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Abstract

In this paper we describe the £ndings of an exploratory
study of the effect of obstructive sleep apnea (OSA) on
the electrocardiogram (ECG) signal. Episodes of sleep
apnea are characterized by periodic cycles of breathing
cessation and restoration. Our analysis was guided by the
hypothesis that these cycles synchronously alter the ECG.
We discovered several characteristic indicators of apnea in
the ECG signal.

Our study focused on data sets provided for the
Computers in Cardiology (CINC) 2000 apnea classi£cation
competition. After careful QRS detection, artifact removal,
and preprocessing, we found that we could recognize
sleep apnea by visually inspecting spectrograms of various
features of the ECG such as the heart rate (HR), S-pulse
amplitude, and pulse energy. As part of this study we
entered both CINC competitions. We were able to correctly
classify 28 out of 30 subjects in our initial competition entry
and 30 out of 30 in our third entry. Once each signal was
classi£ed as a whole, we were able to correctly classify each
minute in 13,626 out of 17,268 cases in our initial entry and
15,994 cases in our fourth entry.

1. Introduction

Our study of obstructive sleep apnea (OSA) was
motivated by the Computers in Cardiology (CINC) 2000
apnea classi£cation competition. Standard methods of
diagnosing OSA are based on respiration monitoring which
is intrusive and expensive. Screening for OSA using the
ECG alone would save time, money, and discomfort. The
premise of the competition was that “the major obstacle
to the use of such methods is that careful quantitative
comparisons of their accuracy against that of conventional
techniques for apnea detection have not been published.”
While we have not developed an algorithm to do it, we
believe that the work we present here demonstrates that it
is possible to screen for OSA using the ECG alone.
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In the competition data we £rst observed the large
oscillations in O2Sat. that results from the periodic
obstruction of respiration. We noticed that R-R intervals
seemed to shorten when respiration was obstructed, and
we hoped that the effect was real and could be used
to detect OSA. A hasty literature search con£rmed that
respiration and hypoxia are known to effect heart rate (HR)
and ECG pulse energy. A. Patwardhan studied the effect
of respiration on heart rate [1]. Tanaka et al. studied the
response of the heart rate to the cessation of respiration and
found the relationship to be nontrivial; at £rst HR increases
and it later decreases [2]. Hirsch and Bishop quanti£ed
the “relationship of respiratory sinus arrhythmia amplitude
(RSA) to tidal volume and breathing frequency.” and noted
that the appearance of the respiratory cycle in the HR signal,
called RSA, has been known for at least 150 years [3, 4].

2. QRS detection

As a £rst step in our analysis we implemented our
own QRS detection algorithm to extract a number of
features in each pulse including the time and amplitude
of each element of each PQRST complex and an overall
characterization of the amplitude of the complex which we
will refer to as the ECG pulse energy (see Figure 1).

3. Preprocessing

After QRS detection, we implemented several stages of
preprocessing to remove artifacts and the effect of noise.
For the £rst stage, we eliminated any portion of the signal
that was above or below a speci£ed percent of the median.

Second, we effectively low-pass £ltered the signal and
resampled it at a £xed rate of 100 samples per minute
by applying a Gaussian kernel smoother with a standard
deviation of 0.3 seconds.

Finally, we applied an anti-aliasing £lter and downsampled
the signal by a factor of two. This eliminated high
frequency noise and reduced the computation required
to estimate the spectrogram over the frequency range of
interest.
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Figure 1. Example of our QRS detection algorithm. The
times of the R pulses provided with the data set, shown
by the vertical lines, did not include the second and third
pulses shown here. The horizontal line shows heart rate.
The amplitude and times of the R pulses detected by our
algorithm are shown by the dots at the top of each pulse.
The ECG pulse energy is shown as a series of bumps
centered at each pulse.

4. Spectrogram estimation

We estimated spectrograms using an FFT applied to
a series of signal segments multiplied by a Blackman
window. The window length was 256 points (5.12 minutes)
and the power spectrum was estimated every 30 seconds.

We also calculated and plotted two estimates of the signal
energy. One estimate was the average weighted energy in
the same window used to estimate the power spectrum. The
second estimate was calculated for only the portion of the
signal in the frequency range of 0.50 to 3.50 cpm (cycles per
minute), the approximate frequency range of apnea-induced
breathing cycles.

We plotted the spectrogram for each signal along with the
signal energies and the signal under study.

5. Discussion

We examined many features of the ECG signals
including the intervals between various pulses, the
amplitudes of each pulse, the difference between pulse
amplitudes, and the ECG pulse energy. We found that the
heart rate (R-R intervals) was the most useful for identifying
episodes of apnea. We also found that when it was hard to
see an OSA signature in the HR, it could sometimes be seen
in spectrograms of the amplitude of the S pulses or the ECG
pulse energy.

The characteristics of apnea were similar in all of the
signals we examined. Figure 2 shows a typical pattern
in the heart rate signal during an episode of apnea. This
example illustrates several characteristics of the signals that
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Figure 2. Example of the heart rate during the onset of
apnea (£le a03). The expert estimated that apnea began at
186 minutes.

406 408 410 412 414 416 418
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Time (min)

H
ea

rt
R

at
e

(b
ps

)

Figure 3. Example of the heart rate during the onset of
apnea (£le a05). The expert estimated that apnea began at
410 minutes.

we analyzed. The data contained many glitches, partially
due to beats that were not detected by our QRS detection
algorithm. In this example, apnea is characterized by slow
rises in the heart rate followed by a rapid decrease. Figure 3
shows another typical pattern in the heart rate signal during
the onset of apnea. Unlike Figure 2, the episodes of apnea
in this signal are characterized by a rapid increase in heart
rate followed by a slow decline. However, both signals are
non-sinusoidal and have a similar fundamental frequency of
0.5–2.0 cpm. In some cases, third and fourth harmonics of
the fundamental frequency could also be observed.

We also observed that the ECG often has transient
characteristics at the onset of apnea. Figure 4 shows a
typical onset of apnea in the heart rate. After approximately
40 minutes a clear oscillation appears with growing
amplitude and decreasing frequency. After minute 70 the
amplitude stops growing and the frequency stabilizes.

Figure 5 shows the spectrogram of the heart rate for the
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Figure 4. Example of the onset of apnea (£le a04).
The expert estimated that apnea began at 35 minutes and
continued throughout the duration of the segment shown.
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Figure 5. Example of the spectrogram of the heart rate
during the onset of apnea. This is over the same time
segment as Figure 4.

same segment as in Figure 4. The decreasing frequency and
growing amplitude are clearly visible in the spectrogram.
The glitch that occurs at approximately 50 minutes causes
a vertical stripe in the spectrogram. The transients at the
onset of OSA limit the effectiveness of methods that rely
on stationarity.

We found that intervals of normal respiration are
sometimes characterized by a periodic signal at the rate
of respiration. The expert consistently labeled these
segments as non-apnea states. Figure 6 shows this type
of segment in the S-pulse amplitude signal. Figure 7
shows the spectrogram of the same segment. For this
subject, episodes of non-apnea are characterized by a strong
periodic respiration signal at approximately 14 cpm.

Although the HR (R-R intervals) was generally more
accurate for detecting apnea than the S-pulse amplitudes
or the ECG pulse energy, occasionally the heart rate was
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Figure 6. Example of several transitions in the S-pulse
amplitudes between apnea and normal respiration (£le a06).
The expert classi£ed minutes 260–267 and 306–315 as
apnea states.
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Figure 7. Example of normal respiration detected by the
spectrogram. This is the same segment as in Figure 6. Note
that four harmonics are clearly visible in the £rst apnea
segment.

misleading (See Figures 8 and 9).

6. Results

We initially tried to classify each minute by estimating
how much energy was in the frequency range of 0.5–
2.2 cpm of the heart rate. Although we were able to
consistently classify the labeled data set with an accuracy
of approximately 83–86%, we found that this method often
mislabeled segments that were apparent to us visually.

Second, we tried hidden Markov models (HMM’s)
methods developed for speech recognition. Although we
were able classify the labeled data set with an accuracy of
80–87%, we found again that the mislabeled segments were
apparent visually.
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Figure 8. Example of the heart rate spectrogram displaying
a false signature of apnea. The expert estimated that apnea
began at 33 minutes and continued throughout the duration
of the segment shown.
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Figure 9. Example of the ECG pulse energy spectrogram
displaying a strong signature of apnea. This is the same
segment as shown in Figure 8.

Finally, we tried labeling the segments manually based
on the signatures in the spectrogram and we found that we
could do this with an accuracy of approximately 90–93%.
We decided to submit an entry to the competition based
on our manually labeled signals. In our fourth attempt we
achieved an accuracy of 92.6% on the test set. Table 1
summarizes the methods we used to generate each entry and
our corresponding scores.

7. Conclusions

In this paper we described our £ndings from an
exploratory study of how sleep apnea affects the
electrocardiogram. We found that episodes of apnea
could be characterized by a periodic oscillation in the
electrocardiogram with a fundamental frequency of 0.5–

Table 1. Summary of methods used to generate competition
entries and the corresponding results.

Apnea Screening
Method Score
Inspection of heart rate signal 28/30
Inspection of heart rate spectrograms 29/30
Inspection of heart rate and S-amplitude
spectrograms

30/30

Quantitative Assessment of Apnea
Method Score
Energy above manual threshold 13,626
Hidden Markov Models 14,474
Inspection of heart rate and S-amplitude
spectrograms

15,668

Inspection of heart rate, S-amplitude,
and ECG pulse energy time series and
spectrograms

15,994

2.0 cpm. There was signi£cant variation in the shape of
this pattern among subjects and affected different elements
of the ECG including the heart rate (R-R intervals), S-pulse
amplitude, and the ECG pulse energy. Due to complexity
of the patterns and variation among subjects, we found that
we could manually classify the ECG more accurately than
the algorithms that we developed.
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