.

5.4 Principal Components Regression

Since there is no known means of calculating the gradient of the model output with respect

to the singular values of the A matrix, it is not possible to use a gradient-based optimization

algorithm for principal components regression (PCR). Although it is possible to estimate

5.4. Principal Components Regression 95

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06
Optimized Metric Weights

i

λ
2 i

(a) Initial r = 0.02

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Optimized Metric Weights

i

λ
2 i

(b) Initial r = 0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3 Optimized Ridge Parameters

i

r
2 i

(c) Initial r = 0.02

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Optimized Ridge Parameters

i

r
2 i

(d) Initial r = 0.2

Figure 5.4: Illustration of the sensitivity to initial parameters for vectored ridge regression.
Figures (a) and (b) show the metric parameters after optimization with initial ridge pa-
rameters r = 0.02 and r = 0.2, respectively. Similarly, Figures (c) and (d) show the ridge
parameters after optimization with r = 0.02 and r = 0.2, respectively. In both cases the
metric parameters were initialized with λ= 1, which is equivalent to the Euclidean metric.

the gradient by dithering the parameter values, this approach is computationally intensive

because it requires that the model be constructed at least nγ + 1 times to estimate the

gradient at a single point, where nγ is the number of parameters being optimized [123,

pp. 66-93]. Optimization algorithms also exist that do not require the calculation of the

gradient, but they are much slower than gradient based methods [43].

In the following section a new approach is taken to jointly optimize principal compo-

nents regression (PCR) model parameters.

96 Chapter 5. Local Model Optimization

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(a) Initial r = 0.02

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

q1

q2

(b) Initial r = 0.2

Figure 5.5: Local linear model output after optimization with two different initial values
for the ridge parameters. (a) The initial value for the ridge parameters was too small and
the optimization became trapped in a shallow local minima. (b) A good initial value was
chosen for the ridge parameters and the final model is much more accurate.

5.5. Cyclic Coordinate Optimization 97

5.5 Cyclic Coordinate Optimization

The gradient-based optimization described in the previous sections can greatly improve the

initial metric and ridge parameter values provided by the user. However, this approach

can not be used to optimize some of the other model parameters. For example, since the

neighborhood size is an integer, gradient-based methods can not be used to optimize this

parameter. Similarly, the center of the soft threshold function for PCR can not be optimized

because there is no means of directly calculating the partial derivative of the model output

with respect to this parameter.

To optimize these parameters, an algorithm that does not require the gradient must be

used. One of the simplest of these algorithms is the cyclic coordinate method. This method

optimizes each parameter one at a time, and then repeats until convergence. [43, pp. 283–5].

For example, if the parameters to be optimized are stored in a vector γ ∈ R
nγ , the cyclic

coordinate method is as follows.

Algorithm 5.1: Cyclic Coordinate Method

1. For i = 1 to nγ ,

1.1 γi := argmin
α
CVE([γ1, . . . , γi−1, α, γi+1, . . . , γnγ

]T).

1.2 Next i.

2. If not converged, then Goto 1.

Since each step in the loop can only decrease the cross-validation error, this method

can only improve the model performance and under very general conditions the algorithm

is guaranteed to converge [43, p. 285].

5.5.1 Semi-global Line Search

Each step in the inner loop of the cyclic coordinate method tries to find the value of a single

parameter that minimizes the cross-validation error. Since only one parameter is optimized

at each step, this is essentially a one-dimensional minimization problem, also known as the

line search problem.

If the parameter to be optimized is an integer, a user-specified range of values can be

searched for the best value. For example, the number of neighbors, k, could be optimized by

calculating the cross-validation error (CVE) for a range of values, {kmin,kmin+1, . . . ,kmax},
and retaining the value with the smallest CVE.

If the parameter is a real number, any of a number of line search algorithms could be

used to find a local minimum. However, a semi-global line search algorithm is preferable

98 Chapter 5. Local Model Optimization

if the CVE contains many shallow local minima, as is case with most of the local model

parameters.

The semi-global line search algorithm used here tries increasing and decreasing the

parameter value by a range of amplification factors, a set of scalar multipliers. For example,

if γi is the parameter being minimized and Φ is a set of possible amplification factors, the

minimization in step 1.1 would consist of evaluating the CVE with α= φγi for each φ ∈ Φ.
The parameter γi would then be replaced with the value that minimized the CVE.

To ensure that a wide range of parameter values is examined, the amplification factors

were chosen to be evenly spaced on a logarithmic scale. For example, if the user wished

to evaluate the CVE at only eleven points and wanted to try amplification factors ranging

from 1
10 to 10, the amplification factors would be {0.100, 0.158, 0.251, 0.398, 0.631, 1.00,

1.58, 2.51, 3.98, 6.31, 10.0}.
This approach requires the user to specify three parameters: the number of amplifica-

tion factors, nφ, the maximum amplification factor, φmax, and the minimum amplification

factor, φmin. For all of the results reported here φmin = 1
φmax
. The remaining two user-

specified parameter values selected for the results reported here are given in Table 5.1 in

Section 5.5.2.

After the cyclic coordinate method converges, the parameter values can be found with

greater precision by reducing the range of the amplification factors. For example, after

initial convergence, the range could be reduced to φmin = 0.2 and φmax = 5. This will be

discussed further in the next section.

5.5.2 Generalized Cyclic Coordinate Method

The cyclic coordinate method’s rate of convergence is much slower than gradient-based opti-

mization methods. If the gradient can be calculated for only some of the model parameters,

the rate of convergence can be increased by combining the cyclic coordinate method with

a gradient-based algorithm such as PARTAN.

Here a generalization of the cyclic coordinate method is described that combines cyclic

optimization with gradient-based optimization. During each cycle, the gradient parameters

are jointly optimized for a user-specified number of steps. The remaining parameters are

found by exhaustive search for integers and by semi-global line search for real-valued pa-

rameters. This approach is substantially faster than using the cyclic method to optimize

each of the parameters one at a time.

5.5. Cyclic Coordinate Optimization 99

To illustrate this method, suppose the gradient of the CVE can be calculated for

the parameters, {γ1, . . . , γng}, and not for the rest, {γng+1, . . . , γnγ}. In this case the
CVE may be written as a function of two vectors, CVE(γ̃, γ́), where γ̃ � [γ1, . . . ,γng]T and

γ́ � [γng+1, . . . ,γnγ]T. Using this notation, the generalized cyclic coordinate method is given

as follows.

Algorithm 5.2: Generalized Cyclic Coordinate Method

1. Define γ̃ � [γ1, . . . ,γng
]T as a vector that contains the parameters for which the gradient may be

calculated and γ́ � [γng+1, . . . ,γnγ
]T as a vector that contains the remaining parameters. Define

Φ= { 1
φmax

, . . . ,φmax} as a finite set of real-valued amplification factors.
2. Initialize the stopping criteria:

ni := 0,
nr := 0.

3. Store the current value of CVE:
CVEprev := CVE(γ̃, γ́).

4. Perform Cyclic Optimization.

For i = 1 to (nγ −ng),

4.1 If γ́i is integer valued, then perform an exhaustive search:

γ́i := argmin
γi,min≤α≤γi,max

CVE(γ̃, [γ́1, . . . , γ́i−1, α, γ́i+1, . . . , γ́nγ́
]T).

4.2 Else, perform a semi-global line search,

φ� := argmin
φ∈Φ

CVE(γ̃, [γ́1, . . . , γ́i−1, φγ́i, γ́i+1, . . . , γ́nγ́
]T),

and update the parameter value,

γ́i := φ�γ́i.

4.3 Next i.

5. Perform gradient-based optimization:

For i = 1 to nu,

5.1 Calculate ∇γ̃CVE(γ̃, γ́).

5.2 Calculate a new direction of descent, g.

5.3 Perform line search:

α :=argmin
α≥0

CVE(γ̃+αg, γ́).

5.4 Update the parameters:

γ̃ := γ̃+αg.

5.5 Next i.

6. Update the count of iterations:

ni := ni+1.

7. If ni = ni,max, then the number of cycles has reached the user-specified limit. Exit function.

8. If CVE(γ̃, γ́) 	=CVEprev, then the optimization has not yet converged. Goto 3.

100 Chapter 5. Local Model Optimization

9. If nr = nr,max, then the semi-global range has been reduced the user-specified number of times.

Exit function.

10. Reduce the range for the semi-global line search:

φmax := 1+ (φmax − 1)/2,
recalculate the set of amplification factors,

Φ= { 1
φmax

, . . . ,φmax},
and increment the count of reductions:

nr := nr +1.

11. Goto 3.

This algorithm uses two stopping criteria. First, if the number of cycles exceeds the

user-specified limit, ni,max, the algorithm stops and returns the best parameter values that

were found. Second, the algorithm will stop if the CVE did not change during a cycle and

the range of the semi-global line search has been reduced nr,max times.

If an ideal line search were used the second criteria would never be met because the line

search in Step 5.3 would always reduce the CVE slightly since g is a direction of descent6.

However, a practical implementation of a line search constrained to find the approximate

local minimum in a limited number of steps may return a step size of α = 0, which would

leave the CVE unchanged.

Parameter Default Description
ni,max 7 The maximum number of cycles that are allowed before the opti-

mization is stopped.
nu 5 The number of gradient-based updates per a cycle.
φmax 10 The maximum value of the amplification factors.
nφ 11 The number of amplification factors considered in each semi-global

line search.
nr,max 4 The maximum number of reductions in the range of amplification

factors.

Table 5.1: All results reported here were generated with these user-specified parameter
values for the generalized cyclic optimization method.

Table 5.1 summarizes the user-specified parameters for the generalized cyclic coor-

dinate method. Each of these parameters controls the tradeoff between the final model

accuracy and the time allowed to optimize the parameters. This is an important advan-

tage of this approach because it relieves the user of responsibility for picking the model

parameter values and allows control of the time required to build the model instead.

6Theoretically, the line search will not change the parameters if an exact local minimum is found and the
magnitude of the gradient is zero, but this does not occur in practice.

5.6. Vectored Ridge Regression Optimization 101

In the following sections the generalized coordinate method is used to optimize vectored

ridge regression (VRR) and principal components regression (PCR).

5.6 Vectored Ridge Regression Optimization

Using the generalized cyclic coordinate method, the number of neighbors may be jointly

optimized with the ridge parameters and the metric parameters. Here the cross-validation

error is denoted as CVE(k,γ) where k is the number of neighbors and γT � [λT rT], where
λ ∈ R

nd is a vector of the metric parameters and r ∈ R
nd is a vector of the ridge parameters.

The complete algorithm is given below.

Algorithm 5.3: Weighted Vectored Ridge Regression Optimization

1. Define γT � [λT rT] where λ are the metric parameters and r are the ridge parameters. Define k
as the number of neighbors used to build the model.

2. Initialize the stopping criteria:

ni := 0,
CVEprev :=∞.

3. Optimize the number of neighbors by an exhaustive line search:

k := argmin
kmin≤i≤kmax

CVE(i,γ).

4. For i = 1 to nu,

4.1 Calculate the gradient:

∇γCVE(k,γ).

4.2 Calculate a new direction of descent, g.

4.3 Perform a line search:

α :=argmin
α≥0

CVE(k,γ+αg).

4.4 Update the parameters:

γ := γ+αg.

4.5 Next i.

5. If ni = ni,max, then the number of cycles has reached the user-specified limit. Exit function.

6. If CVE(k,γ) = CVEprev, then the optimization has converged. Exit function.

7. Update the stopping criteria:

ni := ni+1,
CVEprev := CVE(k,γ).

8. Goto 3.

Here the new user-specified parameters are the initial values for the metric weights λ,

the initial values for the ridge parameters r, and the range of values for k, kmin and kmax.

102 Chapter 5. Local Model Optimization

5.7 Principal Components Regression Optimization

The generalized cyclic coordinate method can also be applied to principal components

regression (PCR). This type of regularization has three parameters: the soft threshold

center, sc, the threshold width, sw, and the number of principal components, nσ. Since

there are only three regularization parameters and since the gradient can not be calculated

for these parameters, they are optimized using the semi-global line search. The metric

parameters are optimized using an estimate of the gradient obtained by dithering. In this

section the cross-validation error is written as CVE(k,sc,sw,nσ,λ). The complete algorithm

is described below.

Algorithm 5.4: Principal Components Regression Optimization

1. Define sc as the soft threshold center, sw as the soft threshold width, nσ as the number of

principal components, λ as the metric parameters, and k as the number of neighbors used to build

the model. Define Φ= { 1
φmax

, . . . ,φmax} as a finite set of real-valued amplification factors.
2. Initialize the stopping criteria:

ni := 0,
nr := 0.

3. Store the current value of the CVE:
CVEprev := CVE(k,sc,sw,nσ,λ).

4. Optimize the number of neighbors by an exhaustive line search:

k := argmin
kmin≤i≤kmax

CVE(i,sc,sw,nσ,λ).

5. Optimize number of principal components by an exhaustive line search:

nσ :=argmin
0≤i≤k

CVE(k,sc,sw, i,λ).

6. Optimize soft threshold center by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k, φsc,sw,nσ,λ),

and update the parameter value,

sc := φ�sc.

7. Optimize soft threshold width by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k,sc, φsw,nσ,λ),

and update the parameter value,

sw := φ�sw.

8. Perform gradient-based optimization.

For i = 1 to nu,

8.1 Estimate the gradient by dithering:

∇λCVE(k,sc,sw,nσ,λ).

8.2 Use the gradient to calculate a new direction of descent, g.

5.8. Discussion 103

8.3 Perform a line search:

α :=argmin
α≥0

CVE(k,sc,sw,nσ,λ+αg).

8.4 Update the parameters:

λ := λ+αg.

8.5 Next i.

9. Update count of iterations:

ni := ni+1.

10. If ni = ni,max, then the number of cycles has reached the user-specified limit. Exit function.

11. If CVE(k,sc,sw,nσ,λ) 	=CVEprev, then the optimization has not yet converged. Goto 3.

12. If nr = nr,max, then the semi-global range has been reduced the user-specified number of times.

Exit function.

13. Reduce the range for the semi-global line search,

φmax := 1+ (φmax − 1)/2,
recalculate the set of amplification factors,

Φ := { 1
φmax

, . . . ,φmax},
and increment the count of reductions,

nr := nr +1.

14. Goto 3.

The new user-specified parameters for this algorithm are the initial values for the

metric weights λ, the initial threshold center sc, the initial threshold width sw, the initial

number of principal components nσ, and the range of values for k, kmin and kmax.

5.8 Discussion

The method of parameter optimization discussed in this chapter is not without its disad-

vantages. Although the iterative algorithms discussed in this chapter can only improve the

initial parameters provided by the user, the presence of local minima may limit the degree

of improvement.

Another drawback of parameter optimization is that the user must specify many more

parameter values than if optimization had not been used. In addition to choosing the initial

model parameter values, the user must also specify values for the optimization algorithm

parameters. For experienced users this may be considered an advantage since they have

more control of the optimized model, but more often users will feel overwhelmed as they try

to pick parameter values with little intuition of how they will ultimately affect the model

accuracy.

104 Chapter 5. Local Model Optimization

Fortunately, if an optimization algorithm is implemented correctly it can only improve

the model accuracy as compared to the values that would have been chosen by the user.

Although it may require the user to pick many parameter values, the model accuracy is

much less sensitive to the optimization parameter values than the model parameter values.

This enables even inexperienced users to construct more accurate local models than would

be possible if optimization were not employed.

5.9 Summary

This chapter discussed two new optimization algorithms for vectored ridge regression (VR-

R) and principal components regression (PCR). Both algorithms can only improve model

performance since they are guaranteed to not increase the cross-validation error.

There are two significant disadvantages these algorithms: they can require substantial

preprocessing and they require the user to pick the algorithm parameter values in addition to

the initial values for the model parameters. However, the algorithms were designed so that

the algorithm parameters control the amount of preprocessing required for optimization.

This shifts the burden on the user from picking good model parameter values to picking

good algorithm parameter values that make the appropriate tradeoff between computational

resources and model accuracy. For example, instead of specifying the number of neighbors,

the user is required to specify a range of good values, kmin and kmax. If the user picks a

large range the preprocessing requirements will be increased but the model may be more

accurate.

There are several improvements that can be made to this approach when local models

are used for chaotic time series prediction. These are discussed in Chapter 6 along with

two new algorithms for parameter optimization that are designed specifically for the time

series prediction problem. Examples of these algorithms applied to a variety of data sets

are given in Chapter 7.

Chapter 6

Chaotic Time Series Prediction

Stocks have reached what looks like a
permanently high plateau.

—Professor of Economics, Yale
University, 1929.

This chapter discusses how local models can be used for time series prediction. This

includes several modifications to the optimization algorithms and the model structure that

increase the predictive accuracy and reduce the computation required.

This chapter is organized as follows. Section 6.1 describes assumptions about the source

of the time series. Section 6.2 introduces local modeling for time series prediction with an

example. Section 6.3 describes the importance of Takens’ theorem. Section 6.4 describes a

new model parameter and metric designed specifically for the time series prediction problem.

Section 6.5 describes how to improve the accuracy of multi-step predictions. Section 6.6

gives two new optimization algorithms for vectored ridge regression (VRR) and principal

components regression (PCR) specifically designed for the time series prediction problem.

6.1 Process Model and Assumptions

Continuous-time chaotic time series are generated by nonlinear dynamic systems that can

be described by a set of nonlinear ordinary differential equations,

żt = fc(zt), (6.1)

yt = gc(zt),

105

106 Chapter 6. Chaotic Time Series Prediction

fd(zt-1) gd(zt)
zt-1 zt yt

 -1

Figure 6.1: Process model for time series prediction. The operator �−1 represents a unit
delay. The dashed box is used to emphasize that the equations have no external driving
inputs and the system is essentially a nonlinear oscillator. Everything inside the dashed
box is unknown to the user.

where zt ∈ R
ns is the state of the system, ns is the order of the system, and yt, a scalar, is

the system output. The functions fd(·) and gd(·) must be smooth, in the sense that they
have continuous and bounded partial derivatives, the system must be time invariant, and

the system must have a finite number of equilibria. These conditions ensure that Takens’

theorem applies (discussed in Section 6.3) and that the Lipschitz condition is satisfied, which

implies the solution to Equation 6.1 exists and is unique [124, pp. 68–72].

An equivalent discrete-time system also exists,

zt = fd(zt−1),

yt = gd(zt),

where

fd(zt−1) �
∫ t

t−1
fc(zτ)dτ,

gd(zt) � gc(zt).

Without loss of generality, the sampling period is assumed to be one in this chapter for

ease of presentation. Since the system has no external driving inputs, this system can be

thought of as a nonlinear oscillator, as illustrated in Figure 6.1.

6.1.1 Chaotic Time Series

The system described in the previous section is only capable of a few types of behavior:

convergent, divergent, periodic, quasi-periodic, or chaotic. Convergent time series converge

6.1. Process Model and Assumptions 107

to a constant with time, yt → c as t→ ∞, which makes them relatively easy to predict.
Divergent time series increase in amplitude with time, |yt| →∞ as t→∞, and can be very
difficult to predict. Although there are some interesting applications that require short

term prediction of these types of transient time series, the method described here is not

well-suited to these types of problems.

Periodic time series have a fundamental period T such that yt = yt+T . Quasi-periodic

time series are defined as a sum of two or more periodic time series such that the ratio of

at least one of the pairs of fundamental periods is not a rational number1. The method

described in this chapter can be successfully applied to these types of time series, but other,

simpler methods work just as well.

Chaotic time series are similar to divergent time series because on average the initial

separation of two similar states, z0 and z0+ δ, increases exponentially with time, ||f td(z0)−
f td(z0 + δ)|| ∝ α−t for small t, small δ, and some α > 1. However, unlike divergent time

series, the amplitude of chaotic time series is bounded. The rapid separation of close

trajectories makes long term predictions of chaotic time series very difficult. Accurate short

term predictions are possible, but the accuracy is very sensitive to the method of prediction.

6.1.2 Noise

Many researchers have considered time series generated by nonlinear dynamic systems that

contain noise,

żt = fc(zt,ut),

yt = gc(zt,vt),

where ut ∈ R
ns is called process noise and vt ∈ R

1 is called measurement or observation

noise. Both types of noise are modeled as white noise processes with zero mean.

The majority of research on this topic attempts to remove the noise by finding a

smoothed time series that satisfies the equations given in the previous section. The predic-

tion methods described in this chapter may produce more accurate predictions if these noise

reduction methods are applied to the time series as a preprocessing step, but the methods

do not require this step. The interested reader is referred to the many papers on this topic

for more information [30,125–131].

1This guarantees that the series never repeats and hence the term quasi-periodic.

108 Chapter 6. Chaotic Time Series Prediction

20 40 60 80 100 120 140 160 180 200

5

5.5

6

6.5

7

7.5

Ribbon Time Series

Time

(a)

1 2 3 4 5 6 7 8

5

5.5

6

6.5

7

Three Most Similar Segments

Time

(b)

Figure 6.2: (a) Chaotic time series with 200 points. The last darkened segment shows the
points immediately preceding the point to be predicted. The other three darkened segments
are the three closest segments in the time series. (b) The points immediately preceding the
prediction point (dashed line) and the three closest segments (solid lines), all aligned in
time. The × shows the prediction generated by averaging the points immediately after the
three neighboring segments.

6.2 Example of Local Modeling for Prediction

Local models generate predictions by finding segments of the time series that closely re-

semble the segment immediately preceding the point to be predicted. The prediction is an

estimate of the average change that occurred immediately after the neighboring segments.

Figure 6.2 gives an illustration of this process applied to data recorded from a magnetoe-

lastic ribbon2.

6.3 Takens’ Theorem

Takens’ theorem states that there is a unique one-to-one mapping between the state of a

dynamic system, zt in Equation 6.1, and a finite window of the time series [132]. This

window is called a time delay embedding,

xt � [yt,yt−δ, . . . ,yt−(nd−1)δ]
T, (6.2)

where nd is the embedding dimension and δ is the embedding delay. Takens’ work was later

generalized and shown to apply to a broader class of systems by Sauer et al. [133].

2This data used to be publicly available from Georgia Tech at http://∼irobot.physics.gatech.edu, but it
was not available at the time of writing.

6.3. Takens’ Theorem 109

 -1
yt-1

yt-2 yt-n

yt

yt-1

g(yt-1,yt-2,yt-3,...,yt-n)

yt-3

d

d

 -1 -1

 -1

Figure 6.3: Equivalent process model for time series prediction. Note that the inputs to
the function g(·) are known, only the function itself is unknown. Here the embedding delay
was set equal to one, δ = 1, for the sake of simplicity.

In order for the theorem to hold the embedding dimension must satisfy nd ≥ 2ns+1,
where ns is the order of the system.

Takens’ theorem implies that if the assumptions described in Section 6.1 are satisfied,

there exists a function g(·) such that

yt+1 = g
(
[yt,yt−δ, . . . ,yt−(nd−1)δ]

T
)
, (6.3)

= g(xt).

This is an important theorem for time series prediction because it implies perfect predictions

are possible using only a finite segment of the values immediately preceding the point to be

predicted. This idea is illustrated by Figure 6.3, which shows a diagram of a system that is

equivalent to the system shown by Figure 6.1.

Given the process model described by Equation 6.1 and illustrated by Figure 6.1, even

if the functions fd(zt) and gd(zt) were known, prediction would not be possible because the

state of the system zt is unknown to the user. The inputs to the equivalent system described

by Equation 6.3 are available to the model and only the function g(·) is unknown.
The time series provides many examples of the mapping yt+1 = g(xt). If δ = 1, these

mappings can be written as

ynd+1 = g ([ynd
, ynd−1, . . . , y1]T) ,

ynd+2 = g ([ynd+1, ynd
, . . . , y2]T) ,

...

yny = g ([yny−1, yny−2, . . . , yny−nd
]T) .

(6.4)

110 Chapter 6. Chaotic Time Series Prediction

Thus, the chaotic time series prediction problem can be framed as a nonlinear modeling

problem.

A more accurate model can be constructed if the knowledge that the data comes from

a chaotic time series is embedded in the model. The following sections discuss some of the

nuances of using nonlinear models for time series prediction and discuss techniques of how

to incorporate this knowledge into local models to create more accurate predictions.

6.3.1 Intrinsic Manifold Dimension

One of the consequences of Takens’ theorem is that all of the points in the reconstructed data

set described by Equation 6.4 lie on a nonlinear manifold with a dimension no more than

2ns+1 where ns is the order of the system described by Equation 6.1. This is analogous

to collinearity because each input vector contains at most 2ns + 1 independent variables

regardless of the value of nd, the size of the vector.

There are several significant consequences of this fact. First, if the order of the system

is fairly small, say 3–5, all of the points will lie on a low-dimensional nonlinear manifold.

As discussed in Chapter 3, this ensures that the fast nearest neighbor algorithms can work

efficiently.

Second, this side-steps the curse of dimensionality because even if the dimension of the

space is very large, the dimension of the surface that contains the data set remains small.

Thus, it does not require an exorbitant number of points to densely populate the space.

Third, this makes regularization especially important because, if the manifold is locally

linear, all of the neighboring points will lie in a linear subspace and the matrix product ATA,

which is inverted during the calculation of the linear coefficients, will be nearly singular.

6.3.2 Upsampling

One of the differences between the nonlinear modeling problem and the time series prediction

problem is that the number of points in the data set can be increased by upsampling the

time series. Upsampling is a standard one-dimensional interpolation technique and there

are many good ways to do it.

For time series that are sparsely sampled, upsampling causes the neighbors to be closer

to the query point and can significantly increase the model accuracy. The main disadvantage

is the additional computational cost of finding the nearest neighbors in a larger data set.

If the time series is upsampled too much, the nearest neighbors may all be adjacent

in time. One technique for solving this problem is to find the nearest trajectory segments,

6.3. Takens’ Theorem 111

490 495 500 505 510 515 520 525 530

50

100

150

200

250
Santa Fe Laser Time Series

Time

(a) Original

490 495 500 505 510 515 520 525 530

50

100

150

200

250
Santa Fe Laser Time Series

Time

(b) Upsampled by five

Figure 6.4: This figure shows the Santa Fe Laser time series before (a) and after (b) up-
sampling by a factor of five.

instead of the nearest neighbors [9]. However, this technique is computationally intensive

and similar accuracy can be achieved by increasing the size of the neighborhood.

Since upsampling increases accuracy at the cost of additional computation, the up-

sampling rate is best left as a user-specified parameter. A visual examination of the power

spectrum and the raw time series can often help the user make a good choice.

6.3.3 Window Length

Takens’ theorem assumes that the time series is noise-free; in practice this condition is

rarely met and the selection of the embedding delay, δ, and the embedding dimension, nd,

may critically affect how accurately the time delay embedding reconstructs the state of the

system. Many researchers have recognized this problem and proposed methods to find δ

and nd for finite time series with and without noise [27,134–136]. The goal of these methods

is usually to find the values of these parameters that minimize the embedding dimension nd

without sacrificing the accuracy of the reconstruction. Although a compact reconstruction

is efficient computationally, it does not necessarily maximize prediction accuracy; a point

that is often overlooked.

There is some evidence that the accuracy of the reconstruction is not sensitive to the

value of nd for finite noise-free time series so long as nd is sufficiently large. Kugiumtzis

makes a strong case that the most important consideration in choosing the embedding

parameters nd and δ, is the window length, ω � nd δ [27]. As long as ω is sufficiently

large and nd is not too small, a wide range of values of δ and nd will create an accurate

reconstruction of the system state.

112 Chapter 6. Chaotic Time Series Prediction

Before the model can be constructed, the embedding parameters must be chosen to

construct the data set for the local model. A good value for the window length, ω, can

often be chosen by visual inspection of the time series. Typically, noise-free univariate time

series generated by the dynamic system in Equation (6.1) will contain periodic oscillations

of roughly the same period; ω should be chosen to span several of these oscillations. The

only disadvantages of choosing a larger value for ω than necessary are that it may increase

the computation and it reduces the number of points that are available to build the model.

If the time series contains ny points, the number of points in the data set is given by

np = ny −ω,
= ny −nd δ.

For large time series np ≈ ny and the value of ω is not critical as long as it is not too small.
For smaller time series the choice is more important.

6.3.4 Choosing the Embedding Parameters

Once the window length ω has been selected, the embedding delay, δ, must be chosen.

Although many researchers have proposed algorithms for minimizing the embedding di-

mension, there is a good reason to pick a small value for δ, which increases the embedding

dimension. Consider the square of the Euclidean distance between two points,

DE (xτ ,xt)2 =
nd−1∑
i=0

(yτ−iδ − yt−iδ)
2 , (6.5)

where xτ is defined by Equation 6.2. In this case, the distance is an approximation of the

integrated squared error,

ISE(xτ ,xt) �
∫ ndδ

0
(xτ−υ −xt−υ)

2 dυ,

= lim
�υ→0

ndδ

�υ
−1∑

i=0

(xτ−i�υ −xt−i�υ)
2 �υ,

= lim
δ→0

nd−1∑
i=0

(xτ−iδ −xt−iδ)
2 δ,

= lim
δ→0
DE (xτ ,xt)2 δ,

≈ DE (xτ ,xt)2 δ,

6.4. Local Model Parameterization 113

and finally,

DE (xτ ,xt)2 ≈ 1
δ
ISE(xτ ,xt). (6.6)

For a fixed window length, the choice of δ governs the accuracy of the estimated

ISE(·). Small values of δ will increase the accuracy of the estimated ISE(·), which will
usually increase the local model accuracy. However, small values of δ will also increase the

computation required to calculate DE (xτ ,xt). In light of this tradeoff, the user should pick

a value for δ that is small, but within the limits of the computational budget. The same

arguments and tradeoffs apply when the diagonally weighted Euclidean metric is used.

6.4 Local Model Parameterization

This section describes a new model parameter for time series prediction than can improve

model accuracy and reduce computation. A new exponential metric is also described to

eliminate the need for gradient estimation in principal components regression.

6.4.1 Number of Local Inputs

For the time series prediction problem the model input variables have a natural order that

can be exploited to build more accurate models. Since the input variables are arranged as

xt = [yt,yt−δ, . . . ,yt−(nd−1)δ]
T (6.7)

the latter elements of the input vector will have less influence on the process output, yt+1.

This is especially true of chaotic time series since neighboring states diverge from one

another at an exponential rate, on average. In this case, it may be better to build the local

linear model without the latter input variables, which decreases the variance of the local

model output.

The cyclic optimization algorithm in the previous chapter can easily accommodate this

modification by treating the number of local inputs, n�, as a new model parameter to be

optimized. This approach has the additional benefit of letting the optimization algorithm

decide between a local averaging model, n� = 0, and a local linear model, n� > 0.

114 Chapter 6. Chaotic Time Series Prediction

6.4.2 Exponential Metrics

Choosing an appropriate distance metric is an important decision that can strongly affect

the accuracy of local models for time series prediction [26,120,121]. The most popular choice

is the Euclidean distance described by Equation 6.5, but some researchers have suggested

alternatives.

Murray proposed using a exponentially weighted diagonal metric3,

DM(xτ ,xt)2 �
nd−1∑
i=0

βi (yτ−iδ − yt−iδ)
2 ,

where β is a scalar between zero and one [120].

This metric is intuitively appealing because the components of xt closest in time to

the prediction are given exponentially more weight than the distant points. It is especially

appropriate for chaotic systems where neighboring states are known to diverge exponentially

with time. Since the exponential metric is equal to the standard Euclidean metric when

β = 1, an appropriate choice of β can only improve the model accuracy as compared to the

Euclidean metric.

This metric is less general than the diagonally weighted Euclidean metric described in

the previous chapter, but it also has fewer parameters and can be optimized more quickly.

This is an especially attractive option for principal components regression (PCR) since the

single-parameter optimization does not require gradient estimation, which is computation-

ally intensive.

A more general form of the exponential metric is

DG(xτ ,xt)2 �
nm∑
i=0

(
(1− ρ) ∗ e−β∗i+ ρ

)
(yτ−iδ − yt−iδ)

2 ,

where nm < nd is the number of terms in the summation, β is a scalar that controls the rate

of decay, and ρ controls the amount of decay. As illustrated by Figure 6.5, this metric has

considerably more flexibility than the exponential metric but still has few enough parameters

to be efficiently optimized by the cyclic coordinate method. An algorithm for optimizing

these parameters for principal components regression is described in Section 6.6.2.

3This metric is in a different form than that proposed by Murray, but it is mathematically equivalent.

6.4. Local Model Parameterization 115

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Generalized Exponential Metric Weights

Input Index

(a) β = 0.7

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Generalized Exponential Metric Weights

Input Index

(b) ρ = 0

Figure 6.5: (a) The metric weights ((1−ρ)∗βi+ρ) for β = 0.7 and various values of ρ from
ρ = 0 for the bottom line to ρ = 1 for the top line. (b) The same metric weights for ρ = 0
and various values of β from β = 0.1 for the bottom line to β = 1 for the top line.

Previous Work

Although the choice of the metric can drastically affect the accuracy of local models, very

little has been published on this topic in the field of chaotic time series prediction. The

only publications known to the author are briefly summarized in this section.

Farmer and Sidorowich suggested a fixed λi = e−hi, where h is the metric entropy,

which they report is in some sense linearly optimal [34]. In addition to the exponential

metric, Murray also investigated a two-parameter metric that used a tri-diagonal weighting

matrix [120].

Kugiumtzis compared L1, L2 and L∞ norms, mostly for the purpose of estimating

correlation dimension [137]. Kugiumtzis also performed a brief analysis using local linear

models for prediction and reported that there are not significant differences in the prediction

errors for each of the three norms. Casdagli and Weigend reported that model accuracy

is very sensitive to the choice of the embedding dimension when the Euclidean metric is

used [48].

Tanaka et al. developed an elegant approximation to an optimal metric with a rank-1

weighting matrix [121]. This metric has no user-specified parameters, is computationally

inexpensive, and initial results indicate it may work better than the Euclidean metric or

Murray’s metric. The same metric was also developed independently by Garcia et al. [26].

Fraedrich and Ruckert recently proposed a method for adapting the diagonally weight-

ed Euclidean metric [122]. Unlike the gradient-based optimization approach taken in the

116 Chapter 6. Chaotic Time Series Prediction

previous chapter, this version applies only to the nearest neighbor model4 and uses an ad

hoc optimization algorithm.

6.5 Multi-Step Predictions

This section discusses two different approaches to generating predictions for more than one

step ahead and the importance of picking an appropriate error measure for iterative models.

6.5.1 Iterated versus Direct Prediction

Suppose we are given a time series, [y1, y2, . . . , yny], and asked to predict na steps ahead.

Direct prediction is the method in which a model is built to directly predict yt+na ,

ŷt+na = ĝγ(xt),

= ĝγ([yt,yt−δ, . . . ,yt−(nd−1)δ]
T),

where ĝγ(·) is the model defined by the parameters stored in the vector γ.
For iterated prediction, a model is built to predict one step ahead and the prediction

is then used as part of the input vector to predict two steps ahead and so on. In each step,

the model estimates yt+1 from xt and this is then used to estimate xt+1. For example, if

δ = 1,

xTt =
[
yt,yt−1,yt−2, . . . ,yt−(nd−1)

]
,

ŷt+1 = ĝγ(xt),

x̂Tt+1 =
[
ŷt+1,yt,yt−1, . . . ,yt−(nd−2)

]
,

ŷt+2 = ĝγ(x̂t+1),

x̂Tt+2 =
[
ŷt+2, ŷt+1,yt, . . . ,yt−(nd−3)

]
,

ŷt+3 = ĝγ(x̂t+2), (6.8)
...

This process is iterated for na steps finally producing the prediction ŷt+na .

There has been much debate over which method is better. Direct prediction is question-

able because a function that maps na steps into the future will usually be more complicated

4The nearest neighbor model uses the target value of the nearest neighbor as the model output. This is
equivalent to local averaging with k = 1.

6.5. Multi-Step Predictions 117

and thereby harder to model than one that predicts a single step into the future [35]. Iter-

ated prediction is questionable because it does not take into account the accumulated errors

in the input vector, ĝγ(xt+c) 	= ĝγ(x̂t+c).

Most researchers have found that iterated prediction is more accurate than direct

prediction [18, 34, 35, 136]. As a compromise, Sauer suggested averaging the direct and

iterated predictions [37]. In the next section, an improvement to iterated prediction is

described.

6.5.2 Multi-Step Error Estimation

In framing the time-series prediction problem as a nonlinear modeling problem, the natural

error measure for local models is the cross-validation error,

CVE(γ) �
nc∑
i=1

p
(
yc(i)− ĝ−γ (xc(i))

)
,

where nc controls the accuracy of the estimated error, c(i) is the data set index of the ith

cross-validation point, p(·) is the user-specified penalty function, and the vector γ contains
all of the parameters that define the model. The output, ĝ−γ (xc(i)), is from a local model

constructed with the c(i)th point omitted from the data set, but used as the model input.

Because this minimizes the error of predicting one-step ahead, it is called the one-step

cross-validation error (OSCVE). A crucial disadvantage of using one-step cross-validation

error is that it does not take into account the effect of the errors in the input vector that

yt g(xt+1)
yt+1 yt+2 yt+3g(xt) g(xt+2)

(a) Takens Equivalent

yt g(xt+1)
yt+1 yt+2 yt+3g(xt) g(xt+2)

(b) Multiple Iterative Models

Figure 6.6: (a) The Takens’ equivalent of the system that generated the time series. (b) The
errors in the iterative model are caused by modeling errors, ĝ(·) 	= g(·), and by the errors
in the input vector from previous predictions, x̂t+i 	= xt+i for i > 1.

118 Chapter 6. Chaotic Time Series Prediction

occur with iterated prediction; the parameter values that minimize the OSCVE are generally

not the same values that maximize the model performance for predicting na steps ahead.

The diagram in Figure 6.6 illustrates this idea.

The problem of neglecting the errors in the model input vector is especially acute for

local linear models. If some of the input variables are collinear, the ill-conditioned matrix

inverse of ATA will cause the magnitude of the linear model coefficients to be very large.

If the model input vector, or query, happens to lie in the column space of A, the output

may be accurate despite the large coefficients. However, if the model input vector is only

an approximation, the errors in the approximation, x̂t−xt, will be greatly amplified by the
model coefficients.

A more appropriate choice for optimization is to use an error measure that reflects

the true cost for making iterative predictions where the true cost depends on the applica-

tion. In many cases an average (possibly weighted) model accuracy over na-steps ahead is

appropriate,

CVEna(γ)�
1
ncna

nc∑
i=1

na∑
j=1

p
(
yc(i)+j − ĝ−γ (xc(i)+j−1)

)
,

where na is the number of steps ahead over which the average error is measured. This error

measure is called multi-step cross validation error (MSCVE).

The main disadvantage of MSCVE is the requirement for additional computation. If

the amount of computation is restricted, the user must tradeo ff accuracy of the estimated

CVE, determined by nc, for the number of steps ahead over which the estimate is taken,

determined by na.

6.6 Model Optimization

The previous chapter described two optimization algorithms for vectored ridge regression

(VRR) and principal components regression (PCR). This section describes two new versions

of each of these algorithms that include the innovations for time series prediction described

in this chapter.

6.6.1 Vectored Ridge Regression Optimization

The VRR optimization algorithm described in the previous chapter can be tailored to time

series prediction problems by making two modifications: the number of local inputs is added

6.6. Model Optimization 119

as an new model parameter to be optimized and the multi-step cross-validation error, CVE,

is used as the measure of model accuracy.

The Error Gradient

The gradient of CVE is more difficult to derive and compute than for the nonlinear modeling

problem because both the model ĝγ(·) and the model input vector5

x̂t =
[
ŷt, ŷt−1, . . . ,yt−(nd−1)

]T
,

=
[
ĝγ(x̂t−1), ĝγ(x̂t−2), . . . ,yt−(nd−1)

]T
,

depend on the model parameters6 γ.

To simplify the discussion, the vector γ is defined in this section as the concatenation

of the metric parameters, λ, and the ridge parameters, r, so that γT � [λT rT]; note that
the model is also defined by k, the number of neighbors, and n�, the number of local inputs.

The gradient of CVE(k,n�,γ) is given by

∇γCVE(k,n�,γ) =
1
ncna

nc∑
i=1

na∑
j=1

∇γp
(
yc(i)+j − ĝ−γ (x̂c(i)+j−1)

)
.

If we define a new variable, ε� yc(i)+j − ĝ−γ (xc(i)+j−1), the gradient can be written as

∇γCVE(k,n�,γ) =
1
ncna

nc∑
i=1

na∑
j=1

−dp(ε)
dε

∇γ ĝ
−
γ (x̂c(i)+j−1).

The lth element of the gradient of the model output, ∇γ ĝ
−
γ (x̂c(i)+j−1), is given by

∂ĝ−γ (x̂c(i)+j−1)
∂γl

=
∂ĝ−γ (u)
∂γl

∣∣∣∣∣
u=x̂c(i)+j−1︸ ︷︷ ︸
①

+
min(nd,j−1)∑

m=1

∂ĝ−γ (x̂c(i)+j−1)
∂x̂c(i)+j−1,m︸ ︷︷ ︸

②

∂x̂c(i)+j−1,m
∂γl︸ ︷︷ ︸

③

. (6.9)

The first term, ① , accounts for the effect of γl on the model estimate ĝγ(u) for a constant

input, u. This is derived in Appendix A. The first term in the summation, ② , is the partial

derivative of the model output with respect to the model inputs and is also derived in

Appendix A.

5In this section, the embedding delay is assumed to be one.
6Recall from Equation 6.8 that the elements of xt are estimated only when the true value is not known.

120 Chapter 6. Chaotic Time Series Prediction

Since the estimated input vector is created from previous model outputs,

x̂c(i)+j−1,m = ĝγ(x̂c(i)+j−1−m),

the last term in the summation of Equation 6.9, ③ , is the lth element of the gradient from

the previous step. Thus, the gradient can be calculated recursively,

∂ĝ−γ (xc(i))
∂γl

=
∂ĝ−γ (u)
∂γl

∣∣∣∣∣
u=xc(i)

,

∂ĝ−γ (x̂c(i)+1)
∂γl

=
∂ĝ−γ (u)
∂γl

∣∣∣∣∣
u=x̂c(i)+1

+
∂ĝ−γ (x̂c(i)+1)
∂x̂c(i)+1,1

∂ĝ−γ (xc(i))
∂γl

,

∂ĝ−γ (x̂c(i)+2)
∂γl

=
∂ĝ−γ (u)
∂γl

∣∣∣∣∣
u=x̂c(i)+2

+
∂ĝ−γ (x̂c(i)+2)
∂x̂c(i)+2,1

∂ĝγ(x̂c(i)+1)
∂γl

+
∂ĝ−γ (x̂c(i)+2)
∂x̂c(i)+2,2

∂ĝ−γ (xc(i))
∂γl

,

...

This recursive approach enables the gradient to be calculated efficiently7.

Algorithm

The time series version of the VRR optimization algorithm is given below. Except for the

additional step to optimize n� and the use of MSCVE, this is identical to the algorithm de-

scribed in Chapter 5. Here the multi-step cross-validation error is denoted as CVE(k,n�,γ)

where k is the number of neighbors, n� is the number of local model inputs, and γ is a

vector that contains the metric and ridge parameters.

Since the range for the variable n� is naturally bounded by 0 ≤ n� ≤ nd, the only
additional user-specified parameters are an initial value for n� and the number of steps

included in CVE, na.

Algorithm 6.1: Time Series Vectored Ridge Regression Optimization

1. Define γT � [λT rT] where λ are the metric parameters and r are the ridge parameters. Define k
as the number of neighbors and n� as the number of local model inputs.

2. Initialize the stopping criteria:

ni := 0,
CVEprev :=∞.

7Researchers have employed a similar approach for recurrent neural networks called real time recurrent
learning [138]. Backpropagation through time, a closely related, and mathematically equivalent technique,
has also been used [139].

6.6. Model Optimization 121

3. Optimize the number of neighbors by an exhaustive line search:

k := argmin
kmin≤i≤kmax

CVE(i,n�,γ).

4. Optimize the number of local inputs by an exhaustive search:

n� =argmin
0≤i≤nd

CVE(k,i,γ).

5. For i = 1 to nu,

5.1 Calculate the gradient:

∇γCVE(k,n�,γ).

5.2 Calculate a new direction of descent, g.

5.3 Perform a line search:

α :=argmin
α≥0

CVE(k,n�,γ+αg).

5.4 Update the parameters:

γ := γ+αg.

5.5 Next i.

6. If ni = ni,max, then the number of cycles has reached the user-specified limit. Exit function.

7. If CVE(k,n�,γ) = CVEprev, then the optimization has converged. Exit function.

8. Update the stopping criteria:

ni := ni+1,
CVEprev := CVE(k,n�,γ).

9. Goto 3.

6.6.2 Principal Components Regression Optimization

Like vectored ridge regression, the optimization algorithm for principal components regres-

sion (PCR) can be tailored to the task of chaotic time series prediction by including the

number of local model inputs as an optimization parameter. The computationally intensive

estimation of the gradient can also be eliminated by using the cyclic coordinate method to

optimize the generalized exponential metric described in Section 6.4.2.

In addition to the user-specified parameters described in Chapter 5, this algorithm

also requires the user to specify the initial values for the new parameters n�, nm, nm,min, β,

and ρ.

Here the multi-step cross-validation error is written as CVE(k,n�, sc, sw, nm, β, ρ) to

explicitly show the dependence on each of the model parameters. The complete algorithm

is given below.

122 Chapter 6. Chaotic Time Series Prediction

Algorithm 6.2: Time Series Principal Components Regression Optimization

1. Define sc as the soft threshold center, sw as the soft threshold width, nσ as the number of principal

components, λ as the metric parameters, k as the number of neighbors used to build the model,

and n� as the number of local model inputs. Define Φ = { 1
φmax

, . . . , φmax} as a finite set of
real-valued amplification factors.

2. Initialize stopping criteria:

nc := 0,
nr := 0.

3. Update stopping criteria:

nc := nc+1,
CVEprev := CVE(k,n�,sc,sw,nσ,nm,β,ρ).

4. Optimize the number of neighbors by an exhaustive search:

k := argmin
kmin≤i≤kmax

CVE(i,n�,sc,sw,nσ,nm,β,ρ).

5. Optimize the number of local model inputs by an exhaustive search:

n� :=argmin
0≤i≤nd

CVE(k,i,sc,sw,nσ,nm,β,ρ).

6. Optimize number of principal components by an exhaustive search,

nσ :=argmin
0≤i≤k

CVE(k,n�,sc,sw, i,nm,β,ρ).

7. Optimize soft threshold center by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k,n�,φsc,sw,nσ,nm,β,ρ),

and update the parameter value,

sc := φ�sc.

8. Optimize soft threshold width by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k,n�,sc,φsw,nσ,nm,β,ρ),

and update the parameter value,

sw := φ�sw.

9. Optimize the metric exponent factor by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k,n�,sc,sw,nσ,nm,φβ,ρ),

and update the parameter value,

β := φ�β.

10. Optimize the metric offset by a semi-global line search,

φ� :=argmin
φ∈Φ

CVE(k,n�,sc,sw,nσ,nm,β,φρ),

and update the parameter value,

ρ := φ�ρ.

11. Optimize the number of metric inputs by an exhaustive line search:

nm := argmin
nm,min≤i≤nd

CVE(k,n�,sc,sw,nσ, i,β,ρ).

12. If nc = nc,max, then the number of cycles has reached the user-specified limit. Exit function.

13. If CVE(k,n�,sc,sw,nσ,nm,β,ρ) 	=CVEprev, then the optimization has not yet converged. Goto

2.

6.7. Summary 123

14. If nr = nr,max, then the semi-global range has been reduced the user-specified number of times.

Exit function.

15. Reduce the range for the semi-global line search,

φmax := 1+ (φmax − 1)/2,
recalculate the set of amplification factors,

Φ := { 1
φmax

, . . . ,φmax},
and increment the count of reductions,

nr := nr +1.

16. Goto 3.

6.7 Summary

This chapter described several techniques for modifying the local model parameterization

and optimization for chaotic time series prediction. These modifications included a new

parameter that controls how many inputs are used to build the local model and a new three-

parameter exponential metric specifically designed for chaotic time series. This metric also

enables efficient optimization of principal components regression (PCR). The optimization

algorithms were also modified to minimize the multi-step cross-validation error (MSCVE)

to ensure accurate multi-step predictions.

The next chapter demonstrates these optimization algorithms on several chaotic time

series and discusses some of the tradeoffs and issues that arise in practice.

124 Chapter 6. Chaotic Time Series Prediction

Chapter 7

Case Studies

It is better to read the weather
forecast before we pray for rain.

—Mark Twain

This chapter demonstrates the effectiveness of the algorithms described in the previous

chapter on several time series prediction problems.

This chapter is organized as follows. Section 7.1 describes how the model accuracy was

measured and lists the parameter values used for the examples in this chapter. Section 7.2

illustrates the validity of exponential metrics and Section 7.3 discusses the problem of local

minima. Section 7.4 gives an example of the improvement in model accuracy due to using

multi-step error estimation during model optimization. Section 7.5 illustrates the new

methods of prediction on five chaotic time series taken from a variety of sources.

7.1 Introduction

It is difficult to compare the new methods to previous techniques for local modeling because

previous techniques have relied on the expertise of the researcher to pick appropriate param-

eter values. The new methods use the parameter values selected by the user as a starting

point and can only improve performance, as measured by the cross-validation error.

Instead this chapter focuses on the comparing the two methods of regularization, vec-

tored ridge regression (VRR) and principal components regression (PCR), and the effect of

minimizing the multi-step cross-validation error versus the one-step cross-validation error.

125

126 Chapter 7. Case Studies

7.1.1 Normalized Mean Squared Error

The models in this chapter were constructed using only an initial segment of the time series.

The remainder of the time series was used to estimate the model performance as a function

of the number of steps predicted ahead.

The model accuracy was measured by the normalized mean squared error,

NMSE(τ)� 1
σ2y

1
nc

nc∑
i=1

(
yv(i)+τ − ĝγ(x̂v(i)+τ−1)

)2
, (7.1)

where σ2y is the sample variance of the time series, yv(i)+τ is the (v(i) + τ)th point in the

time-series, v(i) is the index of the first point in the ith validation segment, and ĝγ(x̂v(i)+τ−1)

is the prediction of the local model.

Similarly, the root normalized mean squared error is defined as

RNMSE(τ)�
√
NMSE(τ).

RNMSE(τ) is a convenient measure of error because it is independent of the scale of the

time series and because it has a meaningful interpretation: RNMSE(τ) = 1 is the point

at which the model prediction error is no better than predicting the sample mean ȳ, on

average.

7.1.2 Parameter Values

Parameter Value Description
n� 15 Initial number of local inputs.
nσ 5 Initial number of singular values.
sc 0.0001 Initial center of PCR threshold.
sw 0.05 Initial width of PCR threshold.
β 0.1 Initial metric exponent.
ρ 0.01 Initial metric offset.
nm 20 Number of metric inputs.
nc 250 Number of cross-validation points used for param-

eter optimization.
kmin 5 Minimum number of neighbors.
kmax 15 Maximum number of neighbors.
φmax 10 Maximum value of the amplification factors.
nd 20 Embedding dimension.
nm,min 10 Minimum exponential metric width.

Table 7.1: User-specified values chosen for the results reported here.

7.2. Exponential Metrics 127

Unless otherwise noted, the user-specified parameter values used to generate the results

in this chapter are listed in Table 7.1. For vectored ridge regression, the initial values for the

metric weights and the ridge coefficients are shown in Figures 7.2a and 7.3a, respectively.

7.2 Exponential Metrics

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Optimized Metric Weights

i

λ
2 i

(a) Decreasing

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Optimized Metric Weights

i
λ
2 i

(b) Increasing

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Optimized Metric Weights

i

λ
2 i

(c) Random

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Optimized Metric Weights

i

λ
2 i

(d) Euclidean

Figure 7.1: Local averaging metric weights after optimization for four different initial weight
configurations. In each figure the initial weights are shown by the solid line and the weights
after optimization are shown by the stem plot.

In the previous chapter it was suggested that exponential metrics are appropriate for

time series prediction because the input vectors are composed of past values of the time

series, xt = [yt, yt−1, . . . , yt−np+1]. Intuitively, the initial elements should have a stronger

relationship to yt+1 than the later elements.

To examine the validity of this hypothesis, a local averaging model was optimized to

predict one step ahead by the VRR time series optimization algorithm using the first 3,000

128 Chapter 7. Case Studies

points in the Lorenz time series. This process was repeated for four different initial values.

The metric parameters before and after optimization are shown in Figure 7.1.

In this case the optimized weights all converged to a shape that was similar to a

decreasing exponential, regardless of the values chosen for the initial weights. This gives

empirical support to earlier work suggesting that exponential metrics are appropriate for

time series prediction and suggests that the generalized exponential metric is a good choice

for principal components regression.

7.3 Local Minima

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Optimized Metric Weights

i

λ
i

(a) Decreasing

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Optimized Metric Weights

i

λ
i

(b) Increasing

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Optimized Metric Weights

i

λ
i

(c) Random

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25
Optimized Metric Weights

i

λ
i

(d) Euclidean

Figure 7.2: Ridge regression metric weights after optimization for four different initial weight
configurations. In each figure the initial weights are shown by the line and the weights after
optimization are shown by the stem plot.

Ridge regression is much more sensitive to the choice of initial metric weights than

local averaging. Figure 7.2 shows the metric weights before and after optimization for the

same initial weights used in the previous section. In this case, the optimization algorithm

7.3. Local Minima 129

became stuck in local minima and was unable to change the weights significantly. This

illustrates the importance of choosing the initial weights appropriately for ridge regression.

For all of the results reported here the weights were initialized by the decreasing exponential

shown in Figure 7.2a.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25
Optimized Ridge Parameters

i

r i

(a) Decreasing

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Optimized Ridge Parameters

i

r i

(b) Increasing

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Optimized Ridge Parameters

i

r i

(c) Random

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Optimized Ridge Parameters

i

r i

(d) Euclidean

Figure 7.3: Ridge parameters after optimization for four different initial metric weight
configurations. In each figure the initial weights are shown by the line and the weights after
optimization are shown by the stem plot.

It is equally important that the ridge parameters be initialized properly. Since the later

inputs should have less influence on the local linear model, the ridge parameters should be

larger for these inputs. For the results reported here a linearly increasing function was

used to initialize these parameters. Figure 7.3 shows the initial parameters and their values

after optimization. Note that the optimization only decreased the penalty for the first few

inputs, which confirms that these are the most important inputs for building the local linear

models.

130 Chapter 7. Case Studies

7.4 Multi-Step Cross Validation

0.82
0.84

0.86
0.88

0.9
0.92

0.3
0.38

0.4
0.42

0.44
0.46

0.06

0.062

0.064

0.066

0.068

0.07

0.072

λ1 λ2

(a)

0.830.840.850.860.870.880.890.9

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

λ1

λ
2

(b)

Figure 7.4: Example of a local minima near the initial values for vectored ridge regression
and na = 5. (a) A slice of the cross-validation error surface for the two leading metric
weights. All other coefficients were kept fixed. (b) Convergence of the optimization algo-
rithm to the local minimum, located at the center of the figure.

The previous chapter discussed the motivation for optimizing models to minimize the

multi-step cross-validation error (MSCVE),

CVE(γ)� 1
nanc

nc∑
i=1

na∑
j=1

(
yc(i)+j − ĝ−γ (xc(i)+j−1)

)2 (7.2)

where nc is the number of cross-validation points and na is the number of steps ahead. To

illustrate the importance of this technique the prediction horizon for the Lorenz time series

is shown for several different values of na in Figure 7.5.

As shown in the figure, increasing the value of na consistently increased the long

term accuracy for PCR. This is because the one-step CVE does not account for estimation

errors in the input vector and is thereby less sensitive to ill-conditioning. As this model

is iterated and errors accumulate in the input vector, the errors are amplified by the ill-

conditioning and the model output diverges. The multi-step cross-validation error (MSCVE)

is able to account for these errors and consequently the model is able to generate multi-step

predictions more accurately.

Performance for VRR decreases if na is increased too much because the number of local

minima increases and the optimization converges to a sub-optimal solution more readily.

7.4. Multi-Step Cross Validation 131

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

PCR Error Horizon

(a)

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

2 Steps Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

VRR Error Horizon

(b)

Figure 7.5: The error horizons for PCR and VRR applied to the Lorenz time series. The
legend indicates how many steps ahead (na) the cross-validation error was calculated during
parameter optimization.

132 Chapter 7. Case Studies

This is illustrated by Figure 7.5, which shows little difference in the models optimized with

na = 1,2,5 and 10, but for na = 20 the predictions were significantly worse. Figure 7.4

illustrates the convergence of the algorithm to a shallow local minimum that is very close

to the initial parameter values for na = 5.

7.5 Time Series Prediction Examples

This section gives some examples of PCR and VRR applied to various time series. For

each case, plots of the error horizon are given to compare the performance of PCR with

VRR and to show the effect of minimizing the multi-step cross-validation error (MSCVE)

for various values of steps ahead. Each time series also includes plots of typical predictions

to give the reader an intuitive sense of how accurate these methods are.

7.5.1 Lorenz

5 10 15 20 25

−15

−10

−5

0

5

10

15

Lorenz Time Series

Time (Seconds)

y
t

Figure 7.6: The first 500 points in the Lorenz time series.

The Lorenz system is an idealized model of fluid motion between a hot surface and a

cool surface. It is described by the following nonlinear ordinary differential equations

żt,1 = σ(zt,2− zt,1),
żt,2 = rzt,1− zt,2− zt,1zt,3,
żt,3 = zt,1zt,2− bzt,3,
yt = zt,3,

7.5. Time Series Prediction Examples 133

160 161 162 163 164 165
−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

ŷ
t

PCR Prediction

(a) na = 20

350 351 352 353 354 355
−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

ŷ
t

PCR Prediction

(b) na = 20

160 161 162 163 164 165
−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

ŷ
t

Ridge Prediction

(c) na = 2

350 351 352 353 354 355
−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

ŷ
t

Ridge Prediction

(d) na = 2

Figure 7.7: Prediction examples for Lorenz time series. The predicted series is shown by
the solid line and the real series is shown by the broken line.

where zt ∈ R
3 is the state vector. The system is usually evaluated using the parameter

values σ = 10, r = 28, and b= 8
3 .

This system played an integral role in the discovery of chaotic systems in the 1950s by

Edward Lorenz, a meteorologist at MIT who was interested in using the model for weather

forecasting [140, pp. 359–70].

Figure 7.6 shows 500 points in the Lorenz time series sampled every 0.05 seconds1.

The time series consists of growing oscillations centered at approximately 9 and −9. Once
the amplitude of the oscillations grows large enough, the system experiences a collapse and

rapidly shifts to a different state. The collapses are difficult to predict accurately, which

has motivated many researchers to use this time series to demonstrate their methods of

prediction.

1This time series was generated using MATLAB’s ode43 function.

134 Chapter 7. Case Studies

The prediction horizon for this time series is shown in Figure 7.5 and was discussed in

Section 7.4. Figure 7.7 shows some of the predictions generated by PCR for na = 20 and

by VRR for na = 2.

7.5.2 Mackey Glass

50 100 150 200 250 300 350 400 450 500

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Mackey Glass Time Series

Time Index

y
t

Figure 7.8: The first 500 points in Mackey Glass time series.

The Mackey-Glass time series has also played an important role in research of chaotic

time series. The time series is described by

żt =
0.2zt−∆
1+ (zt−∆)10

+0.1zt,

where the ∆ is usually set to 17. Figure 7.8 shows 500 points of the Mackey-Glass time

series2.

PCR and VRR models were constructed using the first 2, 000 points in the series.

Figure 7.10 shows the error horizons for PCR and VRR. As for the Lorenz time series, the

multi-step optimization produced a much better model than the one-step optimization for

PCR.

In this case, VRR also benefited from multi-step optimization. The performance was

much better for na = 5,10, and 20 than for na = 1 or 2. As with the Lorenz time series,

the overall performance of PCR was significantly better than VRR. Figure 7.9 gives some

examples of the predictions generated by the models.

2This time series was simulated in Matlab by code provided by E. Wan. The code was publicly available
at http://www.ece.ogi.edu/∼ericwan/data.html at the time of writing.

7.5. Time Series Prediction Examples 135

1.93 1.935 1.94 1.945 1.95

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time Index

ŷ
t

PCR Prediction

(a) na = 20

1.79 1.795 1.8 1.805 1.81

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time Index

ŷ
t

PCR Prediction

(b) na = 20

1.93 1.935 1.94 1.945 1.95

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time Index

ŷ
t

Ridge Prediction

(c) na = 5

1.79 1.795 1.8 1.805 1.81

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time Index

ŷ
t

Ridge Prediction

(d) na = 5

Figure 7.9: Prediction examples for Mackey Glass time series. The predicted series is shown
by the solid line and the real series is shown by the broken line.

7.5.3 The Santa Fe Competition

The Santa Fe time series prediction competition data set3 is shown in Figure 7.11. This

time series was generated by recording the light intensity from a NH3 far-infrared laser and

is thoroughly described in [141].

This is an especially difficult prediction problem because the time series is short, 1,000

points, it contains significant quantization noise (eight bits of resolution), it is undersampled,

and it only contains three examples of the growing oscillations collapsing. During the

competition entrants were asked to predict the next 100 points in the series. After the

competition, the two best methods generated by Wan [38] and Sauer [37] were used to

3Available at http://www.stern.nyu.edu/∼aweigend/Time-Series/SantaFe.html at the time of writing.

136 Chapter 7. Case Studies

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

PCR Error Horizon

(a)

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

2 Steps Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

VRR Error Horizon

(b)

Figure 7.10: The error horizons for PCR and VRR applied to the Mackey Glass time series.
The legend indicates how many steps ahead (na) the cross-validation error was calculated
during parameter optimization.

7.5. Time Series Prediction Examples 137

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250
Santa Fe Laser Time Series

Time Index

y
t

Figure 7.11: The Santa Fe laser time series.

make four other 100-point predictions at later sections of the time series using the same

model used to generate their entries.

Start PCR VRR Sauer Wan
1002 0.037 0.508 0.077 0.027
2182 0.058 0.061 0.174 0.065
3872 0.521 0.061 0.183 0.487
4002 0.004 0.001 0.006 0.023
5182 0.029 0.262 0.111 0.160

Table 7.2: Performance statistics for Santa Fe laser time series using the first 1,000 points
to build the models.

This analysis was repeated using the new methods described here4.

Prior to building each model the time series was upsampled by eight to compensate

for the sparse sampling. The range of nearest neighbors was also reduced to kmin = 2 and

kmax = 5 since the series only contained a few examples of collapses. The results using

na = 10 for PCR and na = 2 for VRR are given in Table 7.2.

The five predictions generated for each model are shown in Figure 7.12. In all cases,

the models accurately predicted a collapse near the time of the actual collapse and in almost

all cases the magnitude of the collapse was accurately predicted.

138 Chapter 7. Case Studies

1000 1020 1040 1060 1080 1100

0

50

100

150

200

250

ŷ
t

PCR Predictions

(a)

1000 1020 1040 1060 1080 1100

0

50

100

150

200

250

ŷ
t

Ridge Predictions

(b)

2180 2200 2220 2240 2260 2280

0

50

100

150

200

250

ŷ
t

(c)

2180 2200 2220 2240 2260 2280

0

50

100

150

200

250

ŷ
t

(d)

3880 3900 3920 3940 3960 3980

0

50

100

150

200

250

ŷ
t

(e)

3880 3900 3920 3940 3960 3980

0

50

100

150

200

250

ŷ
t

(f)

4000 4020 4040 4060 4080 4100

0

50

100

150

200

250

ŷ
t

(g)

4000 4020 4040 4060 4080 4100

0

50

100

150

200

250

ŷ
t

(h)

5180 5200 5220 5240 5260 5280

0

50

100

150

200

250

ŷ
t

(i)

5180 5200 5220 5240 5260 5280

0

50

100

150

200

250

ŷ
t

(j)

Figure 7.12: Prediction examples for Santa Fe laser time series. The true time series is
shown by the broken line and the predicted time series is shown by the solid line.

7.5. Time Series Prediction Examples 139

0.5 1 1.5 2 2.5

x 10
−3

−3

−2

−1

0

1

2

3

Carroll’s Time Series

Time (Seconds)

y
t

Figure 7.13: The first 500 points in Carroll’s time series, generated by a nonlinear electric
circuit.

7.5.4 Carroll’s Circuit

Figure 7.13 shows 500 points from a chaotic time series recorded from an electric circuit5.

The circuit is similar to the one described in [142].

The PCR and VRR were constructed using the first 3,000 points in the series. Fig-

ure 7.14 shows the error horizons for PCR and VRR. In this case, there was little difference

among the models that minimized the multi-step cross-validation error, though the model

optimized to predict one step ahead was notably worse for PCR. The PCR models were

slightly better than the VRR models.

Figure 7.15 gives some examples of the predictions generated by the models.

7.5.5 Weeks’ Rotating Annulus

Figure 7.16 shows 500 points from a time series taken from a rotating annulus. The time

series was recorded from a hot film probe used to measure the velocity of fluid flow at

a fixed point. This experiment was conducted to study weather patterns in the Earth’s

atmosphere [143]6.

4A careful examination of the predictions generated by Wan [38] and Sauer [37] indicates that their
predictions were offset by one. Wan started the predictions at 1001, 2181, 3871, 4001, and 5181 whereas
Sauer started the predictions at 1002, 2182, 3872, 4002, and 5182. The predictions generated by PCR and
VRR were started at the same times as Sauer’s predictions.

5This data set was provided personally by T. Carroll.
6This data was publicly available at http://∼glinda.lrsm.upenn.edu/∼weeks/∼research/∼tseries1.html at

the time of writing .

140 Chapter 7. Case Studies

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

PCR Error Horizon

(a)

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

2 Steps Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

VRR Error Horizon

(b)

Figure 7.14: The error horizons for PCR and VRR applied to Carroll’s time series. The
legend indicates how many steps ahead (na) the cross-validation error was calculated during
parameter optimization.

7.6. Summary 141

1.016 1.018 1.02 1.022 1.024 1.026

x 10
4

−3

−2

−1

0

1

2

3

Time (seconds)

ŷ
t

PCR Prediction

(a) na = 20

0.0949 0.095 0.0951 0.0952 0.0953 0.0954

−3

−2

−1

0

1

2

3

Time (seconds)

ŷ
t

PCR Prediction

(b) na = 20

1.016 1.018 1.02 1.022 1.024 1.026

x 10
4

−3

−2

−1

0

1

2

3

Time (seconds)

ŷ
t

Ridge Prediction

(c) na = 2

0.0949 0.095 0.0951 0.0952 0.0953 0.0954

−3

−2

−1

0

1

2

3

Time (seconds)

ŷ
t

Ridge Prediction

(d) na = 2

Figure 7.15: Prediction examples for Carroll time series. The predicted series is shown by
the solid line and the real series is shown by the broken line.

PCR and VRR models were constructed using the first 5, 000 points in the series.

Figure 7.17 shows the error horizons for PCR and VRR. The results were similar to those of

Carroll’s circuit; there was little difference among the models that minimized the multi-step

cross-validation error, though the model optimized to predict one step ahead was notably

worse for PCR. The PCR models were slightly better than the VRR models.

Figure 7.18 gives some examples of the predictions generated by the models.

7.6 Summary

It is difficult to compare the new optimization methods described in this work with previous

methods because previously researchers did not use optimization algorithms to find values

for the critical model parameters. Rather, researchers chose parameter values based on

their own experience and expertise. However, a comparative study is not necessary since

142 Chapter 7. Case Studies

50 100 150 200 250 300 350 400 450 500

3.2

3.4

3.6

3.8

4

4.2

Weeks’ Time Series

Time Index

y
t

Figure 7.16: The first 500 points in Weeks’ time series, generated from a rotating annulus.

the new methods use the parameter values selected by the user as a starting point and can

only improve performance, as measured by the cross-validation error.

Instead, this chapter focused on two aspects of the new ideas presented in this work.

First, it compared the performance of vectored ridge regression (VRR) with principal com-

ponents regression (PCR) on a variety of chaotic time series prediction problems. Both of

these forms of regularization are new generalizations that supersede their predecessors and,

if parameter values are chosen appropriately, can only improve performance. On all of the

time series described here, PCR performed significantly better than VRR.

Second, this chapter examined the effect of minimizing the multi-step cross-validation

error (MSCVE) for various values of the number of steps ahead. This was a key innovation

designed specifically for chaotic time series (Chapter 6). On all of the time series considered

in this chapter, the optimization of MSCVE substantially improved the performance of

principal components regression (PCR) as compared to the one-step cross-validation error.

Generally, as the number of steps ahead was increased, the performance of PCR improved

or stayed the same.

The improvement was less dramatic for vectored ridge regression (VRR) because

the multi-step cross-validation error contains more local minima than the one-step cross-

validation error. The optimization of VRR is especially susceptible to local minima because

it uses gradient-based optimization, which tries to find the nearest local minima in as few

steps as possible. PCR is more tolerant of local minima because it uses a semi-global

line search for the real-valued parameters and an exhaustive search for the integer-valued

parameters.

7.6. Summary 143

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

PCR Error Horizon

(a)

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Steps Ahead

R
N
M
S
E

1 Step Ahead

2 Steps Ahead

5 Steps Ahead

10 Steps Ahead

20 Steps Ahead

VRR Error Horizon

(b)

Figure 7.17: The error horizons for PCR and VRR applied to Weeks’ time series. The
legend indicates how many steps ahead (na) the cross-validation error was calculated during
parameter optimization.

144 Chapter 7. Case Studies

5250 5260 5270 5280 5290 5300 5310
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time Index

ŷ
t

PCR Prediction

(a) na = 20

5870 5880 5890 5900 5910 5920 5930
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time Index

ŷ
t

PCR Prediction

(b) na = 20

5250 5260 5270 5280 5290 5300 5310
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time Index

ŷ
t

Ridge Prediction

(c) na = 2

5870 5880 5890 5900 5910 5920 5930
2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time Index

ŷ
t

Ridge Prediction

(d) na = 2

Figure 7.18: Prediction examples for Weeks’ time series. The predicted series is shown by
the solid line and the real series is shown by the broken line.

Chapter 8

Conclusion

The concept is interesting and
well-formed, but in order to earn
better than a C, the idea must be

feasible.
—A Yale University management

professor in response to Fred Smith’s
paper proposing reliable overnight
delivery service. (Smith went on to

found Federal Express.)

This chapter is organized as follows. Section 8.1 briefly reviews the preceding chapters

and Section 8.2 suggests several directions for future research.

8.1 Summary

This work addressed three fundamental problems for local modeling: the nonlinear modeling

problem, the nearest neighbors problem, and the time series prediction problem. Each of

these problems occurs in many applications, as described in Chapter 1.

Chapter 3 described two new fast nearest neighbor algorithms, principal axis trees

(PAT) and depth-only principal axis trees (DOPAT). Both of these algorithms were shown

to perform well compared to leading techniques on a variety of benchmarks.

Chapter 4 introduced ridge regression and principal components regression, two popu-

lar methods of coping with an ill-conditioned matrix inverse that occurs when constructing

local linear models. Both of these methods were generalized for the weighted squared error

penalty function. Ridge regression was also generalized to have a separate penalty for each

input variable and soft thresholds were used for principal components regression to diminish

the effect of small singular values.

145

146 Chapter 8. Conclusion

Chapter 5 described a method of optimizing local models using a generalization of the

cyclic coordinate method. This algorithm optimizes some of the critical parameter values

one at a time using an exhaustive search for integer-valued parameters and a semi-global line

search for real-valued parameters. The parameters for which the gradient can be calculated

are optimized using a standard gradient-based optimization algorithm.

Chapter 6 modified these algorithms in several important ways to increase efficiency

and accuracy of local models for the time series prediction problem. Most importantly, these

algorithms were modified to minimize the multi-step cross-validation error (MSCVE) which

ensures the local models account for the errors that occur with iteration. The importance

of this modification was illustrated in Chapter 7, which demonstrated the performance of

optimized local models on a variety of time series prediction problems.

8.2 Future Research

This section suggests several ideas for further research that may extend and improve the

new methods described in this work.

8.2.1 Non-Chaotic Time Series

The discussion of time series prediction was limited to chaotic time series because Takens’

theorem provides a strong theoretical foundation for this approach, to limit the scope of this

work to a reasonable length, and because chaotic time series have proven to be difficult to

predict in practice. However, there is nothing that prevents this approach from being used to

forecast other types of time series. It would be interesting to compare these new techniques

with existing methods on some of the more traditional time series prediction problems in the

areas of economics, agriculture, demographics, climate trends, epidemiology, and weather

forecasting.

8.2.2 Local Minima

One of the most elegant properties of the optimization algorithms developed here is that

they can only improve the model accuracy compared to the initial parameter values provided

by the user. However, these algorithms can get stuck in shallow local minima after only

modestly improving the model performance.

8.2. Future Research 147

Principal components regression (PCR) optimization for time series prediction is less

susceptible to this problem than vectored ridge regression (VRR) because all of the param-

eters are optimized by either an exhaustive search or a semi-global line search. This may

partially explain why PCR consistently out-performed VRR on the prediction problems

discussed in Chapter 7.

There are a variety of techniques that could be used to help prevent VRR from falling

into shallow local minima. Some techniques, such as genetic algorithms, simulated anneal-

ing, and evolutionary programming, are designed specifically for this purpose. However,

each of these techniques are computationally demanding and would require much more

time for optimization.

As demonstrated in Chapter 7, local averaging is much less susceptible to shallow local

minima. It may be best to use the metric weights after optimization with local averaging as

the initial values for VRR. It may also improve the model accuracy if VRR is optimized to

predict one step ahead, then two steps ahead, and so on. This is a difficult, but important,

problem that deserves further consideration.

8.2.3 Local Optimization

In this work all of the model parameters were held constant during predictions. Some re-

searchers have suggested optimizing the model parameters using only a local neighborhood

of points [121,144,145]. This approach is difficult because it is hard to estimate the model

accuracy accurately using only the neighboring points and it requires additional compu-

tation for the optimization after the input vectors are available. Nonetheless, the initial

results reported by others are encouraging and it should be possible to generalize the model

structures and algorithms described here for local optimization.

8.2.4 Multiple Iterative Models

Chapter 6 discussed the importance of using the multi-step cross-validation error to account

for the errors in model input vectors. An alternative to coping with this problem is to use

a different model to predict each step ahead. This idea is illustrated in Figure 8.1.

yt g2(xt+1)
yt+1 yt+2 yt+3g1(xt) g3(xt+2)

Figure 8.1: Multiple iterative models.

148 Chapter 8. Conclusion

Multiple iterative models are more general than a single model. If the models are

optimized appropriately, they can only improve performance as compared to single iterative

models.

Initial results indicate that, after optimization, the multiple iterative models are not

as accurate as single iterative models. This is probably because the optimization of each

model does not take into account the effect it will have on the predictions generated by the

other models. Nonetheless, this approach has much potential for further improvement.

8.3 Concluding Remarks

The methods developed here were greatly influenced by processing power available in mod-

ern computers. The model structure was designed to be flexible enough to generate accurate

long term forecasts of chaotic time series and yet efficient enough that the parameters could

be optimized in less than two hours.

The optimization algorithms were specifically designed to meet two goals. First, they

should only improve model performance from that of the initial parameter values provided

by the user. Cross-validation error played a vital role in their development because it is

resistant to the problem of overfitting and it can be calculated efficiently for local models.

Second, the algorithms should relieve the user of responsibility for picking critical

values for model parameters; this was replaced with the new responsibility of picking values

that control the amount of time required for model optimization. This enables the user to

scale the thoroughness of the searches, and thereby the model accuracy, to suit the time

constraints and computational resources of the application at hand. This also ensures the

algorithms will become more powerful and can be applied to larger data sets as the power

of computers continues to increase.

Appendix A

Vectored Ridge Regression

Gradients

This “telephone” has too many
shortcomings to be seriously

considered as a means of
communication. The device is

inherently of no value to us.
—Western Union internal memo,

1876.

This appendix contains several mathematical derivations for vectored ridge regression

(VRR), introduced in Chapter 4. Section A.1 briefly reviews the notation used for local lin-

ear models. Section A.2 derives the model coefficients that minimize the weighted, penalized

sum of squared errors, a generalization of the ordinary least squares solution.

The remainder of this appendix is devoted to finding the gradient of the model out-

put with respect to the weighted Euclidean metric parameters (Section A.3), the model

inputs (Section A.4), and the ridge regression parameters (Section A.5). The ability to

efficiently calculate these gradients plays a vital role in parameter optimization, described

in Chapters 5 and 6.

149

150 App. A. Vectored Ridge Regression Gradients

A.1 Model Description

The matrix A is used to hold each of the k neighboring points and the vector b is used to

store the target value for each of the k points,

A�



xT1 1

xT2 1
...

xTk 1


 , b�



y1

y2
...

yk


 .

Each row in the matrix A is composed of a vector of observed variables with an appended

value of one.

For a query vector, q, the model output is given by

ŷ = [qT 1] ν,

= νnd+1+
nd∑
i=1

qiνi ,

where q, xi ∈ R
nd . In this appendix q̃ is used to denote the vector q appended with a

constant value of one,

q̃T � [qT 1].

A.2 Weighted Vectored Ridge Regression Solution

The linear model coefficients are usually chosen to minimize a user-specified error criterion.

There are many types of error measures that could be used but most users prefer the sum of

squared errors because a deterministic solution exists that can be calculated efficiently. The

deterministic solution that minimizes the weighted sum of squared errors, a more general

error measure, is derived in this section. This error measure is given by

PWVRR(ν)�
k∑

i=1

w2
i (yi− ŷ(xi))2+

nd+1∑
i=1

r2i ν
2
i ,

= (b−Aν)TW 2(b−Aν)+ νTR2ν,

= bTW 2b− νTATW 2b− bTW 2Aν+ νTATW 2Aν+ νTR2ν,

A.3. Metric Gradient 151

where the matrices W ∈ R
k×k and R ∈ R

nd×nd are diagonal matrices of the vectors w and

r,

W � diag(w), R� diag(r),

=



w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wk


 , =



r1 0 · · · 0

0 r2 · · · 0
...
...
. . .

...

0 0 · · · rnd


 ,

and W 2 denotes the product of a symmetric matrix with itself, W 2 �WTW =WWT.

Since PWVRR(ν) is quadratic in ν there can only be one extremum, which is the value

of ν for which the gradient of PWVRR(ν) is equal to zero. The gradient is given by

∇ν PWVRR(ν) =−2ATW 2b+2ATW 2Aν+2R2ν.

Setting this equation equal to zero and solving for ν yields

ν =
(
ATW 2A+R2

)−1
ATW 2b. (A.1)

It is not difficult to show that the extremum found by solving ∇ν PWVRR = 0 is the

value that minimizes PWVRR(ν). Since the Hessian,

∇2
ν PWVRR(ν) = 2A

TA+2R2,

is positive definite for any matrices A and R with independent columns [42, p. 333],

PWVRR(ν) is a strictly convex function of ν [43, Theorem 3.3.8]. Therefore, the value for ν

given in Equation A.1 minimizes PWVRR(ν) [43, Theorem 3.4.3, Corollary 1].

The output of the optimal model for a query q is given by

ŷ = q̃Tν,

= q̃T
(
ATW 2A+R2

)−1
ATW 2b. (A.2)

A.3 Metric Gradient

This section derives the gradient of the model output with respect to the metric parameters,

∇λŷ. The model output, ŷ depends on the metric parameters λ only indirectly through

152 App. A. Vectored Ridge Regression Gradients

the penalty weights, w, as shown by Equation A.2. Thus, the jth element of ∇λŷ can be

written as

∂ŷ

∂λj
=

k∑
i=1

∂ŷ

∂wi

∂wi

∂λj
.

Each element of the gradient can be combined into vector form to give

∇λŷ =
∂w

∂λ
(∇wŷ) , (A.3)

where ∇wŷ is the gradient of the model output with respect to the penalty weights and
∂w
∂λ ∈ R

k×nd is the Jacobian of the penalty weights with respect to the metric parameters.

Section A.3.1 derives the solution for ∇wŷ, Section A.3.2 derives the solution for ∂w
∂λ ,

and Section A.3.3 gives an algorithm that describes how to compute ∇λŷ.

A.3.1 Penalty Weight Gradient

The derivation of ∇wŷ begins with the equation for the model output, which is repeated

here for convenience,

ŷ = q̃T
(
ATW 2A+R2

)−1
ATW 2b

= q̃TS−1ATW 2b,

where S �ATW 2A+R2. The ith element of the gradient is given by,

∂ŷ

∂wi
= (∇wŷ)i ,

=
(
∂

∂wi
q̃TS−1

)
ATW 2b︸ ︷︷ ︸

①

+ q̃TS−1
(
∂

∂wi
A2W 2b

)
︸ ︷︷ ︸

②

, (A.4)

A.3. Metric Gradient 153

where the second equation was obtained by the chain rule. The derivative of the first term

in this equation can be solved for as follows,

① �
(
∂

∂wi
q̃TS−1

)
ATW 2b,

= q̃T
(
∂

∂wi
S−1

)
ATW 2b,

= −q̃TS−1
(
∂

∂wi
S

)
S−1ATW 2b,

= −q̃TS−1
(
∂

∂wi
S

)
ν,

= −q̃TS−1
(
AT

∂

∂wi
W 2A

)
ν,

where the third step used the equation for a derivative of a matrix [146, p. 902–3],

d
dα
C−1 =−C−1

(
d
dα
C

)
C−1. (A.5)

Since W = diag(w), ∂
∂wi
W 2 can be written as ei2wie

T
i where ei is defined as the ith column

of the identity matrix, ei � [0 · · ·1 · · ·0]T, a vector of zeros, except for the ith element, which
is equal to one. The derivative is then given by

① = −q̃TS−1AT
(
∂

∂wi
W 2

)
Aν,

= −q̃TS−1AT (ei2wie
T
i)Aν,

= (−2wi)
(
q̃TS−1ATei

)
(eTi Aν) .

The parentheses are used to illustrate that the linear equation reduces to a product of three

scalars.

The second term in Equation A.4 can solved for as follows:

② � q̃TS−1
(
∂

∂wi
ATW 2b

)
,

= q̃TS−1AT
(
∂

∂wi
W 2

)
b,

= q̃TS−1AT (ei2wie
T
i)b,

= (2wi)
(
q̃TS−1ATei

)
(eTi b) ,

154 App. A. Vectored Ridge Regression Gradients

where parenthesis have been used again to illustrate that the linear equations reduce to a

product of three scalars. Combining these equations yields,

∂ŷ

∂wi
= ① + ② ,

= (−2wi)
(
q̃TS−1ATei

)
(eTi Aν)+ (2wi)

(
q̃TS−1ATei

)
(eTi b) ,

= (2wi)
(
q̃TS−1ATei

)
(eTi b− eTi Aν) ,

= (2wi)
(
eTi AS

−1q̃
)T (eTi (b−Aν)) .

Each element of the gradient can then be combined into a vector to give the final expression

for the penalty weight gradient,

∇wŷ = 2diag
(
AS−1q̃

)
diag(b−Aν)w. (A.6)

A.3.2 Metric Jacobian

This section derives a solution for the Jacobian of the penalty weight vector with respect

to the metric weight vector, ∂w
∂λ ∈ R

k×nd .

The weights depend on the metric parameters indirectly through a local weighting

function. Throughout this work the biweight function has been used, but it could be any

smooth function. In this section, the weights are assumed to be a function of the distances

as follows:

wi � W(ρi),

where ρi � d2i
d2k+1

and di is the weighted Euclidean distance between the ith nearest neighbor

and the query point,

d2i �DWE(q,xi)2,

=
nd∑
�=1

λ2� (q�−xi,�)2 .

A.3. Metric Gradient 155

The Jacobian’s value in the jth row and the ith column is given by

∂wi

∂λj
=

∂

∂λj
W(ρi),

=
dW(ρi)

dρi
∂ρi
∂λj

,

=
dW(ρi)

dρi
∂

∂λj

(
d2i
d2k+1

)
,

=
dW(ρi)

dρi

(
∂d2i
∂λj

d2k+1− d2i
∂d2k+1
∂λj

)(
1
d2k+1

)2

. (A.7)

If the biweight function is used1, the equation for W(ρi) is given by

W(ρi) = (1− ρi) ,

=

(
1− d2i

d2k+1

)
,

and the derivative of W (ρi) is given by

dW(ρi)
dρi

= −ρi.

The remaining derivatives of the Jacobian in Equation A.7 are readily obtained from

the definition of the distance metric,

∂d2i
∂λj

=
∂

∂λj

(
nd∑
�=1

λ2� (q�−xi,�)2
)
,

= 2λj(qj −xi,j)2.

Once the Jacobian is calculated the gradient ∇λŷ can be calculated by applying Equa-

tion A.3. The next section summarizes these steps in an algorithm.

A.3.3 Metric Gradient Algorithm

The process for calculating the gradient ∇λŷ is summarized below. This algorithm as-

sumes that the k+1 nearest neighbors have been found and that the local model has been

constructed as described in Section A.1.

1The weights are squared in Equation A.1, so the square root of the biweight function is used here.

156 App. A. Vectored Ridge Regression Gradients

Algorithm A.1: Calculation of ∇λŷ

1. Calculate the penalty weight gradient:

∇wŷ = diag(AS−1q̃)diag(b−Aν)2w.

2. Calculate the derivative of the biweight function,

dW(ρi)
dρi

=−ρi,

for each i, where

ρi � d2i
d2k+1

,

and di is the weighted Euclidean distance to the ith nearest neighbor.

3. Calculate the product of the Jacobian and ∇wŷ.

For i = 1 to nd,

3.1 Calculate

∂d2k+1

∂λi
:= 2λi(qi −xk+1,i)2.

3.2 Calculate the ith component of ∂w
∂λ · ∇wŷ = ∇λŷ, the product of the Jacobian and the

gradient with respect to w. The ith component is given by (∇λŷ)i =
∑k

j=1 (∇wŷ)j
∂wj

∂λi
.

σ := 0.
For j = 1 to k,

· Calculate
∂d2j
∂λi
:= 2λi(qi −xj,i)2.

· Calculate
∂wj

∂λi
:=

dW(ρj)
dρj

(
∂d2j
∂λi

d2k+1 − d2j
∂d2k+1

∂λi

)(
1
d2k+1

)2

.

· Add term to sum,

σ := σ+(∇wŷ)j
∂wj

∂λi
.

· Next j.
3.3 Assign sum σ to ith element of the gradient, (∇λŷ)i =

∂ŷ
∂λi

:

∂ŷ

∂λi
:= σ.

3.4 Next i.

A.4. Input Gradient 157

A.4 Input Gradient

This section derives the gradient of the model output with respect to the model inputs, ∇qŷ

where q ∈ R
nd . The jth element of this gradient is given by

∂ŷ

∂qj
=
∂

∂qj
(q̃Tν) ,

where q̃T � [qT 1], and

∂ŷ

∂qj
=
∂

∂qj

(
nd+1∑
i=1

νiq̃i

)
,

=
nd+1∑
i=1

νj
∂q̃i
∂qj
+
∂νi
∂qj
q̃i,

= νj +
nd+1∑
i=1

∂νi
∂qj
q̃i,

where ν is given by Equation A.1. Since the linear coefficients only depend on qj through

the penalty weights, w, the chain rule can be used to write the partial derivative as

∂ŷ

∂qj
= νj +

k∑
�=1

nd+1∑
i=1

∂νi
∂w�

∂w�

∂qj
q̃i,

= νj +
k∑

�=1

∂w�

∂qj

(
nd+1∑
i=1

∂νi
∂w�

q̃i

)
,

= νj +
k∑

�=1

∂w�

∂qj

∂

∂w�

(
nd+1∑
i=1

νiq̃i

)
,

= νj +
k∑

�=1

∂w�

∂qj

∂ŷ

∂w�
,

= νj +
∂wT

∂qj
∇wŷ.

Each element of the input gradient can be combined into a vector to give

∇qŷ = ν+
∂w

∂q
∇wŷ,

where ∂w
∂q is the Jacobian of w with respect to q and ∇wŷ is the penalty weight gradient

given by Equation A.6.

158 App. A. Vectored Ridge Regression Gradients

The next section describes how to calculate the Jacobian and Section A.4.2 contains

an algorithm that describes how to calculate the input gradient.

A.4.1 Input Jacobian

This section derives a solution for the Jacobian of the penalty weight vector with respect to

the model inputs, ∂w∂q ∈ R
k×nd . This derivation is very similar to that of the metric Jacobian

given in Section A.3.2.

The weights depend on the inputs indirectly through a local weighting function,

wi � W(ρi),

where ρi � d2i
d2k+1

and di is the weighted Euclidean distance between the ith nearest neighbor

and the query point,

d2i �DWE(q,xi)2,

=
nd∑
�=1

λ2� (q�−xi,�)2 .

The Jacobian’s value in the jth row and the ith column can be obtained by following

the same steps as in Equation A.7 to give

∂wi

∂qj
=

dW(ρi)
dρi

(
∂d2i
∂qj

d2k+1− d2i
∂d2k+1
∂qj

)(
1
d2k+1

)2

.

The remaining unknown derivatives of this equation are readily obtained from the definition

of the distance metric,

∂d2i
∂qj
=

∂

∂qj

(
nd∑
�=1

λ2� (q�−xi,�)2
)
,

= 2λ2j (qj −xi,j).

Once the Jacobian is calculated the gradient ∇qŷ can be calculated by applying Equa-

tion A.4. The next section summarizes these steps in an algorithm.

A.4. Input Gradient 159

A.4.2 Input Gradient Algorithm

The process for calculating the gradient ∇qŷ is summarized below. This algorithm assumes

that the k+1 nearest neighbors have been found and that the local model has been con-

structed as described in Section A.1. Note that the first three steps are identical to the

algorithm for calculating the metric gradient, ∇λŷ.

Algorithm A.2: Calculation of ∇qŷ

1. Calculate the penalty weight gradient:

∇wŷ = diag(AS−1q̃)diag(b−Aν)2w.

2. Calculate the derivative of the biweight function,

dW(ρi)
dρi

=−ρ,

for each i, where

ρi � d2i
d2k+1

,

and di is the weighted Euclidean distance to the ith nearest neighbor.

3. Calculate the product of the Jacobian and ∇wŷ.

For i = 1 to nd,

3.1 Calculate

∂d2k+1

∂qi
:= 2λ2

i (qi −xk+1,i).

3.2 Calculate the ith component of ∂w
∂q · ∇wŷ = ∇q ŷ, the product of the Jacobian and the

gradient with respect to w. The ith component is given by (∇q ŷ)i = νi+
∑k

j=1 (∇wŷ)j
∂wj

∂qi
.

σ := νi.

For j = 1 to k,

· Calculate
∂d2j
∂qi
:= 2λ2

i (qi −xj,i).

· Calculate
∂wj

∂qi
:=

dW(ρj)
dρj

(
∂d2j
∂qi

d2k+1 −
∂d2k+1

∂qi
d2j

)(
1
d2k+1

)2

.

· Add term to sum,

σ := σ+(∇wŷ)j
∂wj

∂qi
.

· Next j.
3.3 Assign sum σ to ith element of the gradient, (∇q ŷ)i =

∂ŷ
∂qi
:

∂ŷ

∂qi
:= σ.

160 App. A. Vectored Ridge Regression Gradients

3.4 Next i.

A.5 Ridge Gradient

This section derives the gradient of the model output with respect to the ridge parameters,

∇rŷ ∈ R
nd where r ∈ R

nd . The model output only depends on the ridge parameters through

the matrix S,

ŷ = q̃TS−1ATW 2b,

where S � (ATW 2A+R2). The ith component of the gradient is given by

∂y

∂ri
=
∂

∂ri

(
q̃TS−1ATW 2b

)
,

= q̃T
(
∂

∂ri
S−1

)
ATW 2b,

and using Equation A.5 we have,

=−q̃TS−1
(
∂

∂ri
S

)
S−1ATW 2b,

=−q̃TS−1
(
∂

∂ri

(
ATW 2A+R2

))
ν,

=−q̃TS−1 (ei2rieTi)ν,

= (−2ri)
(
q̃TS−1ei

)
(eTi ν) ,

= (−2ri)
(
eTi S

−1qT
)
(eTi ν) ,

where the parentheses show that the equation reduces to a product of three scalars. Each

element of the gradient can be combined into a vector to give the final expression for the

ridge gradient,

∇rŷ = −2 diag(S−1q) diag(ν) r. (A.8)

Bibliography

[1] Mark Allen Weiss. Algorithms, Data Structures, and Problem Solving with C++.

Addison-Wesley Publishing Company, Inc., 1996.

[2] Simon Haykin. Neural Networks: A Comprehensive Foundation. Macmillan College

Publishing Company, 1994.

[3] B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: Applications in

industry, business and science. Communications of the ACM, 37(3):93–105, March

1994.

[4] W. E. Staib and J. N. McNames. Neural networks applied to steelmaking. In

Michael A Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages

934–936. MIT Press, 1995.

[5] S. H. Chen and J. S. Pan. Fast search algorithm for VQ-based recognition of isolated

words. IEE Proceedings I (Communications, Speech and Vision), 136(6):391–396,

December 1989.

[6] Tung-Shou Chen and Chin-Chen Chang. Diagonal axes method (DAM): A fast search

algorithm for vector quantization. IEEE Transactions on Circuits and Systems for

Video Technology, 7(3):555–559, June 1997.

[7] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted

learning. Artificial Intelligence Review, 11(1–5):11–73, February 1997.

[8] Thomas Schreiber. Efficient neighbor searching in nonlinear time series analysis.

International Journal of Bifurcation and Chaos, 5(2):349–358, 1995.

161

162 Bibliography

[9] James McNames. A nearest trajectory strategy for time series prediction. In Proceed-

ings of the International Workshop on Advanced Black-Box Techniques for Nonlinear

Modeling, pages 112–128, Katholieke Universiteit Leuven, Belgium, July 1998.

[10] C. M. Eastman and S. F. Weiss. Tree-structures for high dimensionality neighbor

searching. Information Systems, 7(2):115–122, 1982.

[11] C.Y. Chen, C. C. Chang, and R. C. T. Lee. A near pattern-matching scheme based

upon principal component analysis. Pattern Recognition Letters, 16:339–345, April

1995.

[12] Stelios G. Bakamidis. An exact fast nearest neighbor identification technique. In IEEE

International Conference on Acoustics, Speech and Signal Processing, volume 5, pages

658–661, 1993.

[13] De-Yuan Cheng, Allen Gersho, Bhaskar Ramamurthi, and Yair Shoham. Fast search

algorithms for vector quantization and pattern matching. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, volume 1, pages

9.11.1–9.11.4, March 1984.

[14] J. Jiménez, J. A. Moreno, and G. J. Ruggeri. Forecasting on chaotic time series:

A local optimal linear-reconstruction method. Physical Review A, 45(6):3553–3558,

March 1992.

[15] H. Waelbroeck, R. López-Peña, T. Morales, and F. Zertuche. Prediction of tropical

rainfall by local phase space reconstruction. Journal of the Atmospheric Sciences,

51(22):3360–3364, 1994.

[16] Guillermo J. Berri and Jan Paegle. Sensitivity of local predictions to initial conditions.

Journal of Applied Meteorology, 29:256–267, 1990.

[17] J. B. Elsner and A. A. Tsonis. Nonlinear prediction, chaos, and noise. Bulletin

American Meteorological Society, 73(1):49–60, January 1992.

[18] Martin Casdagli, Deirdre Des Jardins, Stephen Eubank, J. Doyne Farmer, John Gib-

son, and James Theiler. Nonlinear modeling of chaotic time series: Theory and

applications. In Jong Hyun Kim and John Stringer, editors, Applied Chaos, pages

335–380. John Wiley & Sons, Inc., 1992.

Bibliography 163

[19] George Sugihara and Robert M. May. Nonlinear forecasting as a way of distinguishing

chaos from measurement error in time series. Nature, 344:734–741, April 1990.

[20] George Sugihara. Nonlinear forecasting for the classification of natural time series.

Philosophical Transactions of the Royal Society of London A, 348:477–495, 1994.

[21] E. A. Wan. Combining fossil and sunspot data: Committee predictions. In 1997 IEEE

International Conference on Neural Networks, pages 2176–80, June 1997.

[22] Martin Casdagli. Chaos and determinisitc versus stochastic non-linear modelling. J.

R. Statist. Soc. B, 54(2):303–28, 1992.

[23] Michael D. Mundt, W. Bruce Maguire, and Robert R. P. Chase. Chaos in the sunspot

cycle: Analysis and prediction. Journal of Geophysical Research, 96(A2):1705–1716,

1989.

[24] Kevin Judd and Alistair Mees. On selecting models for nonlinear time series. Physica

D, 82:426–444, 1995.

[25] H. D. Navone and H. A. Ceccatto. Forecasting chaos from small data sets: a compar-

ison of different nonlinear algorithms. Journal of Physics A: Mathematics, 28:3381–

3388, 1995.

[26] P. Garćıa, J. Jiménez, A. Marcano, and F. Moleiro. Local optimal metrics and non-

linear modeling of chaotic time series. Physical Review Letters, 76(9):1449–1452,

February 1996.

[27] D. Kugiumtzis. State space reconstruction parameters in the analysis of chaotic time

series — the role of the time window length. Physica D, 95:13–28, 1996.

[28] Andreas S. Weigend and Neil A. Gershenfeld. Time Series Prediction. Addison-Wesley

Publishing Company, 1994.

[29] Henry D. I. Abarbanel, Z. Gills, C. Liu, and R. Roy. Nonlinear-time-series analysis

of chaotic laser dynamics. Physical Review A, 53(1):440–453, January 1996.

[30] D. S. Broomhead, J. P. Huke, and Potts M. A. S. Cancelling deterministic noise by

constructing nonlinear inverses to linear filters. Physica D, 89:439–458, 1996.

[31] Santishmohan T. S. Bukkapatnam, Akhlesh Lakhtakia, and Soundar R. T. Kumara.

Analysis of sensor signals shows turning on a lathe exhibits low-dimensional chaos.

Physical Review E, 52(3):2375–2387, September 1995.

164 Bibliography

[32] Lebender D. and F. W. Schneider. Neural nets and the local predictor method used

to predict the time series of chemical reactions. The Journal of Physical Chemistry,

97(34):8764–8769, 1993.

[33] Jerome H. Friedman. An overview of predictive learning and function approximation.

In Vladimir Cherkassky, Jerome H. Friedman, and Harry Wechsler, editors, From

Statistics to Neural Networks, volume 136 of Computer and Systems Sciences, pages

1–61. Springer-Verlag, 1994.

[34] J. D. Farmer and John J. Sidorowich. Exploiting chaos to predict the future and

reduce noise. In Yee Chung Lee, editor, Evolution, Learning and Cognition, pages

277–330. World Scientific, 1988.

[35] J. Doyne Farmer and John J. Sidorowich. Predicting chaotic time series. Physical

Review Letters, 59(8):845–848, August 1987.

[36] Zhong Liu, Xiaolin Ren, and Zhiwen Zhu. Equivalence between different local predic-

tion methods of chaotic time series. Physics Letters A, 227:37–40, March 1997.

[37] Tim Sauer. Time series prediction by using delay coordinate embedding. In Andreas S.

Weigend and Neil A. Gershenfeld, editors, Time Series Prediction, Santa Fe Institue

Studies in the Sciences of Complexity, pages 175–193. Addison-Wesley, 1994.

[38] Eric A. Wan. Time series prediction by using a connectionist network with internal

delay lines. In Andreas S. Weigend and Neil A. Gershenfeld, editors, Time Series

Prediction, Santa Fe Institue Studies in the Sciences of Complexity, pages 195–217.

Addison-Wesley, 1994.

[39] Johan A. K. Suykens and Joos Vandewalle. Nonlinear Modeling Advanced Black-Box

Techniques. Kluwer Academic Publishers, 1998.

[40] J.A.K. Suykens and J. Vandewalle, editors. Proceedings of the International Workshop

on Advanced Black-Box Techniques for Nonlinear Modelings, Katholieke Universiteit

Leuven, Belgium, July 1998.

[41] Jeffrey S. Simonoff. Smoothing Methods in Statistics. Statistics. Springer-Verlag, 1996.

[42] Gilbert Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich

College Publishers, third edition, 1988.

Bibliography 165

[43] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Programming:

Theory and Algorithms. John Wiley & Sons, Inc., second edition, 1993.

[44] D. Kugiumtzis, N. Lingjærde, and N. Christophersen. Regularized local linear pre-

diction of chaotic time series. Physica D, 112:344–360, 1998.

[45] D. Kugiumtzis Lillekjendlie and N. Christophersen. Chaotic time series. Part II.

System identification and prediction. Modeling, Identification and Control, 15(4):225–

243, October 1994.

[46] Peter Lancaster and Kȩstutis Šalkauskas. Curve and Surface Fitting: An Introduction.

Academic Press Inc., 1986.

[47] Vladimir Naumovich Vapnik. The nature of statistical learning theory. Springer-

Verlag, 1995.

[48] Martin C. Casdagli and Andreas S. Weigend. Exploring the continuum between de-

terministic and stochastic modeling. In Andreas S. Weigend and Neil A. Gershenfeld,

editors, Time Series Prediction, Santa Fe Institute Studies in the Sciences of Com-

plexity, pages 347–366. Addison-Wesley, 1994.

[49] András Faragó, Tamás Linder, and Gábor Lugosi. Faster nearest-neighbor search in

dissimilarity spaces. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 15(9):957–962, September 1993.

[50] Enrique Vidal. New formulation and improvements of the nearest-neighbor approxi-

mating and eliminating search algorithm (AESA). Pattern Recognition Letters, 15:1–7,

January 1994.

[51] Sanjiv Kapoor and Michiel Smid. New techniques for exact and approximate dynamic

closest-point problems. SIAM Journal on Computing, 25(4):775–796, August 1996.

[52] V. Ramasubramanian and Kuldip K. Paliwal. Fast k-dimensional tree algorithms

for nearest neighbor search with application to vector quantization encoding. IEEE

Transactions on Signal Processing, 40(3):518–531, March 1992.

[53] C.-Q. Chen, S.-N. Koh, and I.-Y. Soon. Fast codebook search algorithm for uncon-

strained vector quantisation. IEE Proceedings- Vision, Image, and Signal Processing,

145(2):97–102, April 1998.

166 Bibliography

[54] K.-T. Lo and W.-K. Cham. Subcodebook searching algorithm for efficient VQ encod-

ing of images. IEE Proceedings-I, 140(5):327–330, October 1993.

[55] Chang-Hsing Lee and Ling-Hwei Chen. A fast search algorithm for vector quantization

using mean pyramids of codewords. IEEE Transactions on Communications, 43(2–

4):1697–1702, 1995.

[56] N. Santosh and C. Eswaran. Efficient search algorithm for fast encoding of images

using vector quantisation. Electronics Letters, 32(23):2135–2137, November 1996.

[57] Wen-Jyi Hwang and Biing-Yau Chen. Fast vector quantisation encoding algorithm

using zero-tree data structure. Electronics Letters, 33(15):1290–1292, 1997.

[58] I. K. Sethi. A fast algorithm for recognizing nearest neighbors. IEEE Transactions

on Systems, Man and Cybernetics, SMC-11(3):245–248, 1981.

[59] De-Yuan Cheng and Allen Gersho. A fast codebook search algorithm for nearest-

neighbor pattern matching. In IEEE-IECEJ-ASJ International Conference on A-

coustics, Speech and Signal Processing, volume 1, pages 265–268, April 1986.

[60] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y.

Wu. An optimal algorithm for approximate nearest neighbor searching in fixed di-

mensions. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 573–582, January 1994.

[61] Sameer A. Nene and Shree K. Nayar. Closest point search in high dimensions. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages

859–865, June 1996.

[62] Sameer A. Nene and Shree K. Nayar. A simple algorithm for nearest neighbor search

in high dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(9):989–1003, September 1997.

[63] Jim Z. C. Lai. Fast encoding algorithms for tree-structured vector quantization. Image

and Vision Computing, 15:867–871, 1997.

[64] Sunil Arya, David M. Mount, Ruth Netanyahu, Nathan S. Silverman, and Angela Y.

Wu. An optimal algorithm for approximate nearest neighbor searching in fixed di-

mensions. Journal of the ACM, 45(6):891–923, November 1998.

Bibliography 167

[65] Mohammad Reza Soleymani and Salvatore D. Morgera. An efficient nearest neighbor

search method. IEEE Transactions on Communications, 35(6):677–679, June 1987.

[66] G. Poggi. Fast algorithm for full-search VQ encoding. Electronics Letters,

29(12):1141–1142, June 1993.

[67] J. S. Pan, F. R. McInnes, and M. A. Jack. Bound for minkowski metric or quadratic

metric applied to VQ codeword search. IEE Proceedings-Vision, Image and Signal

Processing, 143(1):67–71, 1996.

[68] L. Guan and M. Kamel. Equal-average hyperplane partitioning method for vector

quantization of image data. Pattern Recognition Letters, 13:693–699, 1992.

[69] S.W. Ra and J. K. Kim. A fast mean-distance-ordered partial codebook search al-

gorithm for image vector quantization. IEEE Transactions on Circuits and Systems,

40(9):576–579, September 1993.

[70] Chang-Hsing Lee and Ling-Hwei Chen. High-speed closest codeword search algorithms

for vector quantization. Signal Processing, 43:323–331, 1995.

[71] C.-H. Lee and L.-H. Chen. Fast closest codeword search algorthm[sic] for vector

quantisation. IEE proceedings. Vision, image and signal processing, 141(3):143–148,

June 1994.

[72] SeongJoon Baek, BumKi Jeon, and Koeng-Mo Sung. A fast encoding algorithm for

vector quantization. IEEE Signal Processing Letters, 4(12):325–327, December 1997.

[73] L. Torres and J. Huguet. An improvement on codebook search for vector quantization.

IEEE Transactions on Communications, 42(2–4):208–210, April 1994.

[74] Jack Bryant. A fast classifier for image data. Pattern Recognition, 22(1):45–48, 1989.

[75] K. K. Paliwal and V. Ramasubramanian. Effect of ordering the codebook on the effi-

ciency of the partial distance search algorithm for vector quantization. IEEE Trans-

actions on Communications, 37(5):538–540, May 1989.

[76] Yuk-Hee Chan and Siu Wan-chi. In search of the optimal searching sequence for

VQ encoding. IEEE Transactions on Communications, 43(12):2891–2893, December

1995.

168 Bibliography

[77] Patrick J. Grother, Gerald T. Candela, and James L. Blue. Fast implementations of

nearest neighbor classifiers. Pattern Recognition, 30(3):459–465, 1997.

[78] Jerome H. Friedman, Forest Baskett, and Leonard J. Shustek. An algorithm for finding

nearest neighbors. IEEE Transactions on Computers, C-24:1000–1010, October 1975.

[79] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for

finding best matches in logarithmic expected time. ACM Transactions on Mathemat-

ical Software, 3(3):209–226, September 1977.

[80] Baek S. Kim and Song B. Park. A fast k nearest neighbor finding algorithm based on

the ordered partition. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 8(6):761–766, November 1986.

[81] Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound algorithm

for computing k-nearest neighbors. IEEE Transactions on Computers, C-24:750–753,

July 1975.

[82] Luisa Micó, José Oncina, and Rafael C. Carrasco. A fast branch & bound nearest

neighbor classifier in metric spaces. Pattern Recognition Letters, 17:731–739, 1996.

[83] Ioannis Katsavounidis, C.-C. Jay Kuo, and Zhen Zhang. Fast tree-structured nearest

neighbor encoding for vector quantization. IEEE Transactions on Image Processing,

5(2):398–404, February 1996.

[84] Thomas P. Yunck. A technique to identify nearest neighbors. IEEE Transactions on

Systems, Man, and Cybernetics, 6(10):678–683, October 1976.

[85] H. Niemann and R. Goppert. An efficient branch-and-bound nearest neighbor classi-

fier. Pattern Recognition Letters, 7:67–72, February 1988.

[86] Qiyuan Jiang and Wenshu Zhang. An improved method for finding nearest neighbors.

Pattern Recognition Letters, 14:531–535, July 1993.

[87] Abdelhamid Djouadi and Essaid Bouktache. A fast algorithm for the nearest-

neighbor classifier. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(3):277–282, March 1997.

[88] Stephane Lubiarz and Philip Lockwood. Evaluation of fast algorithms for finding the

nearest neighbor. In 1997 IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 2, pages 1491–1494, April 1997.

Bibliography 169

[89] Pierre Zakarauskas and John M. Ozard. Complexity analysis for partitioning nearest

neighbor searching algorithms. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(6):663–668, June 1996.

[90] B. G. Batchelor. Faster nearest-neighbor calculations. Electronics Letters, 13(10):304–

306, May 1977.

[91] Iraj Kalantari and Gerard McDonald. A data structure and an algorithm for the

nearest point problem. IEEE Transactions on Software Engineering, SE-9(5):631–

634, September 1983.

[92] Behrooz Kamgar-Parsi and Laveen N. Kanal. An improved branch and bound algo-

rithm for computing k-nearest neighbors. Pattern Recognition Letters, 3:7–12, January

1985.

[93] Philip Lockwood. A low cost DTW-based discrete utterance recogniser. In Eighth

International Conference on Pattern Recognition, pages 467–469, 1986.

[94] Enrique Vidal. An algorithm for finding nearest neighbors in (approximately) constant

average time. Pattern Recognition Letters, 4:145–157, July 1986.

[95] V. Ramasubramanian and K. K. Paliwal. An efficient approximation-elimination

algorithm for fast nearest neighbor search based on a spherical distance coordinate

formulation. In Signal Processing V: Theories and Applications, volume 2, pages

1323–1326, 1990.

[96] Michael T. Orchard. A fast nearest-neighbor search algorithm. In 1991 International

Conference on Acoustics, Speech, and Signal Processing, volume 5, pages 2297–2300,

April 1991.

[97] S. O. Belkasim, M. Shridhar, and M. Ahmadi. Pattern classification using and efficient

KNNR. Pattern Recognition, 25(10):1269–1274, 1992.

[98] C.-M. Huang, Q. Bi, G. S. Stiles, and R. W. Harris. Fast full search equivalent encod-

ing algorithms for image compression using vector quantization. IEEE Transactions

on Image Processing, 1(3):413–416, July 1992.

[99] Luisa Micó, José Oncina, and Enrique Vidal. An algorithm for finding nearest neigh-

bors in constant average time with linear space complexity. In Proceedings of the

170 Bibliography

11th International Conference on Pattern Recognition, volume II, pages 557–560, The

Hague, 1992.

[100] E. Salari and W. Li. Adaptive fast encoding algorithm for vector quantisation. Elec-

tronics Letters, 30(21):1733–1734, October 1994.

[101] Maŕıa Luisa Micó, José Oncina, and Enrique Vidal. A new version of the nearest-

neighbor approximating and eliminating search algorithm (AESA) with linear prepro-

cessing time and memory requirements. Pattern Recognition Letters, 15:9–17, January

1994.

[102] Wenhua Li and Ezzatollah Salari. A fast vector quantization encoding method for

image compression. IEEE Transactions on Circuits and Systems for Video Technology,

5(2):119–123, April 1995.

[103] Kuang-Shyr Wu and Ja-Chen Lin. An efficient nearest neighbor searching algorithm

with application to LBG codebook generation. Journal of the Chinese Institute of

Engineers, 19(6):719–724, 1996.

[104] S. C. Tai, C. C. Lai, and Y. C. Lin. Two fast nearest neighbor searching algorithms

for image vector quantization. IEEE Transactions on Communications, 44(12):1623–

1628, December 1996.

[105] Yih-Chuan Lin and Shen-Chuan Tai. Dynamic windowed codebook search algorithm

in vector quantization. Optical Engineering, 35(10):2921–2929, October 1996.

[106] Chin-Chen Chang and Dai-Chuan Lin. An improved VQ codebook search algorithm

using principal component analysis. Journal of Visual Communication and Image

Representation, 8(1):27–37, 1997.

[107] Chin-Chen Chang, Wen-Tsai Li, and Tung-Shou Chen. Two improved codebook

search methods of vector quantization based on orthogonal checking and fixed range

search. Journal of Electronic Imaging, 7(2):357–366, April 1998.

[108] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,

Inc., 1990.

[109] Karl W. Pettis, Thomas A. Bailey, Anil K. Jain, and Richard C. Dubes. An intrin-

sic dimensionality estimator from near-neighbor information. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1(1):25–37, 1979.

Bibliography 171

[110] Chang-Da Bei and Robert M. Gray. An improvement of the minimum distortion

encoding algorithm for vector quantization. IEEE Transactions on Communications,

33(10):1132–1133, October 1985.

[111] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, third edition, 1996.

[112] Pasi Fränti, Timo Kaukoranta, and Olli Nevalainen. On the splitting method for

vector quantization codebook generation. Optical Engineering, 36(11):3043–3051,

November 1997.

[113] Edward W. Forgy. Cluster analysis of multivariate data: Efficiency vs. interpretibility

of classification. Biometrics, 21:768–769, 1965. Abstract.

[114] J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics,

and Probability, volume 1, pages 281–296, 1967.

[115] Yoseph Linde, Andrés Buzo, and Robert M. Gray. An algorithm for vector quantizer

design. IEEE Transactions on Communications, 28(1):84–95, January 1980.

[116] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for

choosing a good ridge parameter. Technometrics, 21:215–223, 1979.

[117] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman.

Applied Linear Statistical Models. Richard D. Irwin, Inc., fourth edition, 1996.

[118] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C. Cambridge University Press, second edition, 1992.

[119] David G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, second

edition, 1984.

[120] Daniel B. Murray. Forecasting a chaotic time series using an improved metric for

embedding space. Physica D, 68:318–325, 1993.

[121] Naoki Tanaka, Hiroshi Okamoto, and Masayoshi Naito. An optimal metric for predict-

ing chaotic time series. Japanese Journal of Applied Physics, 34(1):388–394, January

1995.

172 Bibliography

[122] Klaus Fraedrich and Bernd Rückert. Metric adaption for analog forecasting. Physica

A, 253:379–393, 1998.

[123] Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-Hall,

Inc., 1985.

[124] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, second edition, 1996.

[125] Martin Casdagli, Stephen Eubank, J. Doyne Farmer, and John Gibson. State space

reconstruction in the presence of noise. Physica D, 51:52–98, 1991.

[126] Rainer Hegger and Thomas Schreiber. A noise reduction method for multivariate time

series. Physics Letters A, 170(4):305–310, 1992.

[127] Tim Sauer. A noise reduction method for signals from nonlinear systems. Physica D,

58:193–201, 1992.

[128] Thomas Schreiber. Extremely simple nonlinear noise-reduction method. Physical

Review E, 47(4):2401–2404, April 1993.

[129] Mike Davies. Noise reduction schemes for chaotic time series. Physica D, 79:174–192,

1994.

[130] Holger Kantz and Lars Jaeger. Improved cost functions for modelling of noisy chaotic

time series. Physica D, 109:59–69, 1997.

[131] Lars Jaeger and Holger Kantz. Effective determinisitic models for chaotic dynamics

perturbed by noise. Physical Review E, 55(5):5234–5247, May 1997.

[132] F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S.

Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in

Mathematics, pages 336–381. Springer-Verlag, 1981.

[133] Tim Sauer, James A. Yorke, and Martin Casdagli. Embedology. Journal of Statistical

Physics, 65(3):579–616, 1991.

[134] Th. Buzug and G. Pfister. Comparison of algorithms calculating optimal embedding

parameters for delay time coordinates. Physica D, 58:127–137, 1992.

[135] Liangyue Cao. Practical method for determining the minimum embedding dimension

of a scalar time series. Physica D, 110:43–50, 1997.

Bibliography 173

[136] Martin Casdagli. Nonlinear prediction of chaotic time series. Physica D, 35:335–356,

1989.

[137] D. Kugiumtzis. Assessing different norms in nonlinear analysis of noisy time series.

Physica D, 105:62–78, 1997.

[138] R. J. Williams and D. Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation, 1(2):270–80, 1989.

[139] P. J. Werbos. Backpropagation through time: What it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–60, October 1990.

[140] Katheleen T. Alligood, Tim D. Sauer, and James A Yorke. Chaos, An Introduction to

Dynamical Systems. Textbooks in Mathematical Sciences. Springer-Verlag New York,

Inc., 1997.

[141] Udo Hübner, Carl-Otto Weiss, Neal Broadus Abraham, and Dingyuan Tang. Lorenz-

like chaos in NH3-FIR lasers. In Andreas S. Weigend and Neil A. Gershenfeld, editors,

Time Series Prediction, Santa Fe Institue Studies in the Sciences of Complexity, pages

73–104. Addison-Wesley, 1994.

[142] T. L. Carroll. Multiple attractors and periodic transients in synchronized nonlinear

circuits. Physics Letters A, 238(6):365–368, 1998.

[143] E. R. Weeks, Y. Tian, J. S. Urbach, K. Ide, H. L. Swinney, and M. Ghil. Transitions

between blocked and zonal flows in a rotating annulus with topography. Science,

278:1598–1601, 1997.

[144] Leonard A. Smith. Local optimal prediction: exploiting strangeness and the variation

of sensitivity to initial condition. In Philosophical Transactions of the Royal Society,

volume 348 of A, pages 371–381, 1994.

[145] G. Bontempi, M. Birattari, and H. Bersini. Lazy learning for iterated time-series pre-

diction. In Proceedings of the International Workshop on Advanced Black-Box Tech-

niques for Nonlinear Modeling, pages 62–68, Katholieke Universiteit Leuven, Belgium,

July 1998.

[146] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, second edition, 1990.

